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Abstract

We consider the routing open shop problem being a natural combi-
nation of two classic discrete optimization problems: metric TSP and
Open Shop scheduling problem. Jobs are located at the nodes of a
transportation network and have to be processed by mobile machines
initially located at the depot. Machines have to complete all the oper-
ations and return to the depot minimizing the makespan. The problem
is known to be NP-hard even in the simplest case with two machines
and only two nodes (including the depot). For this case it is known
that optimal makespan doesn’t exceed 6

5 times standard lower bound.

Our goal is to refine that result specifying the maximal ratio of the
optimal makespan to the standard lower bound (so called abnormal-
ity) depending on the jobs’ load distribution between two nodes. We
propose a new polynomially solvable subcase of the problem under con-
sideration and describe an exact form of the maximal abnormality as
a function of the fraction of the total load located outside the depot.

1 Introduction

In the routing open shop problem a set of mobile machines M = {M1, . . . ,Mm} have to process operations of
jobs J = {J1, . . . , Jn} in arbitrary order. Jobs are located in the nodes of transportation network described by
an edge-weighted graph G = ⟨V,E⟩. Machines are initially located at a specific node v0 ∈ V referred to as the
depot and have to return back after completing all the operations. The goal is to minimize the makespan Rmax

which is defined as a last time moment of returning of a machine to the depot. Following the standard three-field
notation for scheduling problems (see for instance [Lawler et al., 1993]) we denote the routing open shop problem
as ROm||Rmax or ROm|G = X|Rmax if we want to specify the graph structure. This model was introduced
in [Averbakh et al., 2005]. It is obviously NP-hard as it contains a well-known metric TSP as a special case.
Moreover it was proved in [Averbakh et al., 2006] that even a simplest version of the problem with two machines
and two nodes (i.e. RO2|G = K2|Rmax there Kp is the complete graph with p vertices) is NP-hard. An FPTAS
for RO2|G = K2|Rmax was described in [Kononov, 2012]. A series of approximation algorithms and detailed
review for RO||Rmax can be found in [Chernykh et al., 2013] and references wherein.
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We use the following notation. The processing time of operation Oji of job Jj by machine Mi is denoted by
pji, τlk is the distance between nodes vl and vk, J k is the set of indices of jobs located at vk. The completion time
of operation Oji in schedule S is denoted by cji(S). The return time of machine Mi in schedule S is defined as

Ri(S)
.
= max

k

(
max
j∈J k

cji(S) + τ0k

)
and the makespan Rmax(S)

.
= maxRi(S) is to be minimized over all feasible

schedules. Notation R∗
max(I) is used for the optimal makespan of problem instance I. In case of m = 2 we also

use simplified notation M = {A,B} and aj (bj) instead of both pj1 (pj2) and Oj1 (Oj2). We also describe jobs
in this case by Jj = (aj , bj).

Additionally we need the following notation.

• ℓi =
n∑

j=1

pji — load of machine Mi, ℓmax = max ℓi — maximal machine load;

• dj =
m∑
i=1

pji — length of job Jj , d
k
max = max

j∈Jk

dj — maximal length of job from vk;

• T ∗ — length of the shortest route over graph G (TSP optimum);

• IX
m — class of all non-trivial instances (i.e. instances with positive standard lower bound) for problem

ROm|G = X|Rmax.

The following standard lower bound was introduced in [Averbakh et al., 2006]:

R̄ = max

{
ℓmax + T ∗,max

k

(
dkmax + 2τ0k

)}
(1)

Definition 1 A feasible schedule S for problem instance I is referred to as normal if Rmax(S) = R̄(I). Instance
I is normal if it admits construction of a normal schedule.

Definition 2 The abnormality of instance I is the ratio α(I)
.
=

R∗
max(I)

R̄(I)
. For some class K of instances

abnormality of class K is α(K)
.
= sup

I∈K
α(I).

The problem of finding of the abnormality for some class K is very similar to the following
Optima Localization Problem. For some class of instances K find minimal value ρ such that ∀I ∈ K

R∗
max(I) ∈ [R̄(I), ρR̄(I)].

Obviously such value ρ = α(K). The problem is to find that value and to describe an instance from K with
maximal abnormality (if any).

The optima localization problem was studied for RO2|G = K2|Rmax in [Averbakh et al., 2005]. It was shown

that α
(
IK2
2

)
= 6

5 . The instance Ĩ of RO2|G = K2|Rmax with maximal abnormality contains a single job J1 =

(4, 0) at the depot v0 and two equivalent jobs J2 = J3 = (2, 4) at the distant node v1, distance τ
.
= τ01 = 1. This

result was recently generalized on the case of triangular transportation network: it was shown that α
(
IK3
2

)
= 6

5

[Chernykh & Lgotina, 2016].
The goal of this paper is to refine the optima localization result for RO2|G = K2|Rmax depending on the load

distribution between nodes v0 and v1. Let ∆
k .
=

∑
j∈J k

dj stands for the load of node vk, ∆
.
=

∑
∆k =

∑
ℓi =

∑
dj

is the total load of instance I (in our case ∆ = ∆0 + ∆1). The load distribution parameter for instance I is
defined as

δ(I)
.
=

∆(I)−∆0(I)

∆(I)
∈ [0, 1].

How does the maximal abnormality depend on δ? Consider a function

F (x)
.
= α

(
{I ∈ IK2

2 |δ(I) = x}
)
, x ∈ [0, 1].

Our goal is to describe the behavior of F (x).
The remainder of the paper is organized as follows. Section 2 contains important preliminary results including

new sufficient conditions of normality of instance I. The main result on the behavior of the function F (x) is
contained in Section 3 (Theorem 10) followed by some conclusions in Section 4.

132



2 Preliminary Results

2.1 Job Aggregation and Overloaded Nodes

The idea of instance simplifying by means of job aggregation procedure has been proved to be a useful tool for solv-
ing the Optima Localization Problem as well as for describing efficient approximation algorithms. The detailed
description of the procedure in application to RO2||Rmax problem can be found in [Chernykh & Lgotina, 2016].
The idea is the following. Let K ⊆ J k correspond to some subset of jobs from node vk. Then we may substitute
the jobs with indices from K with a single job JK with processing times pKi

.
=

∑
j∈K

pji. Obviously any feasible

schedule for a simplified instance can be treated as a feasible schedule for the initial instance with the same
makespan. The goal is to perform such a transformation preserving the standard lower bound R̄. In this case the
abnormality of an instance would not decrease. We use the following definition from [Chernykh & Lgotina, 2016].

Definition 3 A node vt of an instance I of problem RO2||Rmax is referred to as overloaded if ∆t > R̄(I)− 2τ0t.
Otherwise the node vt is underloaded.

It is easy to see from (1) that job aggregation of the whole set J t would not increase the standard lower bound
if the node vt is underloaded.

Two following theorems were proved in [Chernykh & Lgotina, 2016].

Theorem 1 ([Chernykh & Lgotina, 2016]) Any instance of RO2||Rmax has at most one overloaded node.

Theorem 2 ([Chernykh & Lgotina, 2016]) Any instance I of the problem RO2||Rmax can be transformed
by using job aggregations into instance I ′ such that

1. R̄(I ′) = R̄(I),

2. I ′ has at most 3 jobs in the overloaded node (if any) and single job in every other node.

Note that a transformation described in Theorem 2 can be done in O(n) time. Both proofs are based on the
following inequality

∆k 6 ∆ 6 ℓ1 + ℓ2 6 2(R̄− T ∗) 6 2(R̄− 2τ0k) (2)

that holds for any node vk.
We can consider a job aggregation procedure at node vk preserving the standard lower bound as a variant

of a Bin Packing problem. Indeed the jobs’ lengths serve as objects sizes and value R̄ − 2τ0k as a bin capacity.
According to Theorem 2 for any overloaded node vk optimal bin packing takes 2 or 3 bins. In the next subsection
we will describe a special case of bin packing problem which has important applications for the optima localization
problem of RO2||Rmax.

2.2 Irreducible Bin Packing

Consider the following decision problem.
Irreducible Bin Packing (IBP).
Input. Bin capacity B, a set E = {e1, . . . , eN} of integer object sizes with additional condition B <

∑
ej 6

2B.
Question. Does there exist a feasible packing of E into exactly three bins of size B such that total contents

of any pair of bins strictly exceeds B?

Definition 4 An input I is referred to as irreducible if the answer to the Irreducible Bin Packing question is
positive. Instance I is efficiently irreducible if such a packing can be found in polynomial time.

Theorem 3 The IBP problem is NP-complete.

Proof. We will show a reduction from the well-known PARTITION problem.
PARTITION.
Input. A set of integers T = {t1, . . . , tk},

∑
tj = 2T .

Question. Does there exist a subset T ′ ⊂ T such that
∑
T ′

tj = T?
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Let T = {t1, . . . , tk} be the input of the PARTITION. Transform it into the following input of the IBP:
B = 2T − 2, N = k + 1, ej = tj , 1 6 j 6 k, ek+1 = T − 1. Lets prove that the former instance is irreducible iff
the partition for initial instance exists.

Suppose the partition exists. Then we may pack object ek+1 into the first bin and separate the rest equally
into second and third bins. This packing is obviously irreducible.

From the other hand, suppose that irreducible packing exists. If some bin contains only object ek+1 then that
bin has T − 1 of free space and in order for packing to be irreducible both other bins have to contain at least T
total amount of objects, hence the partition exists. In other case there can be only single object of size 1 in the
same bin with ek+1 (otherwise two other bins would violate the irreducibility). Thus that bin contains T total
amount and has T − 2 of free space, therefore each of other bins has to contain at least T − 1 amount. That
means that one of them contains exactly T and other T − 1, therefore the partition exists. �

Note that for every irreducible instance of the IBP total size of all objects strictly exceeds 3
2B although this

condition is obviously not sufficient. We present the following sufficient condition of efficient irreducibility.

Theorem 4 Let I be an instance of IBP and

N∑
j=1

ej >
3

2
B +max

j
ej .

Then I is efficiently irreducible.

Proof. Consider arbitrary enumeration of E = {e1, . . . , eN}. Note that due to the condition
N∑
j=1

ej 6 2B we

have max
j

ej <
1
2B. We can pack those objects into three bins using the following algorithm.

1. Find the smallest index p such that
p∑

j=1

ej >
1
2B. Pack objects e1, . . . , ep into the first bin. Let X

.
=

p∑
j=1

ej =

1
2B + x 6 1

2B +max
j

ej < B.

2. Find the smallest index q > p such that
q∑

j=p+1

ej > 1
2B − x. Pack objects ep+1, . . . , eq into the second bin.

Let Y
.
=

q∑
j=p+1

ej =
1
2B − x+ y < B.

3. Pack the rest objects into the third bin. Let Z
.
=

N∑
j=q+1

ej .

Lets prove that we obtained an irreducible packing. Note that

• X + Y = B + y > B, y 6 max
j

ej , therefore Z =
N∑
j=1

ej −B − y > 0;

• Y + Z =
N∑
j=1

ej − 1
2B − x >

N∑
j=1

ej − 1
2B −max

j
ej > B;

• X + Z =
N∑
j=1

ej − 1
2B − y + x >

N∑
j=1

ej − 1
2B −max

j
ej > B.

Therefore the packing is irreducible and obtained in linear time. �
Note that the condition in Theorem 4 is given in its strongest form: the claim would be wrong with non-strict

inequality.
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2.3 Sufficient Conditions of Normality

The goal of this subsection is to describe several sufficient conditions of normality in order to discover a necessary
condition of abnormality, as strict as possible. We will apply the former condition to our search of the most
abnormal instances from various subclasses. We will focus on RO2|G = K2|Rmax problem from now on. We
have two sets of jobs (J 0 and J 1) located at the depot and at the distant node respectively. Distance between
nodes is denoted by τ . The standard lower bound (1) can be rewritten in the following form:

R̄ = max{ℓmax + 2τ, d0max, d
1
max + 2τ}.

Note that if ℓmax + 2τ < R̄ then it is easy to construct a normal schedule for the instance given.
There are several sufficient conditions of normality described in [Chernykh & Lgotina, 2017] for RO2|G =

tree|Rmax. The one that is of interest for us is the following.

Theorem 5 ([Chernykh & Lgotina, 2017]) Let I be an instance of RO2|G = star|Rmax with depot at the
center and either the depot is overloaded or there are no overloaded nodes in I. Then I is normal and an optimal
schedule can be constructed in O(n).

A useful corollary for our case would be the following: any instance of RO2|G = K2|Rmax with underloaded
distant node is normal.

Now consider an instance with overloaded distant node.

Definition 5 Let I be an instance of RO2||Rmax, vk ∈ V . Node vk is referred to as superoverloaded if the
following instance of IBP is irreducible:

B = R̄− 2τ0k, E = {dj |j ∈ J k}.

The meaning is the following: it is possible to perform the job aggregation in vk preserving R̄ into three jobs
in such manner that any following job aggregation would with necessity lead to increase of the standard lower
bound. It turned out that the existence of superoverloaded node in RO2|G = K2|Rmax implies the normality.

Theorem 6 Let I be an instance of RO2|G = K2|Rmax with superoverloaded distant node. Then I is normal.

Proof. Lets apply the job aggregation procedure to the depot (we’ll get single job due to Theorem 2) and to
the distant node to obtain exactly three jobs there according to the irreducible packing of the underlying IBP.
We’ll obtain an instance I ′ with the same R̄ (see Theorem 2). Let J0 be the single job from the depot and
J1, J2, J3 — jobs from v1. Note that ∀p ̸= q ∈ {1, 2, 3}

dp + dq > R̄− 2τ. (3)

Without lost of generality let a1 be the smallest processing time among all of operations from v1.
Construct a schedule S1 in the following manner. Let machine A process jobs in order J1, J2, J3, J0, while

machine B processes jobs in order J0, J3, J1, J2. Jobs J1 and J2 are processed first by machine A then B, while
operations of other jobs are processed in the opposite order. As soon as each machine travels only once from the
depot to the distant node and back, if S1 has no idles then S1 is normal. Let it has some idle intervals. Note
that (2) and (3) imply b0+ τ + b3+a3+ τ +a0 < R̄, and operation b3 completes not earlier than a1. That means
that the only idle interval in S1 is possible between operations b1 and b2 and in this case

Rmax(S1) = τ + a1 + a2 + b2 + τ. (4)

Construct another schedule S2 in which machine B processes jobs in the same order as in S1, and A processes
in sequence J2, J1, J3, J0. Job J1 now is processed first by B then by A, other jobs are processed in the same
order as in S1. Again suppose S2 has some idle intervals. In this case

Rmax(S2) = τ + b0 + b3 +max{a3, b1}+ a1 + a0 + τ. (5)

Note that a1 6 min{a3, b1} implies

Rmax(S1) +Rmax(S2) 6 4τ + ℓ1 + ℓ2 6 2R̄,

therefore the best of those schedules is normal. �
Note that the conditions of Theorem 6 don’t give us a polynomially solvable subcase because the aggregation

of jobs from distant nodes into three irreducible jobs can be hard (see Theorem 3). Although combining them
together with some additional conditions (e.g. from Theorem 4) we can obtain such a new polynomially solvable
subclass of instances.
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3 Abnormality as a Function of Total Load Distribution

The goal of this section is to describe function F (x) = α
(
{I ∈ IK2

2 |δ(I) = x}
)
, that is to find an instance with

maximal abnormality from class {I ∈ IK2
2 |δ(I) = x} for each x ∈ [0, 1]. According to Theorems 5 and 6 distant

node of any abnormal instance of RO2|G = K2|Rmax has to be overloaded but not superoverloaded. From
Theorem 2 we can safely apply job aggregation procedure to any instance as its abnormality wouldn’t decrease.
Moreover we can assume that ℓ1 = ℓ2 as soon as we can easily add dummy jobs to make this property hold
preserving both R̄ and δ. Summarizing, for each x ∈ [0, 1] there exists an instance Ix of RO2|G = K2|Rmax such
that

1. δ(Ix) = x;

2. Ix contains single job J0 at the depot and two jobs J1 and J2 at the distant node;

3. ℓ1 = ℓ2;

4. R̄(Ix) = ℓmax + 2τ ;

5. α(Ix) = α
(
{I ∈ IK2

2 |δ(I) = x}
)
.

In this section we consider only instances with properties 2–4 mentioned above.
Note that if δ(I) 6 0.5 then the distant node is underloaded and therefore (see Theorem 5) I is normal.

Indeed δ(I) 6 0.5 implies ∆1 6 ∆0. Assumption ∆1 > R̄ − 2τ would imply ∆ > 2(R̄ − 2τ) contradicting (2).
Therefore F (x) = 1 for each x ∈ [0, 1

2 ].
The following lemma shows the lower bound on the function F (x) for x ∈

[
1
2 , 1

]
.

Lemma 7 1. For x ∈
[
1
2 ,

3
4

]
, F (x) > 4x

2x+ 1
;

2. for x ∈
[
3
4 , 1

]
, F (x) > 3− 2x

2− x
.

Proof. We will prove the claim by presenting series of instances with desired δ and abnormality.
1. Consider the series of instances I(τ) for 0 6 τ 6 0.1 with the following processing times:

J0 = (0, 1− 6τ), J1 = (1− 6τ, 2τ), J2 = (4τ, 2τ).

Note that for I(τ) R̄ = 1 and δ = 1+2τ
2−4τ ∈

[
1
2 ,

3
4

]
therefore τ = 2δ−1

4δ+2 . It is easy to show by consideration of all

possible schedules that R∗
max(I(τ)) = 1 + 2τ and α(I(τ)) =

4δ

2δ + 1
.

2. Consider the following series of instances I(ε) with 0 6 ε 6 2:

J0 = (4− ε, ε), τ = 1, J1 = J2 = (2 + ε, 4).

For I(ε) R̄ = 10 + ε, δ = 6+ε
8+ε ∈

[
3
4 ,

4
5

]
therefore ε = 6−8δ

δ−1 . Optimal schedule for this instance has a makespan

R∗
max(I(ε)) = 12 + ε therefore α(I(ε)) =

3− 2δ

2− δ
.

Now consider δ ∈
[
4
5 , 1

)
and the following instances I(M), M > 4:

J0 = (2, 2), τ = 1, J1 = J2 = (M,M).

Here we have R̄ = 2M + 4, δ = M
M+1 ∈

[
4
5 , 1

)
and M = δ

1−δ . It is easy to observe that R∗
max(I(M)) = 2M + 6

therefore α(I(M)) =
3− 2δ

2− δ
.

The remaining case of δ = 1 obviously contains only normal instances which concludes the proof of Lemma.
�

We have just proved that

F (x) >


1, x ∈

[
0, 1

2

]
,

4x
2x+1 , x ∈

[
1
2 ,

3
4

]
,

3−2x
2−x , x ∈

[
3
4 , 1

]
.

To prove that this lower bound is in fact tight we’ll need two additional lemmas.
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Lemma 8 ([Kononov, 2012]) For any instance of RO2|G = K2|Rmax there exists a feasible schedule of
makespan R̄+ 2τ . Such a schedule can be constructed in linear time O(n).

Lemma 9 Let S be a schedule for instance I ∈ IK2
2 in which each machine travels to the distant node exactly

once and total idle time of each machine doesn’t exceed t. Then α(I) 6 2− ℓmax

ℓmax + t
.

Proof. Each machine in schedule S spends exactly 2τ time on travel therefore Rmax(S) 6 ℓmax + 2τ + t.
Therefore by Lemma 8 R∗

max(I) 6 ℓmax + 2τ +min{t, 2τ}.
Case 1: t 6 2τ .
In this case

α(I) 6 ℓmax + 2τ + t

ℓmax + 2τ
= 1 +

t

ℓmax + 2τ
6 1 +

t

ℓmax + t
= 2− ℓmax

ℓmax + t
.

Case 2: t > 2τ .
In this case we have

α(I) 6 ℓmax + 4τ

ℓmax + 2τ
= 2− ℓmax

ℓmax + 2τ
6 2− ℓmax

ℓmax + t
.

Lemma is proved. �
Now we are ready to prove the main result. The proof is constructive and describes a way to build a schedule

with desired abnormality of at most F (δ(I)) in linear time.

Theorem 10 Let F (x) = α
({

I ∈ IK2
2 |δ(I) = x

})
. Then

F (x) =


1, x ∈ [0, 0.5],
4x

2x+ 1
, x ∈ [0.5, 0.75],

3− 2x

2− x
, x ∈ [0.75, 1].

Proof. From Lemma 7 we just need to prove that

F (x) 6


4x

2x+ 1
, x ∈

[
1
2 ,

3
4

]
,

3− 2x

2− x
, x ∈

[
3
4 , 1

]
.

Apply job aggregation procedure to I according to Theorem 2. If we’ll obtain three irreducible jobs at distant
node then it is superoverloaded and I is normal by Theorem 6. Note that in this case we can construct an
optimal schedule in constant time as described in the proof of Theorem 6.

Now we have an instance I ′ with single job J0 at the depot, two jobs J1 and J2 at the distant node, ℓ1 = ℓ2 =
R̄− 2τ .

First we’ll prove that α(I ′) 6 2− 1

2− δ
=

3− 2δ

2− δ
. Without lost of generality let d1 > d2.

Construct a schedule S in the following manner. Let machine A process jobs in order J1, J2, J0 and machine
B in order J0, J2, J1. Job J1 is processed first by A then by B, other jobs are processed in opposite sequence.
Note that each machine travels in S exactly once and machine B doesn’t idle. Machine A in S idles for at

most t = b0 + b2 − a1 = ℓmax − d1 =
∆

2
− d1 6 ∆0

2
= (1 − δ)ℓmax time units. By Lemma 9 we have

α(I ′) 6 2− ℓmax

ℓmax + t
= 2− 1

2− δ
.

Now let’s prove that α(I ′) 6 2− 2

2δ + 1
=

4δ

2δ + 1
. Without lost of generality let b1 > a2 (we do not demand

d1 > d2 this time).
Construct a schedule S1 according to the following partial order of the operations. Let A process jobs in order

J1, J2, J0 and B — in order J0, J1, J2. All jobs except J0 are processed first by A then by B. Note that each
machine travels exactly once and A doesn’t idle. The possible idle of B doesn’t exceed t = a1 − b0 due to the
assumption b1 > a2.
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Construct another schedule S2. Let A process jobs in order J0, J1, J2 and B in order J1, J2, J0. All jobs
except J0 are processed first by B then by A. Again, each machine travels exactly once. Machine B doesn’t idle.
The total idle of machine A doesn’t exceed either t′ = b1 − a0 or t′′ = b1 + b2 − a0 − a1 (the former takes place
if there is an idle between operations a1 and a2).

The total idle of at least one of those schedules S1 and S2 doesn’t exceed the following

t+max{t′, t′′}
2

=
max{d1, b1 + b2} − d0

2
6 ℓmax −∆0

2
=

∆1 − ℓmax

2
= ℓmax

(
δ − 1

2

)
.

Therefore by Lemma 9, α(I ′) 6 2− 2
2δ+1 which concludes the proof of the theorem. �.

4 Conclusions

Theorem 10 gives a more specific result comparing with [Averbakh et al., 2005] (with significantly simpler proof
as well). As soon as the proof is constructive we basically described a F (δ)-approximation algorithm for RO2|G =
K2|Rmax. Note that F (δ) reaches the extremal value of 6

5 only at a single point δ = 3
4 . That means that although

the worst-case performance guarantee of our algorithm is the same as in [Averbakh et al., 2005], the actual worst
case is now extremely specific.

Theorem 6 can be easily generalized to the case of G = K3 and even to general graph with additional
conditions on the superoverloaded node’s location. It would be of interest to extend this research on some more
general case of two-machine routing open shop. Note that the optima localization problem is currently solved
only for the cases of G = K2 and G = K3. Technique used in this paper can actually help to solve that problem
for some more general cases with constant number of nodes, which in turn would lead to description of better
approximation algorithms and probably new polynomially solvable subclasses for those cases.
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