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Abstract

We suggest an approach to solve special classes of multi-extremal prob-
lems to optimize the monotone combination (e.g., sum, product) of sev-
eral functions, under the assumption that the effective algorithms to
optimize each of this item are known (e.g., each of these functions has
some properties of generalized concavity: linear fractional, etc.) The
algorithm proposed is iterative. It realizes one of the idea of the branch-
and-bound method and consists in successive correcting of the low and
the upper bounds of optimal value of objective functions. Moreover,
we use the methodology of multi-objective optimization, studying the
image of Pareto boundary in the image space. In each iteration, the
total area of the region, guaranteed to contain the image optimal point,
decreases at least twice.

1 Introduction

At the moment, many types of multi-extremal problems are studied in optimization theory (see, for example,
the famous monographs [Horst & Tuy, 1993], [Horst & Pardalos, 1995]). In particular, we study the problem
of searching for a constrained extrema of superpositions of several functions under the assumption that the
effective algorithms are known to optimize each of the functions involved. One of the most popular classes of
such problems is, for example, the minimization of the sum of quasi-convex functions.

In the paper, the main attention is paid to the constrained minimization of the sum of two functions under
the assumption that an algorithm for minimizing each term is known. However, the general idea of the algo-
rithm allows us to transfer it to the case of a larger number of terms. Moreover, this approach is suitable for
optimization, for example, the product of several functions.

Let us consider the problem
F (x) = F1(x) + F2(x) → min

x∈X
, (1)

where X ⊂ Rn is a set while Fi are real-valued functions defined on X. We assume that effective algorithms are
known for solving each of the following problems:

Fi(x) → min
x∈X

, i = 1, 2. (2)
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Note that to solve problem (1) the effective algorithms (taking into account the special structure of the prob-
lem) are known only for the case when the set X is polyhedral and the functions Fi have a special form (for
example, they are linear fractional). Let us mention briefly some works: [Choo et al., 1982], [Warburton, 1985],
[Benson, 2002], [Kuno, 2002], [Gruzdeva & Strekalovsky, 2016]. A feature of the described algorithms in men-
tioned works is that they take into account a special kind of problem, therefore they cannot be transferred
directly to the case when the functions Fi have a more general form.

The main goal of our paper is to construct an effective algorithm for solving a problem of the form (1). The
proposed algorithm realizes the idea of the branch-and-bound method and consists in successively refinement of
the boundaries of the optimal value of the objective function. The very preliminary variant of this approach can
be found in [Bykadorov, 2016].

2 Statement of the Problem and Preliminary Discussions

Consider the problem
(P ) : f(x) = f1(x) + f2(x) → min

x∈X
,

where X ⊂ Rn is a set while fi are real-valued functions defined on X. We assume that effective algorithms are
known for solving each of the following problems:

fi(x) → min
x∈X

, i = 1, 2.

Let us denote
ν0i = min

x∈X
fi(x), i = 1, 2. (3)

Let us associate with each νi ∈ R the sets Xi (νi) = {x ∈ X : fi(x) ≤ νi} , i = 1, 2, and consider the problems

(P1 (ν2)) : f1(x) → min
x∈X2(ν2)

, (P2 (ν1)) : f2(x) → min
x∈X1(ν1)

.

Let xP1(ν2) and xP2(ν1) be the solutions of the problems (P1 (ν2)) and (P2 (ν1)), respectively. For arbitrary choice
of ν1 and ν2, it is possible that problems (P1 (ν2)) and (P2 (ν1)) have no solutions. But due to (3), problems(
P1

(
ν02

))
and

(
P2

(
ν01

))
are solvable and, moreover, f1

(
xP2(ν0

1)

)
= ν01 and f2

(
xP1(ν0

2)

)
= ν02 .

Let us denote

ν001 = min
x∈X2(ν0

2)
f1(x) = f1

(
xP1(ν0

2)

)
, ν002 = min

x∈X1(ν0
1)
f2(x) = f2

(
xP2(ν0

1)

)
. (4)

Definition. A pair (ν1, ν2) is said to be attainable if a point x ∈ X exists such that f1(x) = ν1, f2(x) = ν2.
Remark. By construction, pairs

(
ν01 , ν

00
2

)
and

(
ν001 , ν02

)
are attainable.

Let x∗ be the solution of Problem (P ) and fi (x
∗) = ν∗i , i = 1, 2. Due to (3) and (4), ν∗i ∈

[
ν0i , ν

00
i

]
, i = 1, 2.

Consider right isosceles triangle ABC with vertices

A =
(
ν01 + ν01,2, ν

0
2

)
, B =

(
ν01 , ν

0
2

)
, C =

(
ν01 , ν

0
2 + ν01,2

)
,

where
ν01,2 = min

{
ν001 − ν01 , ν

00
2 − ν02

}
(5)

(see figure 1). Then problem (P ) is equivalent to the following:
in triangle ABC, find a point such that its coordinates (ν1, ν2) form an attainable pair and moreover

ν1 + ν2 = ν∗1 + ν∗2 .

Let us denote Ti =
[
ν0i , ν

00
i

]
, i = 1, 2. In what follows, we assume that the following condition is fulfilled.

Condition (A). For any pair (ν1, ν2) ∈ T1 × T2, the points x′ ∈ X and x′′ ∈ X exist such that

f1 (x
′) = ν1, f2 (x

′) = f2
(
xP2(ν1)

)
, f1 (x

′′) = f1
(
xP1(ν2)

)
, f2 (x

′′) = ν2.

Remark. Let (ν1, ν2) ∈ T1 × T2. Then the pairs
(
ν1, f2

(
xP2(ν1)

))
and

(
f1

(
xP1(ν2)

)
, ν2

)
are attainable.

Lemma 1. The following statements are true.
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• Let ν′1 ∈ T1, ν
′′
1 ∈ T1. If ν′1 ≤ ν′′1 then f2

(
xP2(ν′′

1 )

)
≥ f2

(
xP2(ν′

1)

)
.

• Let ν′2 ∈ T2, ν
′′
2 ∈ T2. If ν′2 ≤ ν′′2 then f1

(
xP1(ν′′

2 )

)
≥ f1

(
xP1(ν′

2)

)
.

Note. The proofs of this and subsequent statements are rather technical. We plan to bring these formal proofs
in the extended version of this paper.

Consider the function G : T1 → R defined as follows:

G (ν1) = min {f2(x) : x ∈ X1 (ν1) , ν1 ∈ T1} .

Due to Lemma 1, we have
Corollary 1.1. The function G is decreasing.
Consider the set

Y = {(ν1, G (ν1)) : ν1 ∈ T1} (6)

(see figure 2). We associate with each pair (ν1, ν2) ∈ Y the line H (ν1, ν2) passing through it and parallel to the
hypotenuse of triangle ABC. Then the pair (ν∗1 , ν

∗
2 ) of interest to us (the values of the functions f1 and f2 in

the optimum) is characterized as follows (see figure 2): for each pair (ν1, ν2) ∈ Y , the line H (ν1, ν2) lies “above”
the straight line H (ν∗1 , ν

∗
2 ).

The remainder of this section we devote to describing a situation when Condition (A) holds.
Lemma 2. The following statements are true.

• Let ν1 ∈ T1. If f1
(
xP2(ν1)

)
< ν1 then xP2(ν1) ̸∈ argminx∈X f2(x).

• Let ν2 ∈ T2. If f2
(
xP1(ν2)

)
< ν2 then xP1(ν2) ̸∈ argminx∈X f1(x).

Lemma 3. The following statements are true.

• Let ν1 ∈ T1 and function f2 be quasi-convex on set X. If f1
(
xP2(ν1)

)
< ν1 then x′ ∈ X exists such that

f1 (x
′) = ν1, f2 (x

′) = f2
(
xP2(ν1)

)
.

• Let ν2 ∈ T2 and function f1 be quasi-convex on set X. If f2
(
xP1(ν2)

)
< ν2 then x′′ ∈ X exists such that

f1 (x
′′) = f1

(
xP1(ν2)

)
, f2 (x

′′) = ν2.

Corollary 3.1. The following statements are true.

• Let function f2 be quasi-convex on set X. For each ν1 ∈ T1, point x
′ exists such that f1 (x

′) = ν1, f2 (x
′) =

f2
(
xP2(ν1)

)
.

• Let function f1 be quasi-convex on set X. For each ν2 ∈ T2, point x′′ ∈ X exists such that f1 (x
′′) =

f1
(
xP1(ν2)

)
, f2 (x

′′) = ν2.

Corollary 3.2. Let functions f1 and f2 be quasi-convex on X. Then Condition (A) holds.

3 The Main Idea of the Algorithm

The algorithm is iterative, realizes one of the ideas of the branch-and-bound method, and consists in the sequential
refinement of the estimates of the values ν∗1 , ν

∗
2 and ν∗1 + ν∗2 , as well as the reduction the total area of the region

containing the point (ν∗1 , ν
∗
2 ).

Let ν1 ∈
[
ν01 , ν

0
1 + ν01,2

]
. (For the definition of ν01 see (3), while the definition of ν01,2 see in (5)).

We set ν2 = G (ν1). Note that (ν1, ν2) ∈ Y by the definition of set Y , see (6).
The following cases are possible:

• ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2, see figure 3;

• ν1 + ν2 = ν0, see figure 4;

• ν1 + ν2 > ν0, ν2 < ν02 + ν01,2, see figure 5;

• ν1 + ν2 > ν0, ν2 ≥ ν02 + ν01,2, see figure 6.
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In each of these cases we can exclude from further consideration the regions that (due to Corollary 2) does
not contain the point of our interest (ν∗1 , ν

∗
2 ). These areas correspond to the shaded parts of the triangle ABC.

As a result, the estimates for the value ν∗1 + ν∗2 are refined, and the area of the region, which is guaranteed not
containing the point (ν∗1 , ν

∗
2 ), is also increased.

In the next steps, the described procedure is applied to each of the obtained unshaded triangles, or to one of
them (for example, the largest, “the most perspective”).

4 Some Remarks

1. As initial lower bounds for ν∗1 , ν
∗
2 and ν∗1 + ν∗2 , we can take, for example, the following:

νi = ν0i , i = 1, 2, ν = ν1 + ν2,

and as the upper bounds, the values

νi = fi(x
i), i = 1, 2, ν = min {ν1 + ν2, ν1 + ν2} ,

where

xi ∈ {x ∈ X : fi(x) = νi} , i = 1, 2.

2. If we set

ν1 =
ν1 + ν1

2
, ν2 = f2

(
xP2(ν1)

)
,

then due to Corollary 1.1, we can delete from the triangle ABC the region whose area is not less than half the
area of the triangle ABC, see all the cases shown in figures 3 – 6. Therefore, in each iteration, the total area of
the region, guaranteed to contain the image optimal point, decreases at least twice. This allows us to tell about
the effectiveness of the algorithm.

3. The disadvantage of the proposed approach is to recognize the possible increase in the number of resulting
triangles, this leads to an increase in the volume of stored information. However, in the case of an excessive
increase in the number of these triangles, one can be chosen (for example, the largest one, i.e., “promising”) and
temporarily “forget” about the others, see figure 7, thus obtaining new estimates of the quantities ν∗1 , ν

∗
2 and

ν∗1 + ν∗2 for this selected triangle. These new estimates may allow us to exclude some of the “forgotten” triangles
from further consideration, since we remove all parts of the triangles lying “above” the corresponding hypotenuse
(this part may coincide with the whole triangle, see figure 8). Then we can consider all the “updated” triangles,
choose one of them as the most “promising” for the next step. Thus, the number of considered triangles does
not necessarily increase, and, moreover, may even decrease.

5 Formal Description of the Algorithm

Step 0. Define the values ν1, ν2, ν, ν1, ν2, ν such that ν1 ≤ ν∗1 ≤ ν1, ν2 ≤ ν∗2 ≤ ν2, ν ≤ ν∗1 + ν∗2 ≤ ν.
Choose ε, the required accuracy of calculations.
Set l = 1 as the total number of triangles under consideration, s = 1 as the number of the considered triangle.

Step 1. Choose ν1 ∈
[
ν1, ν1

]
. For example, set ν1 =

ν1 + ν1

2
. Solve the problemP2 (ν1). Set ν2 = f2

(
xP2(ν1)

)
.

Step 2.
(2a) Let the case shown in figure 3 is realized, i.e., ν1 + ν2 < ν ≡ ν1 + ν2 + ν1,2, where ν1,2 =

min
{
ν1 − ν1, ν2 − ν2

}
(cf. (5)). Calculate for the considered triangle the values x, y, z (see figure 9):

x[s] = ν1, y[s] = ν1 + ν2 − ν2, z[s] = ν2.

Calculate x, y, z for the new triangle: x[l + 1] = ν1, y[l + 1] = ν1, z[l + 1] = ν2. Set l = l + 1. Go to Step 3.
(2b) Let one of the cases shown in figure 4 and 5 is realized, i.e., ν1+ν2 = ν, or ν1+ν2 > ν but ν2 < ν2+ν1,2.

Set x[s] = ν1, y[s] = ν2, z[s] = ν2, x[l + 1] = ν1, y[l + 1] = ν1 + ν2 − ν2, z[l + 1] = ν2, l = l + 1. Go to Step 4.
(2c) Let the case shown in figure 6 is realized, i.e., ν1 + ν2 > ν but ν2 ≥ ν2 + ν1,2. Set x[s] = ν1, y[s] =

ν2, z[s] = ν2. Go to Step 4.
Step 3. Compare the coordinates of the vertices of all the triangles obtained. If the situation shown in figure

8, are realized, then delete the triangles (or parts thereof) located “between” the two hypotenuses. Renumber
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the remaining triangles. Recalculate for each of the triangles the value y (since in the triangles the trapezium
part was removed, with bases parallel to the hypotenuse).

Step 4. Among all triangles, choose the largest (i.e., such that the value y − x is maximal). We assign the
number s to this triangle.

Step 5. For triangle with the number s, calculate the values x[s], y[s], z[s], see figure 9. Set

ν1 = x[s], ν1 = y[s], ν2 = z[s], ν2 = z[s] + y[s]− x[s], ν = x[s] + z[s], ν = y[s] + z[s]

If ν − ν ≡ y[s]− x[s] ≤ ε then STOP. Otherwise, go to Step 1.

6 Conclusion

The application of the proposed approach to the general form of the problem (1) requires that effective algorithms
for solving each of the problems (2) be known. In addition, Condition (A) is required. In particular, we can
assume that the functions Fi have some properties of generalized convexity (quasi-convexity, pseudo-convexity,
see, for example, [Avriel et al., 1988]).

Possible modifications of the proposed approach deal with different ways of constructing the curve Y (see (6))
using already known achievable points (for example, by interpolations, approximations).

Besides, the described approach is also applicable to the optimization of “monotonic” combinations (for
example, products) of functions. In this case, for the product of two functions, in image space, the level lines of
the function f1 · f2 are hyperbolas. Hence, instead of the right isosceles triangles, we deal with the “curvilinear”
right triangles by replacing the hypotenuse with a piece of the corresponding hyperbola. It seems that the
generality of the proposed approach is its advantage over other methods that take into account the structure of
the problem.

Of course, the practical value of the proposed approach is questionable since no experimental results are
presented. It is necessary to add practical experiments demonstrating the superiority of the proposed approach
over other global optimization methods. We plan to do it in the future, in the extended versions of the paper.

Finally, the approach can be applied to the problems that arise in marketing: optimization of communica-
tion expenditure [Bykadorov et al., 2002] and the effectiveness of advertising [Bykadorov et al., 2009a], pricing
[Bykadorov et al., 2009b]; to monopolistic competition models: retailing [Bykadorov et al., 2014], investments in
R&D [Antoshchenkova & Bykadorov, 2017], market distortion [Bykadorov et al., 2016], and international trade
[Bykadorov et al., 2015].

The author considers it his pleasant duty to express deep gratitude to the anonymous reviewers for very
valuable comments. It is hoped that their excellent comments have allowed to improve the content of the paper
and the presentation of the material.
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Figure 1: The illustration: triangle ABC
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Figure 2: The illustration: the curve Y

Figure 3: The case ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2

Figure 4: The case ν1 + ν2 = ν0 ≡ ν01 + ν02 + ν01,2

Figure 5: The case ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2

Figure 6: The case ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2
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Figure 7: Selection of the most “promising” triangle

Figure 8: The situation when the number of triangles decreases

Figure 9: Illustration for a formal description of the algorithm
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