
Data Driven Concept Refinement

to Support Avionics Maintenance

Luis Palacios Medinacelli

1,2
Yue Ma

2

Gaëlle Lortal

1

Claire Laudy

1

Chantal Reynaud

2

1

LRASC, Thales Research & Technology, Palaiseau, France

2

LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France

{gaelle.lortal,claire.laudy}@thalesgroup.com, {palacios,ma,cr}@lri.fr

Abstract

Description Logic Ontologies are one of the
most important knowledge representation for-
malisms nowadays which, broadly speaking,
consist of classes of objects and their rela-
tions. Given a set of objects as samples and
a class expression describing them, we present
ongoing work that formalizes which properties
of these objects are the most relevant for the
given class expression to capture them. More-
over, we provide guidance on how to refine the
given expression to better describe the set of
objects. The approach is used to characterize
test results that lead to a specific maintenance
corrective action, and in this paper is illus-
trated to define sub-classes of aviation reports
related to specific aircraft equipment.

1 Introduction

Given a DL-Ontology we might find that some con-
cepts definitions are too generic, in the sense that they
are not rich enough to capture only the intended ob-
jects, or that the definition does not describe them
properly. In order to have more control on what is
expressed, having sub-types of such concepts is use-
ful, since we can make distinctions between the ob-
jects that could not be made before. Our motiva-
tion comes from the avionics maintenance domain
[Palacios et al.2016] , where we find several levels of
maintenance. One of them involves shop repair, where
an equipment found faulty on an aircraft is to be re-
paired or replaced. In this scenario, several tests need

Copyright

c� by the paper’s authors. Copying permitted for

private and academic purposes.

In: Proceedings of the SML Workshop, Melbourne, Australia,

20-08-2017, published at http://ceur-ws.org

to be run to find out the exact part(s) of the equip-
ment which is faulty and causes failures. Once the
tests are run, it is up to mechanic experts to determine
the possible components of the equipment involved in
the failure, and the repairs/replacements to be done.
For a maintenance process it is di�cult to establish a

priori what are the actions to be taken to return the
equipment to a fully functional state. Establishing the
most probable actions is useful to shorten the exami-
nation and repair time, thus gaining in e�ciency and
lowering the costs. In this paper, we aim to model this
problem and propose a primitive method. The idea is
based on the fact that we know by a large amount of
historical shop repair reports the test results and re-
pair decisions made accordingly. We can consider the
closed incidents as positive samples of a repair action,
the incidents that do not require this repair action as
negative ones, and use tests as features of each sample.
Then identifying important tests results equals identi-
fying key features that distinguish positives from neg-
atives. Finally we use these key features to provide
a description for the sub-set of tests that lead to a
specific maintenance action. Our approach thus can
be used to obtain formal patterns to capture a set of
samples; properties that distinguish positive from neg-
ative samples; guide to refine a concept expression and
enrich patterns that can be served as features for clus-
tering or classifying samples.

2 Positioning

Mining formal patterns from data has been identified
as an important task in many di↵erent research com-
munities. Depending on the target language used for
representing a pattern, we can divide the existing work
into di↵erent categories.
Concept Learning Similar to our paper, DL-Learner
[Lehmann2009], a state-of-the art tool for concept
learning, is based on description logic. It provides a
framework for supervised machine learning using sev-

In: Proceedings of IJCAI Workshop on Semantic Machine Learning
(SML 2017), Aug 19-25 2017, Melbourne, Australia.

eral algorithms which are highly parameterizable. It is
based on refinement operators like CELOE for OWL
expressions and ELTL for the EL family of DLs. De-
pending on the desired properties of the operator and
the DL-constructors allowed, the operator traverses
the space of possible concept expression in a top-down
or bottom-up way. Then these concept expressions are
evaluated, using heuristics, to find the most suitable
ones. Shorter and more simple expressions are pre-
ferred by these algorithms.

A useful list of approaches for concept learning and
their characteristics can be found in [Tran et al.2012]
where they position their approach based on bisimu-
lations with respect to other techniques.

In [Divroodi and Nguyen2015], they study how to
establish whether the signature of an ontology (the
concepts, roles and individuals along with the DL-
family chosen) is su�cient to distinguish between two
objects. Broadly speaking, if two objects belong to
the same equivalence class, they are indistinguishable.
On the other hand, given a set of samples, if there
exists an expression in the underlying language that
can capture this set of samples, then it must be the
union of some equivalence classes. They use this no-
tion to provide an algorithm that learns a concept ex-
pression, by partitioning the domain with respect to
the equivalence classes. One interesting feature of their
approach, is that it o↵ers a formal way of defining ap-
proximations to a concept expression based on rough
sets [Nguyen and Sza las2013] by using the similarity
classes and the underlying language.
In the above mentioned approaches, the goal is to find
a concept expression that best describes a set of sam-
ples, by refining the concept. In a specialization sce-
nario, if a false positive, can be left out of the extension
of the concept by adding a restriction to the the objects
that belong to it, we know that the selected property
separates the false positive from the rest of the sam-
ples. Pointing out these properties and objects, is the
di↵erence and contribution of this paper with respect
to the above mentioned approaches.
Graph mining Graph structures are used within a
variety of applications in order to represent structured
information. The issue of mining interesting patterns
in these graphs structures has thus emerged and a
large amount of researches focus on algorithms en-
abling graph mining. Regarding our application, in-
teresting patterns mean for instance recurring or fre-
quent patterns that can be found either in a big graph
or in a set of (smaller) graphs. It may also mean find-
ing significant patterns, either semantically or statisti-
cally representative for the instance. From a Machine
Learning point of view, interesting patterns are those
that well discriminate positive vs. negative samples.

One of the main problems addressed by the di↵erent

work raised in the subgraph isomorphism issue. Sub-
graph isomorphism is an NP-complete problem. Thus,
mining subgraphs of a graph means studying an expo-
nential number of subgraphs. In [Yan and Han2003],
the authors propose an algorithm, CloseGraph to mine
closed frequent graphs. The algorithm uses pruning
methods in order to reduce the exploration space. A
closed graph in a set of graphs is a graph, for which it
exists no proper subgraph that has the same support.
Therefore, closed graph patterns will be the largest
patterns that can be found in a graph database for a
given problem.

[Motoda2007], [Inokuchi et al.2000] and
[Yoshida et al.1994] present two approaches for
extracting frequent subgraphs: AGM and GBI.
AGM relies on the representation of the graphs by
adjacency matrices and GBI relies on the chunking of
adjacent nodes in order to generate subgraphs and the
rewriting of the graphs given the selected subgraphs
as new nodes.

Using graph mining, the most relevant structures
of a set of graphs can be found. It can be used to
find patterns that discriminate positive and negative
examples. This is very similar to our problem of learn-
ing a concept from examples as patterns describe the
common parts of the examples. However, no direct
control over the signature is given, neither the pos-
sibilities to extend a concept are taken into account.
Graph mining techniques can be used as initial step
for our approach to find a first substructure that dis-
criminate partially positives and negatives examples.
Our feature extraction algorithm may then be applied
in order to not remain at a structure level but to con-
sider the semantics, focusing on the relevant proper-
ties. Furthermore the associated signature provides
theoretical limits to what can be expressed.

The rest of the paper is organized as follows: in
section 3 we introduce the approach and the necessary
definitions. Then, in section 4 we show a use case
based on aviation reports, where we refine a concept
based on expert knowledge. Finally, in section 5 the
conclusions and further works are presented.

3 Defining the most relevant features

We define ontologies based on [Baader2003], where an
ontology is a tuple O = hT ,Ai with T being the T-
Box and A the A-Box. The T-Box contains the set of
concept and role definitions, while the A-Box contains
assertions about the definitions in the T-Box. The sig-
nature ⌃O of an ontology O is the set of all concept
names, role names and individuals in O. For details
refer to [Divroodi and Nguyen2015]. To make the ap-
proach simpler, in the following we consider T = ;
and the assertions in the A-Box are of the form A(x)

or r(x, y), where A and r are atomic.
Given an ontology O, a set of samples X = Pos [

Neg (where Pos is a set of positive samples and Neg

a set of negative samples) and a concept C describing
X up to certain degree , we are interested in finding
a DL-expression C0 with a better degree 0 to describe
X , if it exists. The value of is to be defined in ac-
cordance to the problem by the user (for example the
recall, the accuracy, f-measure, etc.). Thus, the prob-
lem consists in that: a) C captures some unintended
objects (false positives),b) it does not capture some
intended objects (false negatives) or c) both.
We take the case of false positives to illustrate the ap-
proach, where C captures some negative samples. In
this scenario, we would like to make C more specific,
that is to add restrictions to the objects that belong
to this concept, in such a way that a) some (or all)
false positives are not considered anymore and b) we
preserve all (or most) of the positive samples. Given a
concept C and a positive instance x 2 Pos, we want to
know what are the properties to consider, if we want
to specialize C. Intuitively the process is as follows:
Any instance and its relation to other objects can be
represented as a directed (acyclic) graph, with the
nodes representing the objects and the edges repre-
senting the relations between them, as stated by the
A-Box. For example consider the A-Box :

A : {r1(x, y), r2(y, w), r3(y, z)}
we obtain: Since a concept expression C is given as part

x

y

w

z

r1
r2

r3

Figure 1: The graph representation of object x

of the input, we can determine which are the proper-
ties of object x that are necessary for C to capture it.
Assume C ⌘ 9r1.9r2.>, then the assertion r3(y, z) is
not relevant for deciding whether C(x) = > holds, and
a simpler representation of x can be obtained: This

x

y

wr1
r2

Figure 2: The graph representation of object x, w.r.t.
A \ r3(y, z)

representation allows us to establish up to which point
the structure of the object x is relevant for C. From
the original A-Box, we know that some of the objects
to which x is connected, are themselves connected to
other objects by relations not considered by C. In our
example object y is connected to object z through re-
lation r3. We are interested in these objects, since

they provide all the properties that we can consider
to further specialize C and still capture x, and there-
fore represent the relevant properties to capture the
set of positive instances. In order to provide a formal
definition for these objects, let us first introduce some
necessary notions.

Definition 1 Given an ontology O with signature

⌃O, two objects x, y and an A-Box A, we say that

there exists a binary relation closure between x and y,

denoted by r "(x, y), if x = y or if there exists a path

of the form:

{r1(x, z1), r2(z1, z2), . . . , rm(z
n�1, zn)} ✓ A

with n � 1, z
n

= y, and r

j 2 ⌃O(1 j m).

Next, we want to establish which of the edges of the
graph representing the object are necessary for a given
concept to capture the object. This is formalized by
the following definition:

Definition 2 Given an object x, a concept C, an A-

Box A and a binary relation r(y, z) 2 A, we say that

r(y, z) is necessary for C to capture x i↵:

C(x) = > w.r.t A, r "(x, y), r(y, z) 2 A but

C(x) = ? w.r.t A \ r(y, z)
Likewise, we say that r(y, z) is unnecessary if

C(x) = > w.r.t A \ r(y, z)

still holds. Additionally, we say that an object o is

necessary if o = x or:

9z | r(z, o) 2 A s.t. r(z, o) is necessary.

Note that depending on the concept C and the con-
tent of the A-Box, a unnecessary binary relation might
become necessary, therefore several possible answers
might exist. For example take the concept C ⌘ 9r.>
and the A-Box: A = {r(x, y), r(x, z)}, then we have:

C(x) = > w.r.t A \ r(x, y)

Concluding that r(x, y) is not necessary, but only as
long as r(x, z) 2 A (and vice-versa). Given a definition
for the properties and objects necessary for an object
x to belong to a concept C, we can also obtain those
that are not necessary. These (unnecessary) proper-
ties are linked to the object x but are not required by
C. As such they can be seen as candidate properties
for specializing C and still capture x. These are the
properties of special objects hereafter called leafs of x,
defined by:

Definition 3 Given an object x, a concept C and an

A-Box A the set of leafs of x w.r.t C is given by:

Leafs

x,C = {y | r(y, z) 2 A
where y is necessary for C to capture x

but r(y, z) is not necessary for C to capture x}

Intuitively the set Leafs
x,C represents all those objects

y in the frontier of x w.r.t. C, in the sense that no fur-
ther edges of the graph representing x are considered
by C to decide whether the object x belongs to it.

Definition 4 Given an object x, a concept C and the

set Leafs

x,C w.r.t. an A-Box A, the set of extensions
Ext

x,C to specialize C w.r.t. x is defined by:

Ext

x,C = {r(y, z) 2 A | y 2 Leafs

x,C

and r(y, z) is not necessary for C to capture x }
Intuitively Ext

x,C provides all those role names
through which C can be specialized and still capture
x. The set of leafs and their properties are the answer
to our problem (they provide the ways in which we
can specialize C, from where we can derive the con-
flictive properties and the conflicting objects). Be-
fore we present an algorithm to obtain the neces-
sary properties, let us show that the definitions are
not su�cient alone. Consider now C ⌘ 9r.> and
A = {r(x, y), r(y, w), r(x, z)}, we have Leafs

x,C =
{x} and Ext

x,C = {r(x, y), r(x, z)}. We can indeed
specialize C using these properties, but nothing in
the above answer gives us the information that either
r(x, y) or r(x, z) is required for C(x) = > to hold (we
just know they are not necessary). To obtain this infor-
mation, we take the unnecessary relations and remove
them one by one from the A � Box until a minimal
set of necessary role assertions is reached. We now
introduce an algorithm to compute a minimal set of
necessary role assertions, from which we can extract
Leafs

x,C and Ext

x,C :
In Algorithm 1 we first compute R

x

(2), which is the
subset of the A-Box A containing all those role asser-
tions in a path from x:

r(x, y) 2 R

x

since r " (x, x) and r(x, y) 2 A
r(y, w) 2 R

x

since r " (x, y) and r(y, w) 2 A
r(x, z) 2 R

x

since r " (x, x) and r(x, z) 2 A
We have : R

x

= Copy

R

= {r(x, y), r(y, w), r(x, z)}
(3) makes a copy Copy

R

of R

x

from which we will
sequentially remove the last elements of each path. (4)
establishes as the candidates Cand

R

to be tested all

Algorithm 1 Minimal set of necessary role assertions

1: input: (x, C(x) = >,A)
2: R

x

= {r(y, z) | r " (x, y), r(y, z) 2 A}
3: Copy

R

= R

x

4: Cand

R

= {r(y, z) 2 R

x

| 6 9w s.t. r(z, w) 2 R

x

}
5: C

x

= {D(z) 2 A | z = x or 9y s.t. r(y, z) 2 R

x

}
6: while Cand

R

6= ; do

7: for r(y, z) 2 Cand

R

do

8: if C(x) = > w.r.t. {R
x

\r(y, z)}[C

x

then

9: remove r(y, z) from R

x

10: end if

11: remove r(y, z) from Copy

R

12: end for

13: Cand

R

= {r(y, z) 2 Copy

R

| 6 9w s.t. r(z, w) 2
Copy

R

}
14: end while

15: return: R

x

those role assertions that do not have further outgoing
edges (that is, the last elements of a path):

Cand

R

= {r(y, w), r(x, z)}
(5) creates the set of all concept assertions about all
the objects that take part in a relation in R

x

. In our
example is empty. Then we start the while loop to test
all assertions for necessity until no more candidates are
found. (7) takes one candidate at the time, and (8)
tests if its necessary. The unnecessary assertions are
removed from R

x

(9). Any assertion already tested is
removed from Copy

R

by (11) in order not to test them
twice. First we test r(y, w):

C(x) = >w.r.t.{R
x

\ r(y, w)} [C

x

, remove r(y, w)

R

x

= {r(x, y), r(x, z)} , Copy

R

= {r(x, y), r(x, z)}
Then, r(x, z) is tested:

C(x) = >w.r.t.{R
x

\ r(x, z)} [C

x

, remove r(x, z)

R

x

= {r(x, y)} , Copy

R

= {r(x, y)}
Once all identified candidates are tested, the set
Candidates

R

is re-computed (13) considering only
those assertions remaining in Copy

R

,

Cand

R

= {r(x, y)}
A second run of the while loop tests r(x, y) yielding:

C(x) = ?w.r.t.{R
x

\ r(x, y)} [C

x

, keep r(x, y)

R

x

= {r(x, y)} , Copy

R

= {}
Since there are no more candidates to test, the out-
put of the algorithm is the modified set R

x

which is a
minimal set of necessary role assertions for C(x) = > 1:

R

x

= {r(x, y)}
1
The proof for this property remains as further work.

From this set we can easily construct Leafs

x,C and
Ext

x,C , following their definitions:

Leafs

x,C = {x, y} , Ext

x,C = {r(y, w), r(x, z)}

Where the possible extensions to consider to specialize
C are r(y, w), r(x, z), which is the intended answer.

4 Use case

Since the data specific to aviation maintenance is re-
stricted for disclosure, we provide an example based
on aviation incidents. Similarly as in aviation main-
tenance, where we want to find sub-types of failures
based on their features, here we want to obtain in-
teresting sub-concepts of aviation issues. We count
with an ontologyO

ASRS

representing the reported avi-
ation incidents from the ASRS 2 database, and a set
of equipment used in aviation, from which we selected
GPS. In this scenario, we are interested on which prop-
erties to take into account to obtain those ”GPS re-

lated aviation issues” and those ”aviation issues where

the GPS presented a problem”. We proceed as follows:
in the ASRS website, a classification of some reports
made by experts is given, one of such sets is ”GPS

related reports”. This provides us with the set of posi-
tive instances Pos 3. As the set of negative instances
Neg , we have selected reports related to other types of
incidents disjoint with Pos:

Pos = {1336, 1347, 1359} , Neg = {1361}

The A-Box A is composed of the following concepts
and roles:

AviationIssue = {1336, 1347, 1359, 1361}
Aircraft = {A1, A2, A3, A4}

NavInUse = {GPS, FMS}
CompProb = {Mf, IO}

involves = {(1336, A1), (1347, A2), (1359, A3),
(1361, A4)}

usesNav = {(A1, GPS), (A2, GPS), (A3, GPS),
(A3, FMS)}

repProblem = {(A1,Mf), (A2,Mf), (A3, IO),
(A4,Mf)}

hasNarrative = {(1336, ”..GPS..”), (1347, ”..GPS..”),
(1359, ”..GPS..”), (1361, ”..GPS..”)}

(where: Mf=Malfunctioning,CompProb=ComponentProblem,

IO=Improperly operated,repProblem=reportedProblem,

NavInUse=Navigation system in use)

Assume as input we are given a concept expression of
the form:

C ⌘ 9involves.>
2
Aviation Safety Report System (https://asrs.arc.nasa.gov)

3
The samples have been simplified for this paper.

1336

AviationIssue

A1

Aircraft

Mf

CompProb

GPS

NavInUse

..GPS..

Narrative

involves

repProblem

usesNav

hasNarrative

Figure 3: The graph representation of object 1336,
instance of AviationIssue concept. Concepts are rep-
resented in bold, values as nodes, and relations as
edges.

It is easy to see that the AviationIssue 1336 is an
instance of C, but the problem is that we also find
C(1361) = >, thus C does not classify the objects in
the intended way. To establish how to improve C, we
use algorithm 1 to obtain R

x

, and from this set of
necessary role assertions we obtain its leafs and the
possible properties to specialize it:

R

x

= {involves(1336, A1)}
Leafs

x

= {1336, A1}
Ext

x,C = {hasNarrative(1336, ”...GPS...”),

usesNav(A1, GPS), repProb(A1,Mf)}
It is out of the scope of this paper how to construct
a concept expression using the identified properties,
nevertheless we provide some examples to illustrate
the approach. If we first consider hasNarrative to
specialize C, we can add a restriction in the following
way:

C0 ⌘ 9involves.> ^ 9hasNarrative.{”...GPS...”}
The concept C0 expects that any report mentioning
GPS in its narrative is indeed a ”GPS related report”.
But even though report 1361 mentions GPS, it is not
classified as ”GPS related reports” by the experts (set
Pos). Thus, we learn that hasNarrative is not the
property that allows us to distinguish them. We pro-
ceed now with the property usesNav. We can special-
ize C by:

C00 ⌘ 9Involves.9usesNav.>
Then C00 correctly classifies Pos and Neg (since
C00(1361) = ?). We learn that usesNav is the most
relevant property to specialize C that allows us to
make the desired distinction, and that the specializa-
tion should be made in the position of the leafA1 in the
graph. Finally, assume we want to obtain a more inter-
esting concept expression, representing those ”Avia-
tion Issues that involve a problem with GPS devices”.
The sets of positive and negative samples become:

Pos = {1336, 1347} , Neg = {1359, 1361}

Considering again object 1336 and C00 as part of the
input, the graph representation of its necessary prop-
erties is:

1336

AviationIssue

A1

Aircraft

GPS

NavInUse

involves usesNav

Figure 4: The graph representation of object x, where
only the necessary properties for C00 to capture it are
shown.

Where:
Leafs

x,C00 = {1336, A1}
Ext

x,C00 = {hasNarrative, repProb}
If we select repProb we can construct a concept ex-
pression of the form:

C000 ⌘ 9Involves.(9usesNav.> u 9repProb.{Mf})

We can see that C000 properly distinguishes between
Pos and Neg , and we learn that the most important
property to make this distinction w.r.t. C00 is repProb,
where the most relevant objects (leafs) and their prop-
erties provide the key to construct such expressions.

Aviation Issues

A.I. mention GPS

A.I. related to GPS

A.I. present
GPS problems

Figure 5: Specialization of concept ”Aviation Issue”.

5 Conclusions and further works

We consider that the most simple case (without a T-
Box) is the most appropriate way to introduce our
work and show how it can be used to obtain those
properties relevant for a concept to capture an object.
This information can be used to guide the refinement
process or generalizing a concept, since we know ex-
actly up to which point the properties of the object are
taken into account by the concept expression in the in-
put. The approach can also be useful for optimizing
concept learning techniques, given that the scenario
is restricted to our specifications. A constructive way
for obtaining the refined concept can be given, which
is dependent of the DL-family chosen for the ontology.
Finally, we will study the method for generating rich
features for action prediction in the avionics mainte-
nance domain.

References

[Baader2003] Franz Baader. The description logic

handbook: Theory, implementation and applica-

tions. Cambridge university press, 2003.

[Divroodi and Nguyen2015] Ali Rezaei Divroodi and
Linh Anh Nguyen. On bisimulations for description
logics. Information Sciences, 295:465–493, 2015.

[Inokuchi et al.2000] Akihiro Inokuchi, Takashi
Washio, and Hiroshi Motoda. An apriori-based
algorithm for mining frequent substructures from
graph data. In Proceedings of the 4th European

Conference on Principles of Data Mining and

Knowledge Discovery, PKDD ’00, pages 13–23,
London, UK, UK, 2000. Springer-Verlag.

[Lehmann2009] Jens Lehmann. Dl-learner: learning
concepts in description logics. Journal of Machine

Learning Research, 10(Nov):2639–2642, 2009.

[Motoda2007] Hiroshi Motoda. Pattern Discovery

from Graph-Structured Data - A Data Mining Per-

spective, pages 12–22. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[Nguyen and Sza las2013] Linh Anh Nguyen and An-
drzej Sza las. Logic-based roughification. Rough Sets

and Intelligent Systems-Professor Zdzis law Pawlak

in Memoriam, pages 517–543, 2013.

[Palacios et al.2016] Luis Palacios, Galle Lortal,
Claire Laudy, Christian Sannino, Ludovic Simon,
Giuseppe Fusco, Yue Ma, and Chantal Reynaud.
Avionics maintenance ontology building for fail-
ure diagnosis support. In Proceedings of the 8th

International Joint Conference on Knowledge

Discovery, Knowledge Engineering and Knowledge

Management (IC3K 2016), pages 204–209, 2016.

[Tran et al.2012] Thanh-Luong Tran, Quang-Thuy
Ha, Linh Anh Nguyen, Hung Son Nguyen, Andrzej
Szalas, et al. Concept learning for description logic-
based information systems. In Knowledge and Sys-

tems Engineering (KSE), 2012 Fourth International

Conference on, pages 65–73. IEEE, 2012.

[Yan and Han2003] Xifeng Yan and Jiawei Han.
Closegraph: Mining closed frequent graph patterns.
In Proceedings of the Ninth ACM SIGKDD Inter-

national Conference on Knowledge Discovery and

Data Mining, KDD ’03, pages 286–295, New York,
NY, USA, 2003. ACM.

[Yoshida et al.1994] Kenichi Yoshida, Hiroshi Mo-
toda, and Nitin Indurkhya. Graph-based induction
as a unified learning framework. Applied Intelli-

gence, 4(3):297–316, 1994.

