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Abstract

A terminal control problem with linear dynamics and boundary-value
optimization problem is considered. To solve the problem, a new gra-
dient non-iterative approach, based on the necessary and sufficient
condition of extremality, is proposed. The approach is reduced to
solving a functional variational inequality on the set of controls in a
Hilbert space. This inequality is treated as a parametric family of
finite-dimensional variational inequalities that depend on time as a pa-
rameter. At each fixed moment of time, we have a cross-section of the
problem in time, i.e. finite-dimensional variational inequality. Each
such inequality has its solution, which is found using the continuous
gradient projection method. We prove the pointwise convergence of
the entire family of methods to their solutions. Thus, a mapping is
formed, when the solution of the variational inequality corresponds to
each instant of time. This function is the desired optimal control of the
original problem.

1 Formulation of the Problem

We consider a linear dynamical control system defined on a fixed time interval [t0, t1] with a movable right-hand
end. The dynamics of the controlled trajectory x(·) is described by a linear system of ordinary differential
equations with fixed initial conditions and implicitly given terminal conditions on the right-hand end of the time
interval. These conditions are defined as the solution of the optimization problem. There are constraints on
controls u(·), which are given in the form of a geometric set. The problem has the form

d

dt
x(t) = D(t)x(t) +B(t)u(t), x(t0) = x0, x

∗(t1) = x∗1, (1)

x∗1 ∈ Argmin{φ(x1) | x1 ∈ X1 ⊂ Rn}, (2)

x(·) ∈ ACn[t0, t1], u(·) ∈ U for almost all t ∈ [t0, t1], (3)
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where D(t), B(t) are n × n and n × r-continuous matrices (r < n). X1 is the reachability set, i.e. the set of
right-hand ends x(t1) of trajectories. Controls u(·) ∈ U, where U ⊂ Rr is a convex closed set.

We understand any pair (x(·), u(·)) ∈ ACn[t0, t1]×U satisfying the condition

x(t) = x(t0) +

∫ t

t0

(D(τ)x(τ) +B(τ)u(τ))dτ, t0 ≤ t ≤ t1. (4)

as a solution to the differential system (1). Note that under these conditions the trajectory x(·) is an absolutely
continuous function [Kolmogorov & Fomin, 2009]. The class of absolutely continuous functions is a linear va-
riety that is everywhere dense in Ln

2 [t0, t1]. We denote this class as ACn[t0, t1] ⊂ Ln
2 [t0, t1], where the closure

AC
n
[t0, t1] ≡ Ln

2 [t0, t1]. For any pair (x(·), u(·)) ∈ ACn[t0, t1]×U both the Newton-Leibniz formula and, accord-
ingly, the integration-by-parts formula are satisfied.1 In [Vasiliev, 2011, Book 2, p. 443] it is shown that in the
linear differential system (1) for any control u(·) ∈ U there is a unique trajectory x(·), and this pair satisfies this
identity (4).

In (1)-(3), it is necessary to find a control u∗(·) ∈ U such that the corresponding trajectory x∗(·), being a
solution of the differential system, connects the initial x0 and the terminal x∗(t1) conditions.

The model (1)-(3) contains two components: controlled dynamics and the optimization problem as a boundary-
value problem. The boundary-value problem is a model of a controlled object: for example, the enterprize – in
the economy, the disease history – in the medicine, the assembly line – in technology, the epidemic or the war –
in society, and so on. All these objects act in some environment, in which perturbations constantly arise. From
time to time, under the influence of perturbations, objects lose their equilibrium state and find themselves in a
random position. The problem arises: by choosing control, to return the object from an arbitrary state x0 ∈ Rn

to the terminal state x∗(t1).

2 Classical Lagrangian and Original Problem

The problem presented above is a problem of terminal control, formulated in a Hilbert space. In the theory of
convex programming in finite-dimensional spaces, for a primal problem there always exists a dual problem in the
dual space. Carrying out the corresponding analogies with finite-dimensional spaces, we consider elements of the
duality theory in a functional Hilbert space using the example of a convex terminal control problem (1)-(3). To
this end, we introduce the linear convolution of the problem, known as the Lagrange function:

L(x(t1), x(·), u(·);ψ(·)) = φ(x(t1) +

∫ t1

t0

⟨ψ(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)⟩dt (5)

for all (x(t1), x(·), u(·)) ∈ X1 × ACn[t0, t1]× U, ψ(·) ∈ Ψn
2 [t0, t1]. Here Ψn

2 [t0, t1] is a linear variety of absolutely
continuous functions in a space that is conjugate to the space Ln

2 [t0, t1] of primal variable x(·). Since the space
Ln
2 [t0, t1] is a Hilbert space, it is self-adjoint one.
In order to take advantage of the duality theory, we linearize the Lagrange function (5) at the solution point

of the problem (1)-(3), i.e. at the point (x∗(t1), x
∗(·), u∗(·)). Since the Lagrange function has only one nonlinear

term – the function φ(x(t1)), then we replace this term by its linear approximation from the expansion of φ(x(t1))
into a Taylor series. Then the linearized Lagrange function takes the form

L(x(t1), x(·), u(·);ψ(·)) =

= ⟨∇φ(x∗(t1)), x(t1)− x∗(t1)⟩+
∫ t1

t0

⟨ψ(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)⟩dt (6)

for all (x(t1), x(·), u(·)) ∈ X1 ×ACn[t0, t1]×U, ψ(·) ∈ Ψn
2 [t0, t1].

It is known [Ioffe & Tikhomirov, 1974] that the Lagrange functions for convex, regular (Slater’s condition
holds) problems in finite-dimensional and functional spaces have saddle points (x∗1, x

∗(·), u∗(·);ψ∗(·)). The first

1The scalar products and norms in the introduced spaces are defined, respectively, as

⟨x(·), y(·)⟩ =
∫ t1
t0

⟨x(t), y(t)⟩dt, ∥x(·)∥2 =
∫ t1
t0

|x(t)|2dt,

⟨x(t), y(t)⟩ =
n∑
1
xi(t)yi(t), |x(t)|2 =

n∑
1
x2
i (t), t0 ≤ t ≤ t1,

x(t) = (x1(t), ..., xn(t))T, y(t) = (y1(t), ..., yn(t))T.
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three components are the solution to the problem (1)-(3), and the last component plays the role of the Lagrange
multiplier and, accordingly, is the solution to the dual (conjugate) problem. Further, using the linearization of
the Lagrangian function (6), we obtain a dual problem in an explicit form.

By definition, the saddle point (x∗(t1), x
∗(·), u∗(·);ψ∗(·)) satisfies the saddle-point system of inequali-

ties common both for the Lagrange function (5) and for its linearization (6). We write out these sad-
dle points of the inequality for the linearization (6) [Antipin, 2014], [Antipin & Khoroshilova, 2015(1)],
[Antipin & Khoroshilova, 2015(2)], [Antipin & Khoroshilova, 2015(3)], [Antipin & Khoroshilova, 2016(1)],
[Antipin & Khoroshilova, 2016(2)]:

⟨∇φ(x∗(t1), x∗(t1)− x∗(t1)⟩+
∫ t1

t0

⟨ψ(t), D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t)⟩dt

≤ ⟨∇φ(x∗(t1)), x∗(t1)− x∗(t1)⟩+
∫ t1

t0

⟨ψ∗(t), D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t)⟩dt

≤ ⟨∇φ(x∗(t1), x(t1)− x∗(t1)⟩+
∫ t1

t0

⟨ψ∗(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)⟩dt (7)

for all (x(t1), x(·), u(·)) ∈ X1 × ACn[t0, t1] × U, ψ(·) ∈ Ψn
2 [t0, t1]. We show now that the primal and dual

components of the saddle point for the linearized Lagrange function (6) are primal and dual solutions to the
original problem (1)-(3).

The left-hand inequality of (7) is the problem of maximizing a linear function in the variable ψ(·) on the entire
linear variety Ψn

2 [t0, t1]:∫ t1

t0

⟨ψ(t), D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t)⟩dt ≤

∫ t1

t0

⟨ψ∗(t), D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t)⟩dt. (8)

This inequality is true for all ψ(·) ∈ Ψn
2 [t0, t1] only if

D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t) = 0, x∗(t0) = x0. (9)

The right-hand inequality of (7) is the problem of minimizing the Lagrange function in the variables (x(t1), x(·),
u(·)) if the function ψ(t) is fixed: ψ(t) = ψ∗(t). Let us show that the primal variables in (x∗(t1), x

∗(·), u∗(·);ψ∗(·))
are the solution to (1)-(3).

In view of (9), from the right-hand inequality of (7), we have

⟨∇φ(x∗(t1)), x∗(t1)⟩ ≤ ⟨∇φ(x∗(t1)), x(t1)⟩+
∫ t1

t0

⟨ψ∗(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)⟩dt (10)

for all (x(t1), x(·), u(·)) ∈ X1 ×ACn[t0, t1]×U.
Considering the inequality (10) with an additional scalar constraint

t1∫
t0

⟨ψ∗(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)⟩dt = 0, (11)

we get that the linear function ⟨∇φ(x∗1), x1⟩ reaches its minimum on the set defined by the scalar constraint
(11). But, according to (9), the solution (x∗(t1), x

∗(·), u∗(·)) belongs to a narrower set than (11). Therefore, this
point remains a minimum on a subset of the solutions for the system (9), i.e.

⟨∇φ(x∗(t1)), x∗(t1)⟩ ≤ ⟨∇φ(x∗(t1)), x(t1)⟩, (12)

d

dt
x(t) = D(t)x(t) +B(t)u(t) (13)

for all (x(t1), x(·), u(·)) ∈ X1 × ACn[t0, t1] × U. Thus, if the Lagrange function (6) has a saddle point, then its
vector of primal components is a solution to (1)-(3).
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3 Dual Lagrangian and Dual Problem

Let us show that the Lagrange function for linear dynamical problems allows to obtain the corresponding dual
problems in conjugate spaces. Using the formulas for the transition to conjugate linear operators

⟨ψ(t), D(t)x(t)⟩ = ⟨DT(t)ψ(t), x(t)⟩, ⟨ψ(t), B(t)u(t)⟩ = ⟨BT(t)ψ(t), u(t)⟩

and the integration-by-parts formula on the interval [t0, t1]

⟨ψ(t1), x(t1)⟩ − ⟨ψ(t0), x(t0)⟩ =
∫ t1

t0

⟨ d
dt
ψ(t), x(t)⟩dt+

∫ t1

t0

⟨ψ(t), d
dt
x(t)⟩dt,

we write out the Lagrangian conjugate with respect to (6):

LT(ψ(·);x(t1), x(·), u(·)) =

= ⟨∇φ(x∗(t1)− ψ1, x(t1)⟩+
∫ t1

t0

⟨DT(t)ψ(t) +
d

dt
ψ(t), x(t)⟩dt+

∫ t1

t0

⟨BT(t)ψ(t), u(t)⟩dt+ ⟨ψ0, x0⟩ (14)

for all ψ(·) ∈ Ψn
2 [t0, t1], (x(t1), x(·), u(·)) ∈ Rn ×ACn[t0, t1]×U, where ψ1 = ψ(t1).

The saddle point (x∗(t1), x
∗(·), u∗(·);ψ∗

1 , ψ
∗(·)) satisfies the saddle-point system (7), which in the conjugate

space has the form
⟨∇φ(x∗(t1))− ψ1, x

∗(t1)⟩+ ⟨ψ0, x0⟩

+

∫ t1

t0

⟨DT(t)ψ(t) +
d

dt
ψ(t), x∗(t)⟩dt+

∫ t1

t0

⟨BT(t)ψ(t), u∗(t)⟩dt+ ⟨ψ0, x0⟩

≤ ⟨∇φ(x∗(t1))− ψ∗(t1), x
∗(t1)⟩+ ⟨ψ∗

0 , x0⟩

+

∫ t1

t0

⟨DT(t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t)⟩dt+

∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)⟩dt

≤ ∇φ(x∗(t1))− ψ∗(t1), x(t1)⟩+ ⟨ψ∗
0 , x0⟩

+

∫ t1

t0

⟨DT(t)ψ∗(t) +
d

dt
ψ∗(t), x(t)⟩dt+

∫ t1

t0

⟨BT(t)ψ∗(t), u(t)⟩dt (15)

for all (x(t1), x(·), u(·)) ∈ X1 ×ACn[t0, t1]×U, ψ1 ∈ Rn, ψ(·) ∈ Ψn
2 [t0, t1].

We will repeat the same transformations as in the previous section, where it was shown that the initial problem
follows from the saddle-point system. But now we will get the dual problem.

From the right-hand inequality of (15), we have

⟨∇φ(x∗(t1))− ψ∗(t1), x
∗(t1)− x(t1)⟩+

∫ t1

t0

⟨DT(t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t)− x(t)⟩dt+

+

∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)− u(t)⟩dt ≤ 0

for all (x(t1), x(·), u(·)) ∈ X1 × ACn[t0, t1] × U. By virtue of the independent change of each of the variables
(x(t1), x(·), u(·)) within its admissible subspaces (sets), the last inequality is decomposed into three independent
inequalities:

⟨∇φ(x∗(t1))− ψ∗(t1), x
∗(t1)− x(t1)⟩ ≤ 0, x(t1) ∈ Rn,∫ t1

t0

⟨DT(t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t)− x(t)⟩dt ≤ 0, x(·) ∈ ACn[t0, t1],∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)− u(t)⟩dt ≤ 0, u(·) ∈ U.

Both first linear functionals reach a finite extremum on the entire subspace only in the case when their normals
vanish, which leads to a system of problems

DT(t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ∇φ(x∗(t1))− ψ∗(t1) = 0, (16)
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∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)− u(t)⟩dt ≤ 0, ∀u(·) ∈ U. (17)

The left-hand inequality in (15), taking into account (16) and (17), can be rewritten as

⟨∇φ(x∗(t1))− ψ(t1), x
∗(t1)⟩+ ⟨ψ0, x0⟩

+

∫ t1

t0

⟨DT(t)ψ(t) +
d

dt
ψ(t), x∗(t)⟩dt+

∫ t1

t0

⟨BT(t)ψ(t), u∗(t)⟩dt ≤

≤
∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)⟩dt+ ⟨ψ∗
0 , x0⟩.

We require additionally that the first two terms of this inequality satisfy conditions

⟨∇φ(x∗(t1))− ψ(t1), x
∗(t1)⟩ ≥ 0,∫ t1

t0

⟨DT(t)ψ(t) +
d

dt
ψ(t), x∗(t)⟩dt ≥ 0.

Then the initial inequality can be represented as an optimization problem of the form

(ψ∗(·), ψ(t1)) ∈ Argmax

{∫ t1

t0

⟨BT(t)ψ(t), u∗(t)⟩dt | ⟨∇φ(x∗(t1))− ψ(t1), x
∗(t1)⟩ ≥ 0,

∫ t1

t0

⟨DT(t)ψ(t) +
d

dt
ψ(t), x∗(t)⟩dt ≥ 0.

}
Hence, taking into account (16), we have

(ψ∗(·), ψ(t1)) ∈ Argmax

{∫ t1

t0

⟨BT(t)ψ(t), u∗(t)⟩dt |

DT(t)ψ(t) +
d

dt
ψ(t) = 0, ψ(t1) = ∇φ(x∗(t1))

}
, (18)

where ψ(·) ∈ Ψn
2 [t0, t1].

Combining with (17),(18), we get the problem dual with respect to (1)-(3):

(ψ∗(·), ψ(t1)) ∈ Argmax

{∫ t1

t0

⟨BT(t)ψ(t), u∗(t)⟩dt | (19)

DT(t)ψ(t) +
d

dt
ψ(t) = 0, ψ(t1) = ∇φ(x∗(t1))

}
, (20)

∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)− u(t)⟩dt ≤ 0, u(·) ∈ U. (21)

4 Boundary-Value Differential System

We consider together the left-hand inequality of the saddle-point system (7) for the classical Lagrangian and
the right-hand inequality of the dual saddle-point system (15) for the conjugate Lagrangian. Of these systems,
partial subsystems (9) and (16),(17) were obtained as a consequence. We write them out and arrive at the
following boundary-value problem:

d

dt
x∗(t) = D(t)x∗(t) +B(t)u∗(t), x∗(t0) = x0, (22)

d

dt
ψ∗(t) +DT(t)ψ∗(t) = 0, ψ∗(t1) = ∇φ(x∗(t1)), (23)
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∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)− u(t)⟩dt ≤ 0, u(·) ∈ U. (24)

The variational inequality of this system can be rewritten in the equivalent form of the operator equation with
the projection operator on the corresponding convex closed set U [Vasiliev, 2011]. Then we obtain a system of
differential and operator equations:

d

dt
x∗(t) = D(t)x∗(t) +B(t)u∗(t), x∗(t0) = x0, (25)

d

dt
ψ∗(t) +DT(t)ψ∗(t) = 0, ψ∗(t1) = ∇φ(x∗(t1)), (26)

u∗(t) = πU(u
∗(t)− αBT(t)ψ∗(t)), t0 ≤ t ≤ t1, (27)

where πU(·) is the projection operator on the set of controls U, α > 0.

5 Continuous Method for Solving the Boundary-Value Differential System

In order to solve the system (22)-(24), which is a sufficient extremality condition for the problem (1)-(3), we can
formulate the gradient projection method. In our situation, it looks like this

d

dt
x(t) = D(t)x(t) +B(t)u(t), x(t0) = x0, (28)

d

dt
ψ(t) +DT(t)ψ(t) = 0, ψ(t1) = ∇φ(x(t1)), (29)

d

dt
u(t) + u(t) = πU(u(t)− αBT(t)ψ(t)). (30)

The process (28)-(30) is a family of finite-dimensional continuous gradient projection methods, each of which
converges to the solution of the problem for a given t ∈ [t0, t1] [Antipin, 1994], [Liao, 2005]. In general, the whole
family converges point-by-point.

Theorem. If the set of solutions (x∗(t1), x
∗(·), u∗(·);ψ∗(·)) to the problem (28)-(30) is not empty and belongs

to the space X1 × ACn[t0, t1] × U × Ψn
2 [t0, t1], the terminal function is convex, U is strictly convex closed set,

then the family of continuous gradient projection methods converges pointwise to the control u∗(·) ∈ U as t→ ∞.

Proof. We represent (29) and (26) in the form of variational inequalities

⟨∇φ(x(t1))− ψ1, x
∗(t1)− x(t1)⟩+

∫ t1

t0

⟨DT (t)ψ(t) +
d

dt
ψ(t), x∗(t)− x(t)⟩dt ≥ 0,

⟨∇φ(x∗(t1))− ψ∗
1 , x

∗(t1)− x(t1)⟩+
∫ t1

t0

⟨DT (t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t)− x(t)⟩dt ≥ 0, (31)

add together both inequalities, then

⟨∇φ(x(t1))−∇φ(x∗(t1)), x∗(t1)− x(t1)⟩ − ⟨ψ1 − ψ∗
1 , x

∗(t1)− x(t1)⟩

+

∫ t1

t0

⟨DT (t)(ψ(t)− ψ∗(t)) +
d

dt
(ψ(t)− ψ∗(t)), x∗(t)− x(t)⟩dt ≥ 0.

Using the integration by parts formula from Section 3, we transform (28) and obtain∫ t1

t0

⟨ψ(t)− ψ∗(t), D(t)(x∗(t)− x(t))− d

dt
(x∗(t)− x(t))⟩dt ≥ 0. (32)

We represent the equation (30) in the form of a variational inequality

⟨ d
dt
u(t) + αBT (t)ψ(t), z(t)− u(t)− d

dt
u(t)⟩ ≥ 0 (33)
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for all z(·) ∈ U. We put z(t) = u∗(t) in (33), then we get

⟨ d
dt
u(t) + αBT (t)ψ(t), u∗(t)− u(t)− d

dt
u(t)⟩ ≥ 0. (34)

Taking into account that
d

dt
u(t) =

d

dt
(u(t)− u∗(t)), from (33) we have

−⟨1
2

d

dt
(u(t)− u∗(t)), u(t)− u∗(t)⟩ −

∣∣∣∣ ddtu(t)
∣∣∣∣2 + α⟨BT (t)ψ(t), u∗ − u(t)⟩ − α⟨BT (t)ψ(t),

d

dt
u(t)⟩ ≥ 0.

Hence, we obtain

1

2

d

dt
|u(t)− u∗(t)|2 +

∣∣∣∣ ddtu(t)
∣∣∣∣2 + α⟨BT (t)ψ(t), u(t)− u∗(t)⟩+ α⟨BT (t)ψ(t),

d

dt
u(t)⟩ ≤ 0. (35)

We set u(t) := u(t) +
d

dt
u(t) in (24), then

∫ t1

t0

⟨BT(t)ψ∗(t), u∗(t)− u(t)⟩dt−
∫ t1

t0

⟨BT(t)ψ∗(t),
d

dt
u(t)⟩dt ≤ 0. (36)

Adding the last two inequalities and combining the result with the inequality (32), we obtain

1

2

d

dt
|u(t)− u∗(t)|2 +

∣∣∣∣ ddtu(t)
∣∣∣∣2

+α⟨BT (t)(ψ(t)− ψ∗(t)), u(t)− u∗⟩+ α⟨BT (t)(ψ(t)− ψ∗(t)),
d

dt
u(t)⟩ ≤ 0, (37)∫ t1

t0

⟨ψ(t)− ψ∗(t), D(t)(x∗(t)− x(t))− d

dt
(x∗(t)− x(t))⟩dt ≥ 0. (38)

Hence, we find

1

2

d

dt
|u(t)− u∗(t)|2 +

∣∣∣∣ ddtu(t)
∣∣∣∣2 + α⟨BT (t)(ψ(t)− ψ∗(t)),

d

dt
u(t)⟩ ≤ 0,

α

∫ t1

t0

⟨ψ(t)− ψ∗(t),− d

dt
(x∗(t)− x(t)) +D(t)(x∗(t)− x(t)) +BT (t)(u(t)− u∗(t))⟩dt ≥ 0. (39)

The last term on the right-hand side of the inequality is zero by virtue of (22) and (28). The second term can
be transformed to the form of the total derivative in the direction, i.e. d

dtF (x(t)) =
d
dxF (x) ·

d
dtx(t). In view of

the foregoing, the inequality (39) can be represented in the form

1

2

d

dt
|u(t)− u∗(t)|2 +

∣∣∣∣ ddtu(t)
∣∣∣∣2 + α

d

dt
F (x) ≤ 0.

From here

1

2
|u(t1)− u∗(t1)|2 +

∫ t1

t0

∣∣∣∣ ddtu(t)
∣∣∣∣2 dt+ αF (x(t1)) ≤

1

2
|u(t0)− u∗(t0)|2 + αF (x(t0)).

It follows from the estimate obtained that the control is bounded (
1

2
|u(t1) − u∗(t1)|2 ≤ C) and the integral

converges as t→ ∞ (
t1∫
t0

∣∣∣∣ ddtu(t)
∣∣∣∣2 dt <∞). Assuming the existence of ε > 0, such that

∣∣∣∣ ddtu(t)
∣∣∣∣ > ε for all t > t0,

we arrive at a contradiction with the convergence of the integral. Consequently, there exists a subsequence of

time moments ti → ∞ such that

∣∣∣∣ ddtu(t)
∣∣∣∣2 → ∞. Since u(t) is bounded, we again choose a subsequence of times,
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which we also denote by ti such that u(ti) → u
′
and

∣∣∣∣ ddtu(t)
∣∣∣∣2 → 0. In the system (28)-(30), passing to this limit

in this subsequence as ti → ∞, we obtain

d

dt
x

′
(t) = D(t)x

′
(t) +B(t)u

′
(t), x

′
(t0) = x0, (40)

d

dt
ψ

′
(t) +DT(t)ψ

′
(t) = 0, ψ

′
(t1) = ∇φ(x

′
(t1)), (41)

u
′
(t) = πU (u

′
(t)− αBT(t)ψ

′
(t)). (42)

Comparing this system with (22), one can see that the solution obtained is the primal and dual solutions to the
original problem: (x

′
(t1), x

′
(·), u′

(·);ψ′
(·)) = (x∗(t1), x

∗(·), u∗(·);ψ∗(·)). The theorem is proved.
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