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Abstract

The conditions of optimal stabilization of controlled dynamical
systems described by nonlinear multiply connected systems of ordinary
differential equations are considered. The properties of stabilizing
control and form of integrand in criterion of quality transient
are used taking into account that subsystems are asymptotically
stable. The results are obtained for the case of a part of phase variables
and for the case when right parts consist of homogeneous vector-
functions. Conditions of optimal stabilization with respect to a part
of variables are suggested. The algorithms of optimal stabilization of
controlled multiply connected dynamical systems are designed.

1 Introduction

The search of conditions of optimal stabilization and synthesis of corresponding stabilization algorithms is a
significant problem in research of behavior of nonlinear controlled systems [Rumyantsev, 1970], [Krasovsky, 1966],
[Rumyantsev, 1987], [Andreev, 1997]. Fundamental approach to optimal stabilization for systems of ordinary
differential equations was developed by V.V. Rumyantsev with using of condition of minimization for a functional
characterizing the quality of control. Solving of the problems of optimal stabilization for different types of
multiply connected dynamic systems is based on the fundamental results [Rumyantsev, 1970] about optimal
stabilization of nonlinear system of differential equations of perturbed motion with the additional forces. The
functional is given in the form of a definite integral with the upper infinite limit. Integrand function of the
functional is defined in the proof of the theorem, in this case the known Lyapunov function for the system of
differential equations of perturbed motion without the control becomes the optimal Lyapunov function for the
specified system under the action of additional forces.

Methods of optimal stabilization are considered in [Krasovsky, 1966], [Rumyantsev, 1987], [Andreev, 1997].
Critical cases are allocated and ways of a finding of stabilizing control in critical cases are developed
[Galperin, 1963], [Hitrov, 1979]. The convenient way and the basis of general scheme of stabilization for multiply
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connected systems is two-level stabilization [Shil’yak, 1994]. Some methods for solving of the problem of optimal
stabilization to respect to all variables and to a part of phase variables for multiply connected nonlinear controlled
dynamic systems are given in [Shchennikova, 2006], [Druzhinina et al., 2011].

In this work we suggest the conditions and algorithms of optimal stabilization for controlled dynamic systems
described by nonlinear multiply connected systems of ordinary differential equations. We consider the common
case and the case when right-hand sides consists of homogeneous vector functions. The properties of stabilizing
control and form of integrand in criteria of quality of transient are used taking into account that subsystems
are asymptotically stable. Optimal control is synthesized at the level of the initial system. The results can be
used in problems of control of motion of complicated spatial mechanisms, and also in problems of stabilization
of motion of multiply connected systems of different types.

2 The Optimal Stabilization with Using of Homogeneous Vector Functions

It is known that for nonlinear systems of differential equations of general form the conditions of theorems on
asymptotic stability on the first nonlinear approach are hardly verified. However, in some cases is possible to
search for fairly easily verifiable conditions under which we prove the asymptotic stability of the equilibrium of the
first nonlinear approach. Nonlinear system with right-hand sides are homogeneous (generalized homogeneous)
vector functions have been studied in [Kosov, 1997], [Alexandrov, 2004], which shows the theorems about
asymptotic stability on the first nonlinear approach with the conditions which are easily verified. These results
can be used in the solving of problems of optimal stabilization of nonlinear controlled multiply connected systems.

We consider multiply connected nonlinear controlled dynamic system

dxs
dt

= X(µs)
s (xs) +

q∑
j=1

Rsj(t, x) +Bs(xs)us ≡ Φs(t, x, u). (1)

Here xs ∈ Rns , x =
(
xT1 , ..., x

T
q

)
, X

(µs)
s (xs) are homogeneous of order µs > 1 continuously differentiable vector

functions, µs = ps/qs, ps and qs are odd numbers, us ∈ Rrs ,Rn1 × ...×Rnq = Rn, Rr1 × ...×Rrq = Rr, s = 1, q.
Continious functions Rsj(t, x) are defined in domain

Ω = {t, x : t ≥ t0, ||x|| < h, 0 < h = const}. (2)

It should be noted that we use the Euclidean norm of the vector in formula (2). It is accepted that the conditions

||Rsj(t, x)|| ≤ csj ||x1||α
(1)
sj . . . ||xq||α

(q)
sj ,

csj ≥ 0, α
(i)
sj ≥ 0,

q∑
i=1

α
(i)
sj > 1,

are hold. We assume that Φs(t, 0, 0) ≡ 0, s = 1, q, and that equilibrium states of systems

dxs
dt

= X(µs)
s (xs), s = 1, q, (3)

are asymptotically stable. As a Lyapunov function for system (1) in this case we consider the function

v(x) =

q∑
s=1

vs(xs),

where vs(xs) are Lyapunov functions for systems (3) satisfying the conditions:
(i) vs(xs) and ws(xs) are positive definite functions;
(ii) vs(xs) and ws(xs) are gomogeneously positive functions of order ms + 1− µs and ms, where ms are enough
large rational numbers with odd denominator and even numerator;
(iii) functions vs(xs) are continuously differentiable and

(∇vs)TX(µs)
s (xs) = −ws(xs).
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The problem of optimal stabilization for the system (1) has a unique solution in closed form. Krasovsky
function B[v; t, x, u] has a form

B[v; t, x, u] =

q∑
s=1

[
−ws(xs)− ((∇vs(xs))T (

∑
j

Rsj(t, x) +Bs(xs)us))+

+
1

2
uTs βs(xs)us)

]
+Ψ1(t, x).

According to Rumyantsev and Krasovsky theorems optimal control

u0 =
(
uT

0

1 , ..., uT
0

s

)T

,

and optimal Lyapunov function we obtain from a system

∂B

∂us
= Bs(xs) + βs(xs)u

0
s = 0, s = 1, q. (4)

From (4) we have
u0s = −β−1

s (xs)(∇vs)TBs(xs) = −β−1
s (xs)B

T
s (xs)∇vs. (5)

Substituting u0s in (5) to function B[v; t, x, u] we have the algebraic equation B[v0; t, x, u0] = 0 with respect to
function Ψ1(t, x).

The function

Ψ1 = −
q∑

s=1

ws(xs)− ((∇vs(xs))T (

q∑
j=1

Rsj(t, x))) + (uTs )
0βs(xs)u

0
s, (6)

will be positive definite and functional of control finally becomes

J(u0) =

∞∫
t0

q∑
s=1

[
−ws(xs)− (∇vs(xs))T (

q∑
j=1

Rsj(t, x))+

+ (u0s)
Tβs(xs)u

0
s + uTs βs(xs)us

]
dt.

(7)

We applied to system (1) and to functional (7) the results about optimal stabilization of common nonhomogeneous
multiply connected systems [Shchennikova, 2006]. In the case under consideration we use general scheme of
stabilization without assumption of positive definition of (6) because this function has required property. The
algorithms of optimal stabilization of system (1) with respect to all and to a part of variables are developed.

3 The Optimal Stabilization with Respect to a Part of Variables

We consider multiply connected nonlinear controlled dynamic system

dxs
dt

= fs(t, xs, u
loc
s ) + Fs(t, x, u

glob
s ) ≡ Φs(t, x, u

loc
s , uglobs ), s = 1, q, (8)

where x =
(
xT1 , ..., x

T
q

)T
, xs ∈ Rns , Rn1 ⊕ ...⊕Rnq = Rn, ulocs (t, 0) = 0, uglobs (t, 0) = 0, Φs(t, 0, 0, 0) ≡ 0.

It is accepted that right part of system (8) is defined in domain

Ω1 = {t, x, ulocs , uglobs : t ≥ t0 ≥ 0, ||x|| < H,

||ulocs || <∞, ||uglobs || <∞, 0 < H = const, s = 1, q},
(9)

and conditions of existence and uniqueness of solution are satisfied. Let us assume than system (8) can be
represented as

dys
dt

= Ys(t, ys, zs, u
loc
s ) +

q∑
j=1

Y1sj(t, y, z)u
glob
s ,

dzs
dt

= Zs(t, ys, zs, u
loc
s ) +

q∑
j=1

Z1sj(t, y, z)u
glob
s ,

(10)

183



where xs = (yTs , z
T
s )

T , x = (yT , zT )T , where ys ∈ Rks , zs ∈ Rms , ks+ms = ns, s = 1, q. For system (10) domain
(9) takes the form

Ω2 = {t, x, ulocs , uglobs : t ≥ t0 ≥ 0, ||ys|| < Hs, ||zs|| ≤ ∞,

||ulocs || <∞, ||uglobs || <∞, 0 < H = const, s = 1, q},
and each solution is z-extendible.

We consider the subsystems of the form

dys
dt

= Ys(t, ys, zs, u
loc
s )

dzs
dt

= Zs(t, ys, zs, u
loc
s ), s = 1, q.

(11)

Further, we will solve the problem of optimal ys-stabilization of multiply connected dynamical systems of
the form (10), s = 1, q, y = (yT1 , ..., y

T
q )

T , using the method of Lyapunov vector-functions. In this case the
strategy of solving the problem of stabilization is that each subsystem must be ys-stabilized with the help of
local controls ulocs , s = 1, q, i.e. it must be ys-stabilized on the level of subsystems, and then the asymptotic
ys-stability of interconnected subsystems must be checked. The general scheme of a two-level stabilization scheme
[Shil’yak, 1994] is that the global control uglobs , s = 1, q, is added to the decentralized control in order to weaken
the effect of interrelated subsystems. In this work the problem of optimal stabilization of multiply connected
system is sold also using a two-level stabilization scheme with respect to a part of variables.

We consider the case when right parts of (11) can be written in the form

Ys(t, ys, zs, u
loc
s ) ≡ Y s(t, ys, zs) + b1s(t, ys, zs)u

loc1
s ,

Zs(t, ys, zs, u
loc
s ) ≡ Zs(t, ys, zs) + b2s(t, ys, zs)u

loc2
s , s = 1, q,

(12)

where b1s(t, ys, zs) and b2s(t, ys, zs) are matrixes of appropriate dimensions, and controls uloc1s and uloc2s are built
considering the choice of Lyapunov vector functions.

It was shown that equilibrium state of system (11) taking into account (12) is uniformly asymptotic ys-stable.
In this case system (10) can be represented in the form

dys
dt

= φs(t, ys, xs) + Y1s(t, ỹ, z̃)u
glob
s ,

dzs
dt

= ψs(t, ys, zs) + Z1s(t, ỹ, z̃)u
glob
s ,

(13)

where
φs(t, ys, zs) = Y (t, ys, zs) + b1s(t, ys, zs)u

loc
s (t, ys, zs),

ψs(t, ys, zs) = Zs(t, ys, zs) + b2s(t, ys, zs)u
loc
s (t, ys, zs).

We consider the problem of optimal stabilization for system (13). Criterion of quality control we write in the
integral form

J =

∞∫
0

w(t, y[t], z[t], uglobs [t])dt, (14)

in this case we define the function w(t, x, u) in the process of solving.
As optimal Lyapunov function for system (13) we choose the function

V (t, y, z) =

q∑
s=1

αsVs(t, ys, zs),

where αs are positive real constants, Vs(t, xs) are Lyapunov functions which guarantee uniform asymptotic
ys-stability of systems (11), s = 1, q.

We introduce Krasovsky–Bellman function B(t, x, u, v, uglob) with special component Ψ(t, y, z) allowing to
consider the function w in integral (14) in the form

w(t, y, z, uglob) = Ψ(t, y, z, uglob) +
1

2

q∑
s=1

(uglob)T θsu
glob
s .
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According to Rumyantsev theorem function B(t, x, u, v, uglob) is positive-definite with respect to y. Along
optimal control (u0s)

glob we have that
∂B

∂uglobs

∣∣∣
(u0

s)
glob

= 0, s = 1, q. (15)

In result we obtain positive-definite function with respect to y-component of phase vector of system (10). In this
case we can write the criterion of quality control in the form

J =

∞∫
t0

(

q∑
s=1

αsWs(t, ys, zs) +

q∑
s,j=1

θsj(u
0
s)

glob(u0j )
glob +

q∑
s,j=1

θsju
glob
s uglobj )dt. (16)

Thus if (i) for systems (11) ys-stabilizing (to uniform asymptotic stability) controls ulocs = ulocs (t, xs) exist,
s = 1, q, (ii) function Ψ(t, y, z) is positive-definite with respect to vector y of system (10), then controls (u0s)

glob

defined from system (15) are the functions solving the problem of optimal y-stabilization of system (10) with
respect to functional (16).

By the aid of this two-level scheme of stabilization with applications of results of [Shchennikov, 2001],
[Shestakov, 2010], [Druzhinina, 2002], [Shestakov, 2009] the algorithms of optimal stabilization for multiply
connected nonlinear controlled systems are developed.

We note that the problem of optimal stabilization with respect to a part of the variables under permanently
acting perturbations is of theoretical and practical interest. In particular, we consider a system

dx

dt
= Ax(µ) + F (t, x, u), (17)

where A is a constant (n× n)-matrix, x = (x1, ..., xn)
T , x = (y, z), x(µ) = (xµ1 , ..., x

µ
n)

T , µ = 2p− 1, p = 2, 3, ...,
and the function F (t, x, u) is given in the domain in which the uniqueness condition for the solution of the Cauchy
problem and the condition of the z-extendibility of solutions are satisfied. We use a single-level stabilization
scheme for system (17). However, by generalizing systems (17) to a multiply connected case, we can use a
two-level stabilization scheme analogous to the stabilization scheme for system (8).

4 Conclusions

The conditions of optimal stabilization for multiply connected systems are obtained by the aid of two-level
stabilization scheme and the generalization of Rumyantsev method on indicated class class of dynamical systems.
The basic algorithm of the solving of optimal stabilization problem concerning all phase variables consists of the
following stages:

1) to carry out stabilization at the level of the interconnected subsystems, i.e. to find local controls;
2) to present optimal Lyapunov function in the form of a linear combination of functions of Lyapunov for

subsystems;
3) to find Krasovsky-Bellman function;
4) to make algebraic system taking into account that Krasovsky-Bellman function vanishes on the optimal

solution;
5) to find optimal control for initial multiply connected system from the algebraic system;
6) to define functional in relation to which control is optimal.
By the aid of basic algorithm the optimal stabilization algorithms for different types of multiply connected

dynamic systems are offered. The method of Lyapunov functions [Matrosov, 2001] is essentially used for research.
Modifications of dynamical models of manipulation robots [Miroshnik et al., 2000], [Vukobratovic et al., 1985]
are considered and for them the corresponding algorithms of stabilization with application of multilevel
stabilization are developed.

This algorithm is modified to the case of a part of phase variables and to the case of permanently acting
perturbations. The results can be used in problems of motion control of complicated spartial mechanisms and
in research of robotics systems dynamics.
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