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Abstract

Traffic police faces the problem of enforcing speed limits under re-
stricted budget. Implementing high Enforcement Thresholds (ET) will
ease the work load on the police but will also intensify the problem
of speeding. We model this as a game between two players: The po-
lice, which wishes that drivers obey the speed limits, and drivers who
wish to speed without getting caught. For the police we construct a
strategy in which at each stage the ET is randomized between low and
high values. We have established analytically and by simulations that
this strategy gradually reduces the ET until it converges to the de-
sired speed limit without increasing the work load along the process.
Importantly, this method works even if the strategy is known to the
drivers. We study the effect of several factors on the convergence rate
of the process. Interestingly, we find that increasing the frequency of
randomization is more effective in expediting the process than raising
the average amount of fines.

1 Introduction

About 1.25 million people die every year as a result of traffic accidents worldwide and the injuries caused by road
traffic accidents are the leading cause of death among young people, aged 15-29 years. Road traffic accidents
cost countries approximately 3%-5% of their gross national product.

The ([ETSC, 1999]) has identified three main traffic offences which have a direct connection to road safety
and thus ought to be targeted in enforcement strategies: speeding, high blood-alcohol concentration and the
lack of use of safety belts. Among these risk factors, speed makes the largest single factor contribution to
road accidents. On average, between 40% to 50% of the drivers drive faster than the posted speed limit
([OECD, 2006];[Elvik, 2012];[De Pauw et al., 2004]). An increase in average speed is directly related both to
the likelihood of an accident and to the severity of the consequences of the accident.

In 1958 the world’s first speed measuring device was introduced and the first speed camera was used to
enforce traffic speed limits (Gatso Internet site, [Gatso, 2016]). Since then many countries started using speed
enforcement cameras. When a driver speeds beyond the speed limit the camera captures the information of the
driver and a notice with a fine or court summon is sent to the driver by mail.
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In this work, the police needs to choose the Enforcement Threshold (ET) to be implemented at each road.
Choosing a low ET may indeed educate drivers to use lower speeds in the future, but will burden the police and
court system with heavy work load, whereas choosing a high ET will ease on the system’s work load but may
intensify the problem of speeding, by leaving such behaviour unpunished.

We view the traffic police and the population of drivers as having contradicting goals; The drivers wish to
drive with the highest speed without getting caught, and the police wishes that drivers will not speed beyond the
speed limit. This, in fact, can be modeled as a game between two players; the traffic police, and the population
of drivers. We assume that drivers have beliefs regarding the value of ET and that these beliefs shape their
behaviour.

Currently, to avoid heavy work load, the police implements an ET that is substantially higher than the
recommended speed limit. This policy ignores the problem of speeding. The goal of this work is to provide
the police with a dynamical strategy that gradually reduces the ET until it reaches the minimal value (which is
the speed limit itself), while all along, the number of tickets is kept under some predefined limit. This is done
by constructing a randomization strategy for the choice of ET. At each stage the police repeatedly randomizes
between two low and high values. Indeed, when the result of the randomization is low, many tickets are given,
burdening on the police and court system. However, this is balanced out at periods in which the randomization
result is high and only few tickets are given out.

It is important to note that for the success of this process, there is no need to keep this method secret. Even
if the drivers know about this randomization procedure they cannot utilize this knowledge in their favour as
long as the result of the randomization is kept secret. This idea of using a randomization strategy in order to
confuse and intimidate a potential felon may well be applied to many other features of traffic enforcement, such
as changing the location of patrol vehicles strategically etc.

2 The Model

We focus on a specific road and denote the speed limit at that road as b. As mentioned, we denote the Enforcement
Threshold that is currently enforced by the police as ET. This means that speeding beyond ET leads to penalty.

The notion of ‘population of drivers’ in this work refers to drivers which use this road on a regular basis (and
could thus go through a learning process). We omit drivers who always drive below the speed limit, since these
drivers do not need to be educated. Hence we are left with potential traffic offenders, namely drivers who with
positive probability speed beyond the speed limit.

Regarding the beliefs of the drivers, it is natural to assume that as long as a driver is not penalized, he just
keeps on his old behaviour. Additionally, we assume that a driver changes his belief only if he realizes that
it is inconsistent with reality. Hence, even if he was penalized, but this event was anticipated by him (as his
speed was beyond what he believed to be the ET), then again he does not change his beliefs. Summarizing these
two arguments; Beliefs are altered only in case of an unexpected penalty. It follows that beliefs are adjusted
always downward and never upward. We view this adjustment process as a ‘learning’ or ‘educating’ process.
The exact change in behaviour of drivers as a response to a change in their beliefs is most certainly different
across countries and cultures, and can probably be estimated by the police via past data. For instance, the
Israeli traffic police reports that after being penalized, a driver obeys the law for a while and drives below the
speed limit b, and only later on does he become a traffic offender again. Accordingly, we assume that if a driver’s
speed is v, and he is penalized unexpectedly, then after a period of good behaviour, he adjusts his new belief
to v. The relation between beliefs and resulting speeding is presented as a positive density function fV (A, v),
over the speeds v ∈ R+, where A is the driver’s current belief regarding ET, and V = v is his speed. We define,
F̄V (A, v) = P (V > v|A), namely the probability that a random driver will speed beyond v, if he believes that
ET = A. Hence, F̄V (A, v) =

∫∞
v

fV (A, x)dx. We make several assumptions regarding F̄V (A, v). First, we assume
that the probability that a driver will speed, enhances when he believes that the enforcing threshold ET, is
higher (i.e., more permissive). Hence F̄V (A, v) is increasing in A, ∀v. Secondly, we assume that F̄V (A, v) is
decreasing in v, and limv→∞ F̄V (A, v) = 0, ∀A. This follows immediately from the definition of F̄V (A, v) as the
complementary of the accumulative distribution function of fV (A, v).

The basic feature (or constraint) of this model is that the work load must be bounded. Thus, we denote by
c, the upper bound on the probability to be penalized. This is a predefined parameter limiting the work load
on the system. It is determined by the police according to the the volume of traffic at this road, the police and
court district limitations, etc.
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Note that if the police implements ET = A for a long enough time (as will indeed be dictated by our strategy),
then the drivers reveal it, since many times they will speed beyond it, and thus gradually adjust their belief to
A. Hence, at this point, F̄V (A,A) is the probability to be penalized. Now, the basic assumption of this work is
that reducing the ET increases the amount of fines and work load on the police and court system. Otherwise,
the police can just implement ET = b without giving out an amount of fines that is higher than allowed. This
implies that, F̄V (A,A) is decreasing in A. In particular: F̄V (b, b) > c.

Given an arbitrary road, we summarize the notation and assumptions mentioned here, as follows:

2.1 Notations

• b is the speed limit.

• V = The speed of a randomly chosen driver.

• fV (A, v) is the density function of the random variable V, when the driver believes that: ET = A.

• F̄V (A, v) = P (V > v|A).

• c = The upper bound on the probability to be penalized.

2.2 Assumptions

1. Each time a driver takes this road, he chooses his speed according to fV (A, v).

2. fV (A, v) is known to the police, from accumulative past data.

3. If a driver’s speed was v, then in case of unexpected penalty he adjusts his belief to ET = v.

4. F̄V (A, v) is an increasing function of A, ∀v.

5. F̄V (A, v) is decreasing in v, and limv→∞ F̄V (A, v) = 0, ∀A.

6. F̄V (b, b) > c.

7. F̄V (A,A) is decreasing to zero as A → ∞.

3 Definition of the Process Gh

First, choose some h > 0, to be the adjustment size of the process.

At stage 1:

1. Find A1 that satisfies:

F̄V (A1, A1) = c. (1)

2. Find α1, 0 < α1 < 1, that satisfies:

α1F̄V (A1, A1 − h) + α′
1F̄V (A1, A1 + h) = c, (2)

where α′
1 = 1− α1, and A1 is the solution for Eq. (1).

3. Now, for the next “learning period”, on a regular basis (e.g., each morning) randomize between A1 −h, and
A1 + h, according to the probabilities α1, α

′
1 defined in (2). The result of the randomization will be the ET

implemented for the whole period, until a new randomization takes place the following period.

4. Change in beliefs: First, any driver with speed v, s.t, v > ET, will receive, by mail, a notice of his fine. If
in addition, v < β, (where β is his current belief regarding ET ), then the driver is surprised to get a ticket
and thus, he will adjust his belief β to v.
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5. We continue the above procedure until the average number of fines goes below c. This gives us the opportunity
to lower the ET, and by doing so, the proportion of tickets will grow back to the maximum allowed c. At
this point we move to the next stage (see the remark below).

Similarly for all stage i > 1 : At stage i:

6. Given Ai−1 from the previous stage, find the Ai that solves:

F̄V (Ai−1 − h,Ai) = c. (3)

7. Find the αi, 0 < αi < 1, s.t:

αiF̄V (Ai−1 − h,Ai − h) + α′
iF̄V (Ai−1 − h,Ai + h) = c, (4)

where α′
i = 1− αi.

8. Repeat stages 3-5 by replacing the index 1 by i.

Remark. To understand the switch we make from the function F̄V (A1, v) to the function F̄V (A1−h, v), note
that after enough time in which we randomize between A1 − h and A1 + h, all drivers encounter the low result
ET = A1 − h, many times while speeding above it. Consequently, they adjust their belief to their current speed
v, which, with time, approaches A1−h. This still hold at subsequent periods in which ET = A1+h, since beliefs
are never adjusted upward.

Note that for each h > 0, Gh defines a strategy for the police. At each stage i we move to Ai that satisfies:
F̄V (Ai−1 − h,Ai) = c. Thus, if there is an equilibrium e, it satisfies that, F̄V (e− h, e) = c. We wish to find an
adjustment size hb such that e = b+ hb will be the equilibrium point. In that case the process will converge to
e − hb = b, since randomizing around b + hb, between the two values b and b + 2hb ultimately leads the beliefs
to the lower outcome which in this case is b.

Note that hb is the solution for the equation:

F̄V (b, b+ hb) = c.

4 Numerical Example

Choose fV to be:

fV (A, v) =


γ

A

g(v)
G(A)−G(0) , if 0 ≤ v < A;

(1− γA)λe
−λ(v−A), if v ≥ A,

where g is the density function of the normal distribution with µ = 0.8A, and σ = 1, the function G is its
cumulative function and: γA = 1 − e−µ(A−b). It is easy to verify that fV satisfies the list of assumptions (see
chapter 2.2).

From this we get that for all v ≥ A :

F̄V (A, v) = e(λ−µ)A−λv+µb,

Hence, by (1) and (3):
A1 = b− (1/µ) ln c,

Ai = 1/λ(− ln c+ bµ+ (λ− µ)(Ai−1 − h)),

and by (4):

αi =
ceµAi−bµ − e−λh

eλh − e−λh
.

Now, hb solves the equation:
F̄V (b, b+ hb) = c.
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Hence:
hb = (1/λ) ln (1/c).

Choosing: b = 100, c = 0.3, λ = 0.2, and µ = 0.1, we obtain:

F̄V (A, v) = e0.1A−0.2v+10,

A1 = 100 + 10 ln (10/3) ∼ 112.04,

h100 = 5 ln 10/3 ∼ 6.0198,

Note that b+ hb = 106.03 is a unique equilibrium since:

F̄V (A,A+ 5 ln 10/3) = e−0.1A−ln 10/3+10

is strictly decreasing and so the equation

e−0.1A−ln 10/3+10 = 0.3

has a unique solution: A = 100. Hence the process must converge to the unique equilibrium 100+h100 = 106.03.
Indeed, we get:

{Ai} = 112.04, 109.03, 107.52, 106.77, 106.4, 106.21, 106.114, 106.067, 106.043, 106.031...

And so after a while the drivers believe that:

ET ∼ lim
i→∞

Ai − h100 = (100 + h100)− h100 = 100,

and act accordingly.

5 The Simulations

In this section, we would like to describe the simulations that we have executed and the insights gleaned from
the results. The aim of the simulations is to shed light on the factors that influence the duration of the learning
process until it converges to b. The simulations can also serve as a basis for the police when trying to implement
this learning process in reality. In such case, the police needs to estimate the functions describing the drivers’
actual behaviour, and then follow the procedure described in the flowchart presented in Figure 1 ahead. Then
it can run the simulations described below and get some insights which will help it to decide on the value of the
parameters involved.

For the simulations, an arbitrary intercity road was chosen. The road is one of the entering roads to the high
tech city of Tel Aviv, which is equipped with speed cameras, and has a maximum speed limit of 90 km/h. On
working days there is an average of 5000 drivers on this roadDue to regulation, the limit for fines is b =100km/h,
which is 10km/h above the maximum allowed, namely a driver may be penalized only if speeding beyond
100km/h.

5.1 Simulating the Drivers’ Behaviour

Recall that β, is the current belief of the driver regarding the value of ET. Every day, during the 5 working days
of the week, each driver “chooses” his speed V as follows: With probability γβ his speed V satisfies: V = β−V1,
and with probability 1− γβ it satisfies: V = β + V2, where V1 has a Lognormal distribution with expectation
of µ = 10/(β − b), and standard deviation of σ = 1, and V2 is distributed exponentially with rate θ = 5. The
function γβ is defined as: γβ = 1− e−λ(β−b), where b = 100, and λ = 0.08604.

If the speed V that was “chosen” by the driver is lower than the current value of ET, then nothing happens,
and in the following day, the driver randomizes his speed again according to f(β, v). If on the other hand V
exceeds ET, then after a while (say, after 10 working days), the driver receives a fine by mail. If V < β, then
this event contradicts his current belief regarding ET, hence he adjusts his belief regarding ET to be: β = V.
According to the police, in the first period after a driver is fined he obeys the law, so we simulate his speed as
b. After this period, which we call a period of “good behaviour” (and in short “GB”) the effect of the fine wears
out to some extent and the driver, although behaving better than before, changes his behaviour and from now
on chooses his speed according to f(β, v), (with his new belief β). The next day this procedure repeats itself.
The process is summarized on the left hand side of the flowchart in Figure 1.
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5.2 Simulating the Police’s Behaviour

The police determines the actual ET that will be implemented. The goal is to ultimately get ET to be as close
as possible to b+ hb, at the end of the process, since (as explained), in that case all drivers believe that ET ∼ b.
The police will first need to calculate hb. It will also need to decide the frequency of adjustment (FR) (say, once
every 10 working days). To get started, the police needs to calculate A = A1 and α = α1, as dictated at the first
stage of the process Gh described in Subsection 3. Then, if A ‘equals’ b, then our goal is achieved and the process
is stopped. Technically, by “A equals b” we mean that A < b+1.1(h− (ln c+0.2h)/λ). As long as this condition
is not satisfied, the police continues as follows: It first randomizes between A − h and A + h, according to the
first stage of the process described in Subsection 3. The result of the randomization will be the ET implemented
until the next randomization takes place after 10 days. After 10 days, before running a new randomization, the
police checks if the proportion of fines has already gone below c. If not, it randomizes again around the same A.
Otherwise, it adjusts A downward (according to the process), and randomize around the new A. This process is
summarized on the right hand side of flowchart in Figure 1.

Figure 1: Flowchart of the drivers and police behaviour

The following results focus on the relationships between the execution length (EL), namely the number of
days until A ∼ b+ hb, and the following factors: (1) The duration of good behaviour (GB), (2) The proportion
c of fines allowed and (3) the frequency of randomization (FR).

We choose the following base line case:

• It takes two weeks (=10 working days) to transmit the fine to the driver.

• The frequency of randomization is once every 10 working days, namely FR=10.

• The upper bound on the percentage of fines is c=0.2.

• GB=40 working days.

First, let us see how the duration of the simulation (EL) is affected by the duration of good behaviour period
(GB). In Figure 2 we see that unsurprisingly, raising GB reduces the EL, i.e, it expedites the learning process.
Interestingly, if GB is larger than 10 days, EL is no longer affected by it. A possible explanation for this is that
a long enough duration of good behaviour enables us to arrive at the minimal execution time, and this cannot
be further improved.
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Figure 2: The effect of the duration of good behavior on the duration of the learning process.

In Figure 3 we see the effect of the frequency of randomization (FR) on the duration of the learning process.
The smaller the frequency, the longer it takes to educate the drivers. The relationship seems to be linear (for
our choice of functions), and we see that this behaviour holds for both cases presented. As shown in Figure 2,
at this range, GB has no effect on EL. Hence the difference between the two cases presented in Figure 3 must
result from the difference in c.
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Figure 3: The relative effect of the amount of fines and the frequency of randomisation on the duration of the
learning process.

As expected, the higher c the quicker the process ends. This point is expressed more vividly in Figure 4. In
Figure 4 we present the relationship between the amount of fines allowed, and the length of the learning process.
Figure 4 shows that raising c allows educating more drivers, thus results in quicker learning process. As seen,
this behaviour is the same in both cases. Note that GB in both cases is at least 10 days hence has no effect on
EL. Hence the difference between the two cases presented in Figure 4 must result from the difference in FR. As
one can expect, higher frequency (FR=10) accelerates the process.

Finally, note that Figure 2 gives an interesting insight on the relative importance of c and FR as factors that
influence the duration of the learning process. Recall that raising the frequency of the randomization (i.e., lower
FR) accelerates the process. Indeed we see that the solid line, relating to FR=40 is above the dashed line relating
to FR=10. However, this happens even though, in the case presented in the solid line, c=0.5, which is higher
than c=0.2 in the dashed line. This means that even though we allow many more fines in the solid line, it still
takes longer to educate the drivers (since the frequency of randomization is smaller). The conclusion is that the
frequency of randomization is more important than the amount of fines that can be given. Actually these are
good news for the police since raising c is expensive, since it leads to more tickets, whereas raising the frequency
of randomization can be done automatically, and has no financial consequences.
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Figure 4: The effect of the amount of fines on the duration of the learning process.

6 Future Work

From here, there are several interesting directions we wish to take. First, we wish to cooperate with the Israeli
traffic police in order to test these ideas on a specific road in Israel. Secondly, we have already formulated the
model mathematically, in order to prove that for any reasonable function f, i.e., a function that satisfies our
basic conditions, the process is well defined and will always converge to the desired speed limit (when choosing
the right adjustment size). Finally, in terms of simulations, it will be interesting to see which of our results still
hold for other choices of f . Another interesting direction is to try to apply the ideas underlying our strategy to
other features of speed enforcement, e.g., allocation of patrol police cars strategically.
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