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Abstract

The paper is concerned with approximations of a value function of a
differential game. To this end we introduce a approximation of the
original differential game by a continuous-time Markov game with in-
finite state space. The value function of this game in a given region is
approximated by a solution of a finite state Markov game. This yields
the approximation of the value function of the original differential game
by the finite system of ODEs.

1 Introduction

The paper deals with the analysis of the deterministic differential games. These problems arise in many appli-
cations and primary are concerned with the control problem for mechanical or economical systems. The key
concept of the differential game theory is a concept of a value function. Given the value function of the differ-
ential game one can construct a near optimal feedback strategies of the players [Krasovskii & Subbotin, 1988],
[Subbotin, 1995]. The stable under information disturbances strategies are constructed within the framework
of control with guide strategies [Krasovskii & Subbotin, 1973], [Krasovskii & Subbotin, 1988]. Equivalent re-
sult occurs when the players are informed about the control of the opponent realized up to the current time
[Varaya & Lin, 1969], [Elliott & Kalton, 1972], [Subbotin & Chentsov, 1981]. The theory of zero-sum differen-
tial games is closely related to the theory of firts-order PDEs. It is proved that the value function is the
minimax/viscosity solution of the corresponding Hamilton-Jacobi PDE.

The direct study of the value function is extremely complicated. The fully discrete approximations leads
to the numerical approximations (see [Botkin et al., ] and references therein). In the paper we introduce the
approximation based on continuous-time stochastic game. This implies the approximations of the value function
by solutions of systems of ODEs or by solutions of second-order PDEs.

The approximation of the differential game by the stochastic differential game is studied in [Buslaeva, 1977],
[Krasovskii & Kotelnikova, 2010a], [Krasovskii & Kotelnikova, 2010b], [Krasovskii & Kotelnikova, 2009],
[Camilli & Marchi, 2012]. It was shown that one can construct a near-optimal strategy based on a solution
of the stochastic differential game. The close problem was considered in [Kolokoltsov, 2012] where the near
optimal strategies for the continuous-time Markov game was designed based on a value function of a differential
game. The approximation of the stochastic differential game with the reflection term by the continuous-time
Markov game was proposed in [Kushner, 2007]. The approximation of the differential game by the discrete time
Markov chain was studied in [Li & Song, 2007] (see, also, survey [Jorgensen & Zaccour, 2006]). Note thta these
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results are closed to the problems of thr approximation of the control system by Markov chains considered in
[Boue & Dupuis, 1999], [Kushner & Dupuis, 2001].

Paper [Averboukh, 2016] is concerned with the general continuous-time stochastic game. A near optimal
strategy for the continuous-time stochastic game is constructed using the value function of a game with a different
dynamics. The general theory implies the approximation of the value function of the differential game by the
infinite system of ODEs. This system is obtained using dynamic programming arguments for the approximating
continuous-time Markov game.

In the paper we introduce the approximation of the value function of the differential game by the finite system
of ODEs. This approach can be used for numerical schemes. The paper is organized as follows. In Section
2 we recall the general theory of differential games. Section 3 deals with the approximation of the original
differential game by a Markov game with infinite state space. This leads to the approximation of the value
function by infinite system of ODEs. The approximation of the differential game by a Markov game with the
finite state space is considered in Section 4. In this section we obtain an approximation of the value function of
the differential game by the finite system of ODEs.

2 Differential Games

We consider the zero-sum differential game with the dynamics given by

d

dt
x(t) = f(t, x(t), u(t), v(t)), t ∈ [0, T ], x(t) ∈ Rd, u(t) ∈ U, v(t) ∈ V. (1)

Here u(t) (respectively, v(t)) is a instantaneous control of the first (respectively, second) player. The aim of the
first (respectively, second) player is to minimize (respectively, maximize) the terminal payoff σ(x(T )).

We use feedback approach proposed by Krasovskii and Subbotin. To introduce this formalization let us denote
by U [t0] (respectively, V[t0]) the set of all measurable functions from [t0, T ] to U (receptively, V ).

We assume that

1. the sets U and V are metric compacts;

2. the functions f and σ are continuous;

3. the functions f and σ are bounded by the constant M ;

4. there exists a constant K such that, for any t ∈ [0, T ], x′, x′′ ∈ Rd, u ∈ U , v ∈ V ,

∥f(t, x′, u, v)− f(t, x′′, u, v)∥ ≤ K∥x′ − x′′∥;

5. there exists a function α : R → R such that α(δ) → 0 as δ → 0 and, for any t′, t′′ ∈ [0, T ], x ∈ Rd, u ∈ U ,
v ∈ V ,

∥f(t′, x, u, v)− f(t′′, x, u, v)∥ ≤ α(t′ − t′′);

6. the function σ is Lipschtiz continuous with the constant R;

7. (Isaacs’ condition) for any t ∈ [0, T ], x, ξ ∈ Rd, u ∈ U , v ∈ V ,

min
u∈U

max
v∈V

⟨ξ, f(t, x, u, v)⟩ = max
v∈V

min
u∈U

⟨ξ, f(t, x, u, v)⟩.

Below, let p be an arbitrary function from [0, T ] × Rd to U . We will construct a stepwise control that is
constant between the times of control correction. Let t0 be an initial time, ∆ = {ti}Ni=0 be a partition of [t0, T ].
The times ti are times of control correction. If x0 ∈ Rd, v ∈ V[t0], then let x1[·, t0, x0, p,∆, v] be a solution of
the problem

d

dt
x(t) = f(t, x(t), p(ti−1, x(ti−1), v(t)), t ∈ [ti−1, ti], i = 1, . . . , N, x(t0) = x0.

Analogously, the strategy of the second player is determined by the function q : [0, T ] × Rd → V . If (t0, x0) is
an initial position, ∆ = {ti}Ni=0 is a partition of [t0, T ], u ∈ U [t0], then denote by x2[·, t0, x0, q,∆, u] a solution of
the problem

d

dt
x(t) = f(t, x(t), u(t), q(ti−1, x(ti−1)), t ∈ [ti−1, ti], i = 1, . . . , N, x(t0) = x0.
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Krasovskii and Subbotin proved that there exist functions p∗ : [0, T ]×Rd → U , q∗ : [0, T ]×Rd → V such that

lim
δ↓0

sup{σ(x1[T, t0, x0, p∗,∆, v]) : d(∆) ≤ δ, v ∈ V[t0]}

= inf
p∈U [0,T ]×Rd

lim
δ↓0

sup{σ(x1[T, t0, x0, p,∆, v]) : d(∆) ≤ δ, v ∈ V[t0]}

= sup
q∈V [0,T ]×Rd

lim
δ↓0

inf{σ(x2[T, t0, x0, q,∆, u]) : d(∆) ≤ δ, u ∈ U [t0]}

= lim
δ↓0

inf{σ(x2[T, t0, x0, q∗,∆, u]) : d(∆) ≤ δ, u ∈ U [t0]} = Val(t0, x0).

Here BA stands for the set of functions from A to B.
The function Val is value function of the differential game. It is a viscosity/minimax solution of the Hamilton-

Jacobi PDE
∂ϕ

∂t
+H(t, x,∇ϕ), ϕ(T, x) = σ(x).

Here
H(t, x, ξ) , min

u∈U
max
v∈V

⟨ξ, f(t, x, u, v)⟩. (2)

Note that given a supersolution of (2) one can construct a suboptimal strategy of the first player. Analogous
result holds true for the second player. She is to use a subsolution of (2).

3 General Theory of Markov Games

To evaluate the value function we will use zero-sum Markov game. In the general case a Markov game is defined
in the following way. Let S be a set. Assume that S is at most countable. Below S stands for the state space. For
any t ∈ [0, T ], u ∈ U , v ∈ V , let Q(t, u, v) = (Qx,y(t, u, v))x,y∈S be a Kolmogorov matrix i.e., for any t ∈ [0, T ],
u ∈ U , v ∈ V , x ∈ S, ∑

y∈S

Qx,y(t, u, v) = 0

and for any y ∈ S, y ̸= x
Qx,y(t, u, v) ≥ 0.

If u ∈ U [t0], v ∈ V[t0] be open-loop controls of the players, the state of the Markov chain at t ∈ [0, T ] is x, then
under some continuity conditions the probability of the state y ̸= x at time t+ > t is∫ t+

t

Qx,y(τ, u(τ), v(τ))dτ + o(τ);

whereas the probability of keeping of x at [t, t+] is

1 +

∫ t+

t

Qx,x(τ, u(τ), v(τ))dτ + o(τ).

Recall that Qx,x(t, u, v) is always nonpositive. If we denote the probability of the state x at time t by Px(t), we
obtain the vector P (t) = (Px(t))x∈S . Below we assume that P (t) is a row-vector. The dynamics of the vector of
probabilities P (t) is given by the Kolmogorov equation

d

dt
P (t) = P (t)Q(t, u(t), v(t)), P (0) = P 0. (3)

Here P 0 = (P 0
x )x∈S is an initial distribution.

Assume that the first (receptively, second) player wishes to minimize (respectively, maximize) the terminal
payoff given by Eσ(X(T )), where X(t) is a state of the Markov chain corresponding to the Kolmogorov matrix
Q(t, u(t), v(t)) at time t.

We do not put any analog of Isaacs condition on the Markov games. Thus, we are to suppose that one player
is informed about the current player of her partner or use mixed strategies. Within the paper we assume that
the first player has an information only on a current position, whereas the second player is informed about a
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current position and a current control of the first player. In this case the strategy of the first player is u(t, x), the
strategy of the second player v(t, x, u). These strategies produce a Markov chain with the Kolmogorov matrix

Q̂x,y(t) , Qx,y(t, u(t, x), v(t, x, u(t, x))).

Denote the corresponding Markov chain starting at (t∗, x∗) by Xt∗,x∗,u,v(·). The corresponding probability is
denoted by P t∗,x∗,u,v. One may introduce the upper value function by the rule:

η+(t∗, x∗) , min
u

max
v

Et∗,x∗,u,vσ(Xt∗,x∗,u,v(T )).

Here Et∗,x∗,u,v stands for the expectation according to the probability P t∗,x∗,u,v.
Under some regularity conditions the value function satisfies Zachrisson equation that is an analog of Isaacs-

Bellman equation:

d

dt
η+(t, x) + min

u∈U
max
v∈V

∑
y∈S

η+(t, y)Qx,y(t, u, v) = 0, η+(T, x) = σ(x), x ∈ S. (4)

Note that (4) is a system of ODE. The existence result was established for the case of finite S in [Zachrisson, 1964].
If a solution of the (4) exist one can define the strategies of the players as follows:

u∗(t, x) , argmin
u∈U

max
v∈V

∑
y∈S

η+(t, y)Qx,y(t, u, v)

 ;

v∗(t, x, u) , argmax
v∈V

∑
y∈S

η+(t, y)Qx,y(t, u, v)

 .
Using the standard verification arguments, one can prove that the strategies u∗ and v∗ are optimal, i.e.

η+(t∗, x∗) = Et∗,x∗,u
∗,v∗

σ(X(T, t∗, x∗, u
∗, v∗)) = min

u
Et∗,x∗,u,v

∗
σ(X(T, t∗, x∗, u

∗, v∗))

= max
v

Et∗,x∗,u
∗,vσ(X(T, t∗, x∗, u

∗, v)) = min
u

max
v

Et∗,x∗,u,vσ(X(T, t∗, x∗, u, v)). (5)

4 Approximating Infinite State Markov Chain

Given a differential game with dynamics (1) define the approximating Markov game in the following way.
Let h be a positive number, f(t, x, u, v) = (f1(t, x, u, v), . . . , fd(t, x, u, v)) and let ei denote the i-th coordinate

vector. Put

χi(t, x, u, v) =

 ei, f1i (t, x, u, v) > 0,
−ei, f1i (t, x, u, v) < 0,
0, f1i (t, x, u, v) = 0.

Let the state space be S , hZd. Put the Kolmogorov matrix be equal to

Qh
xy(t, u, v) =


1
h |fi(t, x, u, v)|, y = x+ hχi(t, x, u, v),

− 1
h

∑d
i=1 |fi(t, x, u, v)|, x = y,

0, y ̸= x, y ̸= x+ hχi(t, x, u, v),

(6)

In this case the Zachrisson equation (4) takes the form:

d

dt
η+h (t, x) + min

u∈U
max
v∈V

d∑
i=1

|fi(t, x, u, v)|
η+h (t, x+ hχi(t, x, u, v))− η+h (t, x)

h
= 0, η+h (T, x) = σ(x). (7)

Here x ∈ hZd is a parameter.
The following statement is proved in [Averboukh, 2016].

Proposition 1. There exists an unique solution of (7).
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The following theorem is also proved in [Averboukh, 2016].

Theorem 1. There exists a constant C1 determined by the function f such that if η+h is a solution of (7), then,
for t0 ∈ [0, T ], x0 ∈ hZd,

|Val(t0, x0)− η+h (t0, x0)| ≤ RC1

√
h. (8)

Note that in [Averboukh, 2016] it is proved that C1 =
√
2dMTe(3+2K)T .

Further, the optimal strategies of the players take the form:

u∗(t, x) , argmin
u∈U

max
v∈V

[
d∑

i=1

|fi(t, x, u, v)|
η+h (t, x+ hχi(t, x, u, v))− η+h (t, x)

h

]
;

v∗(t, x, u) , argmax
v∈V

[
d∑

i=1

|fi(t, x, u, v)|
η+h (t, x+ hχi(t, x, u, v))− η+h (t, x)

h

]
.

5 Approximating finite state Markov chain

Assume that we are interesting in the approximation of the value function in the set

Λr ,
{
x ∈ hZd : max

i=1,d
|xi| ≤ r

}
.

To this end we consider the Markov chain with the state space

Λρ ,
{
x ∈ hZd : max

i=1,d
|xi| ≤ ρ

}
.

Let

Γρ ,
{
x ∈ hZd : max

i=1,d
|xi| = ρ

}
.

Define the Kolmogorov matrix Q♮,h(t, u, v) = (Q♮,h
x,y(t, u, v))x,y ∈ Λρ in the following way:

Q♮,h
x,y(t, u, v) ,

{
Qh

x,y(t, u, v), x ∈ Λρ−h,
0, x ∈ Γρ.

We assume that the purposes of the player in this game is the same as above i.e. the first (respectively, second)
player wishes to minimize (respectively, maximize) the terminal payoff Eσ(Y (T )), where Y (t) denotes the state
of the corresponding Markov chain.

For the Kolmogrov matrix Q♮,h(t, u, v) equation (4) takes the form:

d

dt
η+h (t, x) + min

u∈U
max
v∈V

d∑
i=1

|fi(t, x, u, v)|
η+h (t, x+ hχi(t, x, u, v))− η+h (t, x)

h
= 0, x ∈ Λρ−h,

d

dt
η+h (t, x) = 0, x ∈ Γρ,

η+h (T, x) = σ(x).

(9)

Note that system (9) is a finite system of ODEs. Thus, it can be solved using a numerical method.
Let us estimate the difference between ηh(t, x) and η♮,h(t, x) for t ∈ [0, T ], x ∈ Λr. This estimate and

Theorem 1 will lead the approximation of the value function by the solution of the finite system of ODEs.
If u(t, x) is a strategy of the first player, v(t, x, u) is a strategy of the second player, then denote the correspond-

ing Markov chain determined by the Kolmogorov matrix (Q♮,h
x,y(t, u(t, x), v(t, x, u(t, x)))) and starting at (t∗, x∗)

by Y T∗,x∗,u,v. Further, denote by Pt∗,x∗,u,v and Et∗,x∗,u,v the corresponding probability and the expectation
respectively.

Without loss of generality we can assume that P t∗,x∗,u,v and Pt∗,x∗,u,v are defined on the same measurable
space.
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Let
At∗,x∗,u,v

ρ = {Xt∗,x∗,u,v(t) /∈ Λρ−h for some t ∈ [t∗, T ]}.

Analogously, let
Bt∗,x∗,u,v

ρ = {Y t∗,x∗,u,v(t) /∈ Λρ−h for some t ∈ [t∗, T ]}.

We have that, for any event C such that C ∩At∗,x∗,u,v
ρ = C ∩Bt∗,x∗,u,v

ρ = ∅,

P t∗,x∗,u,v(C) = Pt∗,x∗,u,v(C). (10)

Lemma 1. For any t∗ ∈ [0, T ], x∗ ∈ Λr, and any strategies of the players u and v,

P t∗,x∗,u,v(At∗,x∗,u,v
ρ ) ≤ d

(r2 + (h+M2)T 2)eT

ρ
(11)

P t∗,x∗,u,v(Bt∗,x∗,u,v
ρ ) ≤ d

(r2 + (h+M2)T 2)eT

ρ
(12)

Proof. We shall prove estimate (11). To this end given a controlled Markov chain with the Kolmogorov matrix
Q(t, u, v) let us introduce the generator acting on the continuous functions by the following rule:

Lt[u, v]φ(x) =
∑
y∈S

Qx,y(t, u, v)φ(y).

It follows from [Kolokoltsov, 2011] that if X(t) is a Markov chain corresponding to the Kolmogorov matrix Q
and E is the corresponding probability, then

d

dt
Eφ(X(t)) = ELt[u(t), v(t)]φ(X(t)). (13)

For the Markov chain with the Kolmogorov matrix Qh(t, u, v) the generator takes the form:

Lh
t [u, v]φ =

1

h
|fi(t, x, u, v)|

d∑
i=1

[φ(x+ hχi(t, x, u, v))− φ(x)]. (14)

Further, for x = (x1, . . . , xd), put ψi(x) , ∥xi∥2. Equality (14) implies that for any u, v

Lt[u, v]ψ(x) = h|χi(t, x, u, v)|2 + 2xiχi(t, x, u, v)|fi(t, x, u, v)|.

Therefore, (13) yields the following equation:

d

dt
Et∗,x∗,u,v(Xt∗,x∗,u,v

i (t))2 = hEt∗,x∗,u,v|χi(t,X
t∗,x∗,u,v
i (t), u, v)|2

+ Et∗,x∗,u,v2Xt∗,x∗,u,v
i (t)χi(t,X

t∗,x∗,u,v
i (t), u, v)|fi(t,Xt∗,x∗,u,v

i (t), u, v)|.

Here Xt∗,x∗,u,v
i (t) stands for the i-th coordinate of Xt∗,x∗,u,v(t).

Since, |χi(t, x, u, v)| = 1, we have that

d

dt
Et∗,x∗,u,v(Xt∗,x∗,u,v

i (t))2 ≤ h+ Et∗,x∗,u,v2|fi(t,Xt∗,x∗,u,v
i (t), u, v)||Xt∗,x∗,u,v

i (t)|.

Since fi is bounded by M we have that

d

dt
Et∗,x∗,u,v(Xt∗,x∗,u,v

i (t))2 ≤ h+ 2MEt∗,x∗,u,v|Xt∗,x∗,u,v
i (t)|.

Thus,
d

dt
Et∗,x∗,u,v(Xt∗,x∗,u,v

i (t))2 ≤ h+M2 + Et∗,x∗,u,v(Xt∗,x∗,u,v
i (t))2.
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Hence,

Et∗,x∗,u,v(Xt∗,x∗,u,v
i (t))2 ≤ ∥x∗,i∥2 + (h+M2)(t− t∗) +

∫ t

t∗

Et∗,x∗,u,v(Xt∗,x∗,u,v
i (τ))2dτ.

Using Gronwall’s inequality, we get that

Et∗,x∗,u,v(Xt∗,x∗,u,v
i (t))2 ≤ (∥x∗,i∥2 + (h+M2)(t− t∗))e

t−t∗ .

Therefore,

Et∗,x∗,u,v sup
t′∈[t∗,T ]

(Xt∗,x∗,u,v
i (t′))2 ≤ sup

t′∈[t∗,T ]

Et∗,x∗,u,v(Xt∗,x∗,u,v
i (t′))2 ≤ (r2 + (h+M2)T 2)eT .

Using Markov inequality, we get

P

(
sup

t∈[t∗,T ]

|Xt∗,x∗,u,v
i (t)| ≥ ρ

)
≤ (r2 + (h+M2)T 2)eT

ρ
.

Therefore,

P (At∗,x∗,u,v
ρ ) ≤

∑
i

P

(
sup

t∈[t∗,T ]

|Xt∗,x∗,u,v
i (t)| ≥ ρ

)
≤ d

(r2 + (h+M2)T 2)eT

ρ
.

Inequality (12) is proved in the same way.

Theorem 2. There exists a constant C2 such that for any h one can choose ρ satisfying

|Val(t0, x0)− η♮,h(t0, x0)| ≤ C2h.

Proof. We shall estimate |ηh(t∗, x∗)− η♮,h(t∗, x∗)|.
Further, let A

t∗,x∗,u,v

ρ (respectively, B
t∗,x∗,u,v

ρ ) be a complement of At∗,x∗,u,v (respectively, Bt∗,x∗,u,v
ρ ).

Using Lemma 1, we get

ηh(t∗, x∗) = min
u

max
v

Et∗,x∗,u,vσ(Xt∗,x∗,u,v)

≤ min
u

max
v

Et∗,x∗,u,vσ(Xt∗,x∗,u,v)1
A

t∗,x∗,u,v +max
u

max
v

Et∗,x∗,u,vσ(Xt∗,x∗,u,v)1At∗,x∗,u,v

≤ min
u

max
v

Et∗,x∗,u,vσ(Y t∗,x∗,u,v)1
B

t∗,x∗,u,v +Md
(r2 + (h+M2)T 2)eT

ρ

≤ min
u

max
v

Et∗,x∗,u,vσ(Y t∗,x∗,u,v) + 2Md
(r2 + (h+M2)T 2)eT

ρ
= η♮,h(t∗, x∗) + 2Md

(r2 + (h+M2)T 2)eT

ρ
.

The opposite inequality is proved in the same way. Thus,

|ηh(t∗, x∗)− η♮,h(t∗, x∗)| ≤ 2Md
(r2 + (h+M2)T 2)eT

ρ
.

Once can choose ρ such that 2Md(r2 + (h+M2)T 2)eT /ρ ≤ h. Using Theorem 1, we get the conclusion of the
Theorem.
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