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Abstract

In this paper, the problem of the quality of the product of metallurgi-
cal production is investigated in the conditions when the reassignment
can be organized in the process of realization of a specific technological
route. The information on the completed technological routes forms a
training sample for the pattern recognition problem with the teacher
and the choice of the technological route for the continuation of the pro-
duction process is carried out taking into account the expected quality
indicators of the final product. To reduce the dimensionality of the
problem, a given set of executed technological routes is divided into
discrete classes, in each of which an algorithm for constructing a de-
cision tree can be implemented. The paper gives a formal description
of the developed algorithm for the node of the decision tree and an
example of implementation.

Introduction

In work [Gainanov & Berenov, 2017] it has been developed the general approach for solving the problem of
the quality of the product of metallurgical production which is based on the idea of realization of Big Data
technologies. In the process of production activity there is a process of continuous accumulation of information
about the completed technological routes, while the accumulated information has all the signs of big data,
namely:

1. the accumulated information has significant volumes measured by many terabytes of information,

2. the accumulation of information occurs in the streaming mode at a high speed,

3. the accumulated information is characterized by a great variety and contains the values of several thousand
and even tens of thousands of different parameters.

As a result of processing the obtained data the research reduces to the classical problem of pattern recognition
in a geometric formulation, when it is necessary to construct a decision rule for assigning the input vector ai
to one of m classes. To solve the problem of pattern recognition in a geometric formulation, various algorithms
can be applied, described, for example, in [Gainanov, 2014], [Gainanov, 2016], [Mazurov, 1990], [Mazurov, 2004]
. Also, to solve the problem, an alternative cover algorithm from [Gainanov, 1992] can be applied.
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In this paper, we present an algorithm for solving the problem of pattern recognition in a geometric formula-
tion, the implementation of which determines the classification of the expected products. The algorithm is based
on the principles of constructing logical decision trees and reducing the dimension of the problem by preliminary
clustering the source data space.

1 Basic Definitions

Let A = {A1, . . . , An} be the set of technological aggregates involved in production.

Definition 1.1 The directed graph
−→
G = (A, E) with the set of vertices A and the set of arcs E ⊆ A2 is called

the infrastructural graph if (A1, A2) ∈ E if and only if the output EP of the aggregate A1 can serve as the input
EP for the aggregate A2.

Defintion 1.2 The technological route P = (Ai1 , Ai2 , . . . , Aik) is any directed path in
−→
G .

The set of all technological routes P = {P1, . . . , Pk} is the technological base of the production under consider-
ation. We denote by EP = {ep1, . . . , epn} the set of all possible product units of production under consideration.

Let each product unit epi be characterized by a set of parameters Pi = {pi1, pi2, . . . , pini}, i ∈ [1,K].
Definition 1.3 Sequence

AIi =
(
Ai1,Pi1 (AIi) , . . . , Ais,Pis (AIi)

)
,

where Pij (AIi) is the set of parameter values for epij in a particular implementation of the technological route
AIi, is called the executed technological route (ETR).

As a result of the production activity of the production under consideration, the set of executed technological
routes will be generated at the current time moment t:

PETR(t) = {AIi : i ∈ [1, q(t)]}. (1)

Definition 1.4 The terminal vertex of a graph (subgraph) is a vertex from which no arc leaves in this graph
(subgraph).

Let V ′ be the set of terminal vertices of the subgraph ⟨v∪−→
G(v)∪−→

G2(v)∪· · ·∪−→
Gk(v)⟩−→

G
. Here

−→
Gk(v) denotes

the set of all vertices v′of
−→
G such that there exists a simple path from the vertex v to the vertex v′ of the length

(k − 1). For each terminal vertex vi ∈ V ′ there is a certain output unit epi, which is the output EP for this
vertex, and there may be several such epi depending on the type of ETR as a result of which this product unit
was received.
Definition 1.5 An ETR is called a productive ETR if the output EP of the terminal vertex Ais of this ETR AIi
— denote this vertex as term(AIi) — is one of the types of the final product delivered to the market.

Definition 1.6 The vertex v′ ∈
(
v ∪

−→
G(v) ∪ . . . ∪

−→
Gk(v)

)
is called a fork-vertex if

∣∣∣−→G(v′)
∣∣∣ > 1.

In the framework of this paper, the generalized problem of assigning a technological route is considered, in
which it is supposed that it is possible to control the choice of the further passage to processing a product unit

in the fork-vertices of the graph
−→
G . This means that the technological route in the process of its execution can

be reassigned in order to increase production efficiency and reduce the level of rejection.

2 Formulation of the Problem

Consider the set (1) of all productive ETRs. For each productive ETR AIi you can define two parameters for
EP of its terminal vertex epi = ep (term (AIi)): Price(epi) is the market price of the unit of measure epi, C(epi)
is the production cost of the product unit epi.

Let there be a set of productive ETRs such that the initial sections to the fork-vertex are coincident in the
part of the passage of aggregates. Then each productive ETR can be represented as a sequence:

AIi = (BIi, CIi) , i ∈ [1, q (t)] ,

where BIi is the ETR from the initial vertex v1 to the considered fork-vertex v′ and CIi — ETR from the vertex
v′ to the terminal vertex term (AIi). Since each ETR AIi passages a certain technological route — we denote
such route as P (AIi) — then the set of all ETRs can be divided into several classes

PETR (v, t) = P(1)
ETR (v, t) ∪ P(2)

ETR (v, t) ∪ . . . ∪ P(l)
ETR (v, t) (2)
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such as AIi and AIj belong to the same class if and only if P (AIi) = P (AIj).

We denote by Pi = P
(
P(i)

ETR (v, t)
)

a technological route which is common for all ETRs from P(i)
ETR (v, t).

Then the problem is to determine which of the technological routes Pi should be chosen for further passage when
reaching the fork-vertex v′.

For each class P(i)
ETR (v, t) from (2) we compile a training sample

Z (Pi) :

(
Ef (AIj) =

Price
(
term (AIj)

)
− C

(
term (AIj)

)
C
(
term (AIj)

) , i , BIj

)
, (3)

where AIj ∈ P(i)
ETR (v, t), and separate the set of values of efficiency Ef (AIj) into several discrete intervals

E1, E2, . . . , Em.
Next, we represent the sample Z (Pi) in the form of the corresponding multidimensional vectors

aj =
(
aj0, aj1, ajm1 , . . . , ajn

)
,

where aj0 ∈ {E1, . . . , Em} is the value of the ETR’s efficiency, aj1 is the identifier of the technological route
of this ETR. We assign the vector aj = (aj1, . . . , ajn) to the class Ki, if aj0 ∈ Ei. Then each aj vector will
be assigned to one of the classes K1, . . . ,Km and the well-known problem of pattern recognition in geometric
formulation arises.

3 Algorithm for Constructing a Decision Rule

A set of n-dimensional vectors is given

A =
{
(ai1 , . . . , ain) : i ∈ [1, N ]

}
,

and its partition into m classes

A = A1 ∪ A2 ∪ . . . ∪ Am .

It is required to construct a decision rule for assigning the vector ai to one of the classes. The solution will be

sought in the class of logical decision trees given by a directed binary tree
−→
G = (V,E) with root vertex v0 ∈ V .

The binary tree
−→
G = (V,E) defines the process of sequentially separating of the sample A into two subsamples

at the vertices of degree 2 so that each terminal vertex vi corresponds to a subset Avi ⊆ A, which can be assigned
to one of the classes classvi ∈ [1,m]. In the case under consideration, linear functions will be used to separate
the subsample at each vertex of the decision tree.

If v is a vertex of degree 2 in the graph
−→
G , then a vector nv and a scalar variable Ev are given for it, such

that Av is separated into two subsamples of A′
v and A

′′

v according to the following rule:

A′
v =

{
ai ∈ Av : ⟨nv , ai⟩ 6 Ev

}
,

A
′′

v =
{
ai ∈ Av : ⟨nv , ai⟩ > Ev

}
,

and for the root-vertex v0 we have:

Av0 = A .

It is required to construct the decision tree
−→
G = (V,E) with minimal number of vertices, and at each terminal

vertex v ∈ V we have:

p (v) =

∣∣ {ai ∈ Av : ai ∈ classv}
∣∣

|Av|
> pmin , (4)

that is, the fraction of vectors belonging to the some class classv is not less than a given value pmin. If pmin = 1
then each terminal vertex corresponds to the vectors of one particular class.

The rule (4) acts if |Av| > Kmin. If |Av| < Kmin then the process of further separating of the sample Av

is not performed and the vertex v is declared terminal, and the (4) rule may not be executed. In other words,
for |Av| < Kmin the sample Av is not representative enough for constructing a further decision rule and the
probability p (v) of the vector from this sample belongs to the class classv can be less than pmin.
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3.1 Algorithm for Constructing the Decision Function for the Node

Suppose that we have a vertex v ∈ V for which Av is given. Suppose we have a partition

Av = (Av ∩ A1) ∪ . . . . . . ∪ (Av ∩ Am) , (5)

in which there are m′ non-empty sets. If m′ = 1 then the vertex v is terminal and p (v) = 1, if 2 6 m′ 6 m then
sequentially calculate the values:

pi (v) =

∣∣ {ai ∈ Av ∩ Ai}
∣∣

|Av|
, i ∈ [1,m] .

If there exists i0 ∈ [1,m] such that pi0 (v) > pmin then the vertex v is terminal and the class classv = i0, if
|Av| < Kmin then the vertex v is terminal and

classv = argmax
i

{∣∣pi (v) ∣∣ : i ∈ [1,m′]
}
.

Consider the case 
2 6 m′ 6 m ,

|Av| > Kmin ,

pi (v) < pmin ∀ i ∈ [1,m′] ,

and denote by
I = {i : Av ∩ Ai ̸= ∅ , i ∈ [1,m]} .

Let some vector nv and a scalar value Ev be assigned. Then the vertex v is associated with two vertices v1
and v2 that are descendants of the vertex v in the constructed decision tree such that:

Av1 =
{
aj ∈ Av : ⟨nv , aj⟩ 6 Ev

}
,

Av2 =
{
aj ∈ Av : ⟨nv , aj⟩ > Ev

}
.

Let

p (Av1) =

(
|Av1 ∩ A1|

|Av1 |
, . . . ,

|Av1 ∩ An|
|Av1 |

)
,

p (Av2) =

(
|Av2 ∩ A1|

|Av2 |
, . . . ,

|Av2 ∩ An|
|Av2 |

)
.

In this case the vector nv and the quantity Ev require the sets Av1 ̸= ∅ and Av2 ̸= ∅.
Consider the following value

discrim (Av , nv , Ev) =
∑
i ∈ I

∣∣∣∣ |Av1 ∩ Ai|
|Av1 |

− |Av2 ∩ Ai|
|Av2 |

∣∣∣∣ .
The value discrim (Av , nv , Ev) will be called the separating force of the function

f (a) = a · nv − Ev

concerning the subsample Av. The meaning of this notion is that the stronger the vectors from the classes Ai of
the training sample are separated in the half-space obtained by dividing the space by a hyperplane

f (a) = a · nv − Ev = 0 ,

the more the function f (a) separates vectors from the training sample into classes. Thus, the formulation is
natural, where it is required to find nv ∈ Rn+1 and Ev ∈ R for the sample (5) such that the value of quantity
discrim (Av, nv, Ev) reaches its maximum. The naturalness of such formulation is also confirmed by the fact that
for m = 2 the best solution is achieved for discrim (Av, nv, Ev) = 2 , which corresponds to a linear separation into
classes Av ∩ A1 and Av ∩ A2 by the hyperplane f (a) = nv · a− E = 0. The problem in this formulation always
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has a solution, since Av1 ̸= ∅ and Av2 ̸= ∅ for each vertex v its descendants correspond to subsamples of lower
power and when the condition (4) or the condition |Av| < Kmin are reached the vertex v becomes terminal.

For an arbitrary subset A′ ⊆ A we introduce the notation for the center of the subsample

C (A′) =
1

|A′|
∑
i∈A′

{ai : ai ∈ A′} ,

and

A (I) = {ai : ai ∈ A, i ∈ I} .

Let be given the partition I = I1 ∪ I2, where I1 ̸= ∅, I2 ̸= ∅. Consider the interval [C (I1) , C (I2)] ⊂ Rn+1.
Let n (I1, I2) be the normal vector

C (I2)− C (I1)

∥C (I2)− C (I1) ∥
,

then we divide the interval [C (I1) , C (I2)] into M parts, where the length of each part is

∥C (I2)− C (I1) ∥
M

.

We consider the (M − 1) separating functions fj (a) = a · nv − Ej , which are passing sequential through all
(M − 1) dividing points of the interval [C (I1) , C (I2)]. We will search the best option for the separating force
among these functions:

j0 = argmax {discrim (Av, nv, Ej) : j ∈ [1, N − 1]} .

It is easy to see that for j0 we have Av1 ̸= ∅, Av2 ̸= ∅.

We denote by

discrim (I1, I2) = discrim (Av, nv, Ej0) .

In the case of C (A (I1)) = C (A (I2)) any two most distant points from the sample Av are choosed and for the
interval which connects these points it is used the same procedure for constructing (M − 1) separating planes
and choosing the best of them. In the general case it is assumed that all partitions of the form I = I1 ∪ I2 are
searched, and the chosen partition is such that discrim (I1, I2) reaches its maximum. In practical implementation
instead of a search a sequential algorithm can be used, in which I1 = I, I2 = ∅ is initially assigned. Further
among all partitions of the form I = I1 \ {i} ∪ I2 ∪ {i}, where i ∈ I, the best is chosen by the criterion
discrim (I1, I2) and so on. In the end, the best result is also chosen from the entire row obtained.

The algorithm of decision tree constructing for the node:

1. Let us consider the node v of decision tree with training sample Av.

2. The vertex v is declared terminal if there exists a class i ∈ [1,m] such that pi (Av) > pmin or |Av| 6 Kmin.

3. We consider all partitions I = I1 ∪ I2.

4. For each partition suppose:

CI1 =
1

|I1|
∑
i∈I1

Ci CI2 =
1

|I2|
∑
i∈I2

Ci .

5. If the length of the interval [CI1 , CI2 ] ̸= 0 then the normal vector nI1,I2 is constructed and the sample EI1,I2
such that discrim (Av, nI1,I2 , EI1,I2) is maximal (search through all hyperplanes perpendicular to nI1,I2 and
bypassing [CI1 , CI2 ] for M steps from the point CI1 to the point CI2).

The process is finite since some separation takes place at the each step.
Example 3.1 Consider an example in which four classes of vectors are given, and each class contains 20 vectors.
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Figure 1: Classes of vectors

1. Av = class1 ∪ class2 ∪ class3 ∪ class4 ,
p (Av) = (0.25, 0.25, 0.25, 0.25) ,
I = I1 ∪ I2 = {1, 2} ∪ {3, 4} ,
nv = (0, 1) , Ev = 0 ,
p (Av1) = (0.5, 0.5, 0, 0) ,
p (Av2) = (0, 0, 0.5, 0.5) ,
discrim (Av, nv, Ev) = 0.5 + 0.5 + 0.5 + 0.5 = 2 .

2. Av1 = class1 ∪ class2 ,
p (Av1

) = (0.5, 0.5, 0, 0) ,
I = {1} ∪ {2} ,
nv1 = (1, 0) , Ev1 = 0 ,
p
(
Av1,1

)
= (1, 0, 0, 0) ,

p
(
Av1,2

)
= (0, 1, 0, 0) ,

discrim (Av1 , nv1 , Ev1) = 1 + 1 + 0 + 0 = 2 .
The vertices Av1,1 and Av1,2 are terminal.

3. Av2 = class3 ∪ class4 ,
p (Av2) = (0, 0, 0.5, 0.5) ,
I = {3} ∪ {4} ,
nv2 = (1, 0) , Ev2 = 0 ,
p
(
Av2,1

)
= (0, 0, 1, 0) ,

p
(
Av2,2

)
= (0, 0, 0, 1) ,

discrim (Av2 , nv2 , Ev2) = 0 + 0 + 1 + 1 = 2 .
The vertices Av2,1 and Av2,2 are terminal.

Consider the partition I = I1 ∪ I2 and denote by

a (I1, I2) =
∑

{(as − at) : as ∈ Av ∩ Ii ∀ i ∈ I1, at ∈ Av ∩ Ij ∀ j ∈ I2} .

The most practical efficiently seems the algorithm for separating the sample Av in the vertex v which choices
the partition I = I1 ∪ I2, for which |a (I1, I2) | is maximal among all partitions I = I1 ∪ I2. Then the choice of
the vector n (I1, I2) and the scalar value E (I1, I2) can be made according to the procedure described above for
the obtained fixed partition I = I1 ∪ I2.
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We introduce the notation:

aij =
∑

{(as − at) : as ∈ Ai, at ∈ Aj} , i, j ∈ [1,m] ,

then for I = I1 ∪ I2 we have

a (I1, I2) =
∑

{aij : i ∈ I1, j ∈ I2} . (6)

Proceeding from the relation (6) it is possible to significantly reduce the amount of computation when choosing
the optimal partition I = I1 ∪ I2 for the sample Av using the previously calculated values aij ∀ i, j ∈ I.

Conclusion

To solve the problem of the quality of the product of metallurgical production, an approach has been developed in
which the research is reduced to solving the problem of pattern recognition in a geometric formulation. A heuristic
algorithm for constructing a decision rule is developed which is aiming to find the best possible discrimination
of training sample corresponding to each vertex of decision tree. Substantial reducing of the computational
complexity of considerated algorithm is proposed. Thus, for the production under consideration, a large number
of problems of pattern recognition are constructed for each of which a decision tree is constructed.

An important feature of the approach is that the set P(t) of ETRs is continuously expanding, thus providing
all the new data to improve the decision rule. To achieve the effectiveness of the proposed approach in practice
it is necessary to carry out additional training as soon as a new portion of the ETRs arrives. This will ensure
the continuous improvement of the decision rules and consequently the improvement of production efficiency.
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