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Abstract

Coverings of sets and domains by a system of circles whose centers
have restrictions on their arrangement are considered. From the sensor-
related perspective, this corresponds to the sensor coverage problem,
where the network sensors control objects or a region of space, but are
located outside the control area. Formalizing the problem, we arrive at
the problem of discrete geometry to determine the optimal number of
circles, their sizes and locations, which provide the minimum coverage
density of a given set. New results for the optimal outer covering of a
circle, a square and a regular triangle are presented. The study of these
models opens a possibility of building a sensor network with a minimal
energy consumption.

1 Introduction

Geometric circular coverings are the main models in the description of wireless sensor networks (WSN). The
importance of this research area is related to a variety of WSN applications, including the military sphere,
objects protection, biological observations, control of technological processes and many more. All WSNs can be
divided into two types: mobile and stationary. For mobile networks, sensors are moved along certain routes with a
certain time mode [Yang et al., 2010, Wu & Cardei, 2016]. For stationary networks, it is assumed only to control
the operating mode of each sensor (turn on/off, power and range control) in order to increase network operation
efficiency. Stationary networks can be randomly distributed and deterministic. As a rule, for deterministic
WSN, a regular sensor arrangement is required , and that determines the optimal sensor network coverage.
Randomly distributed networks are used when deterministic distribution is impossible or too costly. In this case,
inexpensive sensors are “scattered” in large numbers, as evenly as possible, over the observation field. Then
each sensor position (location) is determined and, after that, the order of switching on the “sleeping” sensors is
programmed. The set of active sensors at each moment of network operation is selected so that their location is
best approximated to the optimal regular structure. This strategy allows increasing the WSN working capacity
and “lifetime”. In real practical problems the requirement for restrictions on the sensors location is natural.
For example, the construction of a system of observations along the mains and pipelines, the physicochemical
parameters control as for the state of hard-to-reach area, military objects tracking on a hostile territory, and
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many more. WSN with restrictions on sensors location usually imply their location outside the control area.
Therefore, in such studies the problem of effective external monitoring or the problem of external coverage is
very topical. We considered this problem for an infinite strip on the plane [Erzin & Astrakov, 2013], where the
boundary features of the circles cover arrangement were strictly taken into account. In this paper we consider
deterministic models of finite sets coverings and domains with restrictions on the locations of circles centers. The
obtained results not only have a useful sensory interpretation, but they also appear to be interesting geometric
statements. In particular, the proofs of theorems on the optimal outer covering of a circle, a square and a
regular triangle are presented in this paper. In connection with this one can recall the classical Holberg-Markus
theorem on the minimal covering of a convex domain D on a plane by figures similar to D, but having a
smaller dimension [Yaglom, 1971] and the problem of covering a square with a certain number of identical circles
[Melisen & Schuur, 1996, Tarnai & Gáspár, 1995].

2 External Covering Issues

Let G be a convex bounded domain of plane E2, and let IntG - the interior points of the domain, D - a
subset of domain G. For a system of circles C(n) = {C1, C2, . . . , Cn} having centers A1, A2, . . . , An and areas
S1, S2, . . . , Sn, we introduce the notations: UC(n) - the union of circles system, SC(n) - the total area of all
circles from C(n). We formulate the following two optimization problems.

(G-D-n) Problem. Define for a given number n a system of circles C(n) satisfying the following conditions:

D ⊆ UC(n); Ai ∈ E2\IntG, i = 1, 2, . . . , n; SC(n) → min.

(G-D) Problem. Find the number n for which the solution of the (G-D-n) Problem defines a system of
circles with a minimal SC(n) value.

Next, we will use a brief notation for problems P(G-D-n) and P(G-D). We note that the formulated problems
give rise to a number of specific problems, which are determined by the shape of region G and the type of set
D. An important class of problems is given by condition D = G (designation P(G-G)). In general, D can be
a discrete set of points, a set of lines, a subregion, or any other subset of G. The requirement of convexity of
domain G makes the task more predictable and meaningful. Even for simple areas (a circle or a square) P(G-G)
is very difficult, because the number of circles, their sizes and the specific position of the centers are unknown
in advance. Probably, some individual problems can be solved by numerical methods by means of creating and
implementing an appropriate algorithm.

The problem has a special meaning when set D is at some distance from boundary G. In this case it is possible
to guarantee the existence of a minimal coverage area with a limited number of circles, since each “useful” circle
should have a radius not less than some positive value. Moreover, for some figures, it is possible to infinitely
“improve” the covering by a countable sequence of circles whose radius tends to zero.

3 Main Results Formulation

Here are some statements related to the outer covering of circle G.

Lemma 1. Let A and B be different points on plane E2. Then points M satisfy the condition

|AM |2 + |BM |2 = d2 = const, (1)

form a circle.

Lemma 1 provides the obvious statement.

Proposition 1. Let G be a circle of radius R. Then the solution of P(G-G-n), when n = 1 and n = 2,
specifies the same minimum SC(n) = 4S(G) = 4πR2.

To prove Proposition 1, we must consider circles with centers at the points A and B lying at the ends of
the same diameter of circle G. The circles radii R1 = |AM | and R2 = |BM | must satisfy condition (1) for
d = |AB| = 2R. If M = B, we get R2 = 0 that corresponds to the case n = 1.

Lemma 2. Let G be a circle and γG - its boundary. Consider three different points A1, A2, A3 that are
located arbitrarily on boundary γG. We construct circles C1, C2, C3 with their centers in the middle of the
corresponding arcs ω1 = L(A1, A2), ω2 = L(A2, A3), ω3 = L(A3, A1) which minimize the cover of these arcs.
Then these circles completely cover the circle and have a single common point inside circle G.
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In other words, the outer covering of the boundary by three circles with their centers on this boundary provides
a coverage of the entire circle. The covering of the boundary by four or more circles no longer possesses a similar
property.

Lemma 3. Let {C1, C2} be the minimal outer covering of one arc ω1 = L(A1, A2) of boundary γG by two
circles. Then the circles have the same radius.

Using Lemmas 1 and 2 we can prove the following result.

Proposition 2. Let G be a circle and D = γG is a circle boundary. Then the solution of P(G-D-3) is also a
solution of P(G-G-3) and they are realized with the help of three identical circles having the original circle size.

Note that the solution of P(G-G) for a circle is provided simultaneously by the solution of P(G-G-3) and
P(G-G-4). More precisely, there is the following important result.

Theorem 1. Let G be a circle of radius R, S(G) - its area. Then the solution of the problem P (G-G)
determines minSC(n) = 3S(G) = 3πR2. This minimum is reached in the case of n = 3 and n = 4.

When n = 3, cover C(n) satisfies the condition of Theorem 1 and represents three identical circles. Therefore,
the covering density is 3. When n = 4, there is a class of optimal solutions. It is defined as follows: the radii of
two large circles with their centers at the ends of the same diameter satisfy relation R2

1 + R2
2 = 5R2/2. Large

circles cover most of the area including the central circle of radius 0, 5R. The radii of two small circles are equal
to 0, 5R. They cover curvilinear triangles, “rolling” to the points of a boundary intersection of two big circles.
Taking into account Lemma 1, the total area of two large circles of the cover does not change as their position
changes. The symmetrical position of the cover circles is shown in Figure 1, and the extreme position of the
cover circles, which can be accurately calculated, is shown in Figure 2.

Figure 1: Optimal symmetric outer covering of the circle with four circles

Figure 2: Extreme position of the optimal outer covering of the circle with four circles

Theorem 2. Let G be a square with side a, S(G) - its area. Then the solution of problem P (G-G) determines
minSC(n) = (3π/4)S(G) ≈ 2, 356S(G). This minimum is reached at value n = 4.

There is a unique solution satisfying the condition of Theorem 2. It coincides with the symmetrical solution
for a circle inscribed in a square (Figure 3). Covering an optimally inscribed circle (part of the square), we get
the optimal outer covering of the whole square.

To build additional circles to improve the square covering density is impossible, since there is already an excess
of the circles on the border. In a certain sense, the relative cost of an outer covering of a square is less than that
of a circle. This is due to the fact that it is easier to “reach” the center of the square than the middle of the
circle.
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Figure 3: Optimal outer covering of a square

Theorem 3. Let G be a regular triangle with a side a, S(G) – its area. Then the solution of P(G-G-3)

determines the covering C(3) with minSC(3) = 7π
√
3

16 S(G) ≈ 2, 3805S(G).

On the one hand, the outer covering with three circles, which satisfies Theorem 3, is shown in Figure 4. The
circles radii are equal: 0, 5a, 0, 25a and 0, 125a, respectively. It is proved that three circles have a single common
point inside the triangle. It can be assumed that this covering optimally covers the boundary of the triangle
with three circles, since there are no points (except for the three adjacent ones) covered twice.

Figure 4: Optimal outer covering C(3) of a regular triangle

On the other hand, numerical calculations have shown that, by increasing the number of circles, the triangle
covering density can be reduced (Figure 5). In this case SC(6) ≈ 2, 301S(G). This is because the angles of the
triangle are sharp. We can also add additional circles for the last cover to improve the density.

Figure 5: Outer covering C(6) of a regular triangle

Note that the domain covering density is not the only target. A cover with a large number of circles per one
elementary area is difficult to implement in the sensor networks design. Therefore, the covering complexity level
of the sensor network will be determined by the cost of installing sensors and energy consumption.

4 Max-min Covering Problems of Subsets from Domain G

Let D∗(k) be a set of k points from G and C(n) - the minimal outer covering of D∗(k) (the optimal solution
P(G-D*)). We can ask the following natural question.
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Q1. How should we place the set of points D∗(k) in G so that the total covering area of SC(n) is maximal?
A similar problem can be formulated for any subset D of G.

Q2. What is the way to put the set D∗ (that is congruent to D) in G so that the minimum value SC(n) of
the total cover area of D∗ is maximal?

Note that, when we solve the max-min problem, the number of cover circles is not known in advance. Therefore,
the search and justification of the solution (even for two and three points located in a circle or in a square) is
rather complicated. If k is more than three, we will most likely have to limit ourselves to finding covers with a
record density. When we consider Q1, it can be shown that the cover circles number does not exceed k. It is
clear that the max-min problem can have an optimal solution realized on different covers, as in Theorem 2.

Here we represent the generalized max-min problem which includes the above questions.

Max-min (G-D*) Problem (MP(G-D* )). Let D = {D1, D2, ..., Dk} be a family of subsets each of which is
contained in a given bounded convex domain G. For each i = 1, 2, . . . , k we denote the subsets that are congruent
to Di by D∗

i . We need to determine the way in which the family of congruent subsets D∗ = {D∗
1 , D

∗
2 , . . . , D

∗
k}

is located in G if the minimal total cover area SC(n) is maximal. The brief formal writing of the problem is as
follows:

MP (G−D∗) : max
D∗⊂G

(minSC(n)
C(n)

).

Proposition 3. Let G be a circle. The max-min outer covering problem MP(G-D*(k)) G has the following
solutions for k = 1, 2, 3:

(1) k = 1; point P1 is located in the center of circle G; SC(1) = S(G).

(2) k = 2; two points P1, P2 are located symmetrically on one diameter of circle G at a distance

d = (2−
√
3)R from the center; SC(1) = SC(2) = 4(2−

√
3)S(G) ≈ 1, 0718S(G).

(3) k = 3; point P1 is located in the center of circle G, points P2, P3 are located symmetrically on one diameter
of circle G at a distance d = 0, 5R from the center; SC(1) = SC(2) = 1, 25S(G).

We can give a similar statement to square G. For k > 3 the problem MP(G-D*(k)) for the circle and the square
remains unresolved. In this regard, we note that, for a large number of points, their location should be fairly
uniform, and the total cover area SC(n) will necessarily be limited. According to Theorem 2, SC(n) < 3S(G).

For illustrative purposes, we give one more simple problem which solution is not obvious.

Problem. Let G be a circle of radius R, and let D∗ be an arbitrary circle of radius r belonging to G. It is
necessary to solve the problem MP(G-D*) for all r satisfying condition r < R.

This problem is interesting in the fact that, for a small value of r, the task is trivial (similar to a one-point
problem). With increasing value r it is necessary to circumvent significant difficulties. Even the assumption that
D∗ lies in the center of circle G requires a profound argumentation.

5 Conclusion and Prospects

The geometric problems about outer circular coverings of domains are natural and seem to be quite promising
from the view point of possible practical applications. In our opinion, similar studies have also a purely scientific
interest. Despite the fact that the tasks are formulated simply and clearly, their solutions require significant
efforts. Moreover, only a small part of the formulated problems has been solved. We may formulate some new
research topics which are, in some sense, the generalizations of our investigation.

(1) It is possible to consider the classes of coverings of a domain G by circles that “cling” to the boundary of
a domain in a certain way (at least one point or ε-neighborhood).

(2) We may consider the problem of packing figures of a given type into an area where each figure has a
nonempty intersection with the domain boundary.

(3) Instead of one domain G on a plane, we can consider a regular structure from such areas (for example,
their packing). Further, we may put the requirement for constructing a minimal coverage of this structure by
circles whose centers are not contained in this structure.
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