
On Solving the Problem of Optimal Probability

Distribution Quantization

Dmitry Golembiovsky
Lomonosov Moscow State University

GSP-1, Leninskie Gory,
119991 Moscow, Russia

golemb@cs.msu.su

Dmitry Denisov
Lomonosov Moscow State University

GSP-1, Leninskie Gory,
119991 Moscow, Russia

dvden@bk.ru
Evgeny Antonov

Lomonosov Moscow State University
GSP-1, Leninskie Gory,
119991 Moscow, Russia

eugeneP.antonov@gmail.com

Abstract

The program of optimal quantization of a continuous distribution sug-
gested by Heitsch H. and W. Romisch in 2003 is generalized for arbi-
trage exclusion in financial models. It is a non-convex problem, which
belongs to the class of NP-hard problems. In the paper, three different
approximate algorithms are developed for finding the global extremum.
Two of them are based on the separation of variables according to their
power in the objective function while the other is a SQP algorithm. The
numerical results of using the algorithms are provided. The effective-
ness and speed of the problem solving are compared.

1 Introduction

Currently one of the most rapidly developing optimization approaches is the stochastic dual dynamic program-
ming (SDDP) algorithm (see [Pereira & Pinto, 1991]). The algorithm belongs to the class of dynamic optimiza-
tion algorithms and allows to solve problems where one or more parameters are represented by random variables.
SDDP is a procedure of consecutive solving of linear problems, thus obtaining new constraints of objective func-
tion in a form of cutting hyperplanes and, as a result, obtaining upper and lower bounds of an optimal solution of
the problem. One of the essential parts of SDDP algorithm is constructing a set of possible scenarios of random
variables. Scenario models for stochastic optimization in finance must exclude arbitrage possibilities (look, for
example [Consiglio et al., 2014], [Geyer et al., 2010]).

The paper analyzes the problem of constructing a scenario lattice for the joint evolution of a set of variables
representing the values of economic indicators such as interest rates, exchange rates, prices of goods, securities or
other financial instruments. It is assumed that the distribution of such variables is known, and a number of its
realizations can be simulated. Also it is assumed that forward prices of such variables can be calculated at each
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stage of the simulated trajectories. The lattice considered in the paper satisfies several restrictions: positivity
of each variable in the nodes, equality to one of the sum of the transition probabilities from a node and the
distinctive feature of the lattice is an absence of arbitrage opportunities. It means that for each node of the
current stage, an expected value of variables at the next stage is equal to its forward prices in the current node.
The optimal lattice is obtained through solving an optimization problem which is not convex.

The second section of the paper presents formal definition of the problem, while 2.1.1, 2.1.2 and 2.2.1 sub-
sections contain algorithms suggested for its solution. The first two are based on a separation of the variables
of the optimization problem according to their power in the objective function while the latter uses a gradient
of the objective function to iteratively approach the optimal value. The third section of the paper contains the
comparison of the algorithms in particular cases.

2 Problem Definition and Methodology

Consider nx variables which represent particular economic indicators. Let the number of the nodes at the stage t
is lt (equals 1 for the first stage) and the nodes till the stage t−1 have been already formed. Denote by F k

t−1, k =

1, . . . , lt−1 the nx-elements vector of prices in the nodes of the previous stage and by F
k(frw)
t−1 , k = 1, . . . , lt−1

the vector of corresponding forward prices. The stage t of the scenario lattice is constructed by solving the next
optimization problem.

Denote by f jtk, j = 1, . . . , Lt the realizations of the vector of considered variables at the stage t generated by
the Monte-Carlo method from the node k of the previous stage t− 1. (Like lt parameter Lt equal to 1 for t = 1,
Lt >> lt). The vectors of the values of the random variables which are assigned to the nodes of the stage t are
denoted by F i

t , i = 1, . . . , lt. They are variables of the optimization problem.
We also introduce variables gijtk ≥ 0, where i = 1, . . . , lt is a number of the according node at the stage t;

k = 1, . . . , lt−1 is a number of the node at the stage t− 1; j = 1, . . . , Lt is a number of realization of the random
variables generated from the node k of the previous stage. Each variable gijtk shows to what extent the according

random pattern f jtk belongs to the corresponding node. So, the condition

lt∑
i=1

gijtk = 1 (1)

must be fulfilled for all j and k. The transition probability from node k of the stage t− 1 to node i of stage t is
obtained as

ρitk =

∑Lt

j=1 g
ij
tk

Lt
, k = 1, . . . , lt−1, i = 1, . . . , lt (2)

It follows from (1) and (2) that
∑lt

i=1 ρ
i
tk = 1 for any k = 1, . . . , lt−1.

The objective function of the optimization problem, similar to [Heitsch & Romisch, 2003], is a sum of the
distances between the values of random variables relevant to the nodes of the stage t and realizations of the
random patterns that were produced by Monte-Carlo:

min
F i

t ,i=1,...,lt
gij
tk,k=1,...,lt−1,i=1,...,lt,j=1,...,Lt

lt−1∑
k=1

lt∑
i=1

Lt∑
j=1

gijtk(f
j
tk − F i

t )
T (f jtk − F i

t ) (3)

The problem includes the following constraints:

F i
t ≥ 0, gijtk ≥ 0, k = 1, . . . , lt−1, i = 1, . . . , lt, j = 1, . . . , Lt (4)

lt∑
i=1

gijtk = 1, k = 1, . . . , lt−1, j = 1, . . . , Lt (5)

ρitk =

∑Lt

j=1 g
ij
tk

Lt
, k = 1, . . . , lt−1, i = 1, . . . , lt (6)

lt∑
i=1

F i
t ρ

i
tk = F

k(frw)
t−1 , k = 1, . . . , lt−1 (7)
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Constraints (7) ensure a non-arbitrage condition on the scenario lattice: for each node, the expected values
of random variables at the next stage must be equal to their forward values in the node.

The objective function of the considered problem is non-convex. There are well-known methods of the
global extremum search in box-constraint optimization problems developed in [Evtushenko & Posypkin, 2013],
[Khamisov, 1999], [Strongin & Sergeyev, 2000]. In such methods, the objective function is approximated from
below by linear and quadratic functions on the elements of the feasible set partition. The feasible set of the
problem considered in the paper is determined by bilinear equality constraints and contains non-regular points.
The goal of this paper is to compare effectiveness of methods based on a consecutive solving of less complex
problems. The constraints structure of the problem allows us to explicitly define a starting feasible point.

Denote by X the set of feasible points (g, F ) for constraints of the problem (3) – (7). The problem is obviously
has a solution if the set {F : (g, F ) ∈ X} is bounded. This property is fulfilled in a number of cases, namely the
following lemma takes place.

Lemma 1: If for each point (g, F ) ∈ X the sum
∑Lt

j=1 g
ij
tk ≥ δ for some δ > 0, then X is bounded.

Proof: Assume that there exists the sequence {(g(n), F (n))} ⊂ X,n = 1, 2, . . ., for which ∥ F (n) ∥→ ∞, n→
∞. It follows from here that there exists an index m ∈ {1, 2, . . . , nx}, for which an element F i

t,m(n) → ∞ for

some i. From here and from (7) it follows that F k
t−1,m = ∞, that contradicts the meaning of the vector F k

t−1.
Obviously, the problem (3) – (7) is not convex. To solve it, two classes of algorithms are suggested. The first

one is based on separation of variables according to their power in the objective function. The second one is the
sequential quadratic programming (SQP) algorithm.

2.1 Variables Separation Algorithms

2.1.1 Algorithm 1.1

The problem is solved by a consecutive minimization of the objective function over the group of variables gijtk
that have a power of 1 in the objective function and F i

t that have a power of 2 afterwards.

A. Put Y = ∞

B. Get starting values for F i
t and gijtk

C. Solve the the problem (3) – (7) for the variables F i
t , i = 1, . . . , lt. (It is a quadratic problem with linear

constraints).

D. If the absolute value of the difference between Y and the objective function value is less than ε, then End.

E. Fix the obtained values of the variables F i
t , i = 1, . . . , lt.

F. Save the value of the objective function to the variable Y .

G. Solve the problem (3) – (7) for the variables gijtk, k = 1, . . . , lt−1, i = 1, . . . , lt, j = 1, . . . , Lt. (It is a linear
problem).

H. Fix the obtained values of the variables gijtk, k = 1, . . . , lt−1, i = 1, . . . , lt, j = 1, . . . , Lt.

I. Go to the item C.

2.1.2 Algorithm 1.2

The following algorithm is based on the representation of the problem (3) – (7) in a form of a parametric linear
problem

max
g

(−c(F ), g) (8)

g ≥ 0, A(F )g = b (9)

The idea of the algorithm is to consecutively update vector of parameters F based on the problem depen-
dency on this parameter. Along with this it is assumed that linear problems, presented below are feasible in a
neighborhood of the sought-for solution.
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A. Set the tolerance parameters ε, βmin > 0 for a stopping criteria. Put n = 0, get starting values
(g(n), F (n)) ∈ X. Set the initial shift value β(n).

B. For fixed F (n) solve the problem (3) – (7) as a linear problem over variables g. Fix f∗0 (F (n)) as an optimal
value of the objective function, and its corresponding optimal solution g(n+ 1), defined by the set F (n).

C. Define G(n) from the following rule:

Gi
t,m(1) = max(0, F i

t,m(n)− β(n)

lt−1∑
k=1

Lt∑
j=1

gijtk(n+ 1)(F i
t,m(n)− f jtk,m)), i = 1, 2, . . . , lt,m = 1, 2, . . . , nx.

D. Solve the problem (3) – (7) over g for the fixed set of variables G(n) instead of F (n). Fix f∗0 (G(n)) as an
optimal value of the objective function.

E. If f∗0 (G(n))− f∗0 (F (n)) < −ε, then put F (n+ 1) = G(n), n = n+ 1. Go to the item B.

F. If β(n) > βmin, then set β(n+ 1) = β(n) \ 2, F (n+ 1) = F (n), n = n+ 1. Go to the item B.

G. (g(n), F (n)) is the problem solution.

The issue of the feasibility of linear problems specified in Algorithm 1.2 can be reduced to the issue of the
stability of the linear program solution g∗, where (g∗, F ∗) is an optimal solution of the problem (3)–(7). The
following lemma takes place

Lemma 2: The problem (8) – (9) is stable in its solution g∗, if g∗ > 0, (g∗, F ∗) is the solution of the
problem (3) – (7), in which vectors F i

t are linearly independent.
Proof: The stability of the linear program in the solution g∗ is equivalent to the existence of such solutions

in a feasible region of primal and dual linear programs, in which all inequality constraints are strict and fulfilled,
provided that constraints matrix has a full rank. For a primal program such solution is g∗. The existence of such
solution for a dual program is obvious. From a linear independency of vectors F i

t if follows that the constraints
matrix has a full rank.

2.2 SQP Algorithm

The Algorithm described hereinafter belongs to the class of SQP algorithms. It implies solving an aux-
iliary quadratic program at each stage when choosing a descent direction. This class of algorithms
is implemented for Optimization and Variational Problems (look, for example [Izmailov & Solodov, 2014],
[Gould & Robinson, 2010 (1)] and [Gould & Robinson, 2010 (2)].

2.2.1 Algorithm 2

Denote by x a pair of (g, F ), by q(x) – expression
∑lt

i=1 g
ij
tk−1, by r(x) – expression 1

Lt

∑lt
i=1 F

i
t

∑Lt

j=1 g
ij
tk−F k

t−1.
The problem (3) – (7) can be equivalently rewritten

min
x
f0(x) = 0.5

lt−1∑
k=1

lt∑
i=1

Lt∑
j=1

gijtk||F
i
t − f jtk||

2 (10)

x ≥ 0, q(x) = 0, r(x) = 0 (11)

Here x ∈ Rlt−1·lt·Lt+nx·lt , q(x) ∈ Rlt−1·Lt , r(x) ∈ Rnx·lt−1

The problem (10) – (11) has a large dimensionality, the objective function and its constraints are not convex.
Besides that, constraints gradients are not linearly independent. The problem contains equation constraints
as well as equality constraints. SQP-algorithms for problems with equality constraints in which constraints
gradients are not linearly independent are presented in [Izmailov & Uskov, 2017].

The problem (10) – (11) can be solved iteratively by choosing the vector of descent sn = (sgn, s
F
n ) on the step

n, sgn ∈ Rlt−1·lt·Lt , sFn ∈ Rnx·lt which optimizes the following quadratic problem:

min
sn

[
(f

′

0(xn, sn) +
1

2
(Dsn, sn)

]
(12)
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q(xn) + (q′(xn), sn) = 0, r(xn) + (r′(xn), sn) = 0, xn + sn ≥ 0 (13)

where D is a positive-definite matrix.
The problem (12) – (13) is feasible under some assumptions. In particular, constraints gradients should be

linearly independent.
For the particular case the problem (12) – (13) can be rewritten as follows

min
sn

0.5 lt1∑
k=1

lt∑
i=1

Lt∑
j=1

sgijnk ||F
i
tn − f jtk||

2 +
lt∑

i=1

nx∑
m=1

sFi
nm

lt1∑
k=1

lt∑
i=1

(F i
tn,m − f jtk,m)gijtnk +

1

2
(Dsn, sn)

 (14)

gijtnk + sgijnk ≥ 0, k = 1, . . . , lt−1, i = 1, . . . , lt, j = 1, . . . , Lt (15)

F i
tn,m + sFi

nm ≥ 0, i = 1, . . . , lt,m = 1, . . . , nx (16)

lt∑
i=1

sgijnk = 1, k = 1, . . . , lt−1, j = 1, . . . , Lt (17)

1

Lt

Lt∑
j=1

gijtnk

lt∑
i=1

F i
tn,m − F k

t−1n,m +
1

Lt

Lt∑
j=1

lt∑
i=1

sgijnk F
i
tn,m +

1

Lt

lt∑
i=1

sFi
nm

Lt∑
j=1

gijtnk = 0, k = 1, . . . , lt−1,m = 1, . . . , nx

(18)
As mentioned above,the matrix D should be positive-definite. For example, D can be an identity matrix of a
corresponding dimension (lt−1 · lt · Lt + nx · lt × lt−1 · lt · Lt + nx · lt) or, alternatively, this can be a matrix of
second-order derivatives on each step:

D =

(
∂2f0
∂g2 (xn)

∂2f0
∂g∂F (xn)

∂2f0
∂F∂g (xn)

∂2f0
∂F 2 (xn)

)

where ∂2f0
∂g2 (xn) = 0, ∂2f0

∂F 2 (xn) = 1, ∂2f0
∂g∂F (xn) =

∂2f0
∂F∂g (xn) = F i

t,m − f jtk,m.

Another way to set D is to evaluate second-order derivatives only in the starting vector x0 = (g0, F0).
The Algorithm is the following.

A. Get a starting vector x0 = (g0, F0).

B. Solve the problem (12) – (13) and obtain the vectors sn = (sgn, s
F
n ) and yn = (yqn, yrn) of optimal and dual

solutions correspondingly, where n is the index of the current step

C. Until φ(xn + βsn+1) ≤ φ(xn) +
1
2β ((f

′
0(xn), sn+1)−Gψ(xn))

do β := 1
2β,

where φ(x) = f0(x) +Gψ(x),

ψ(x) =
∑nx·lt−1

i=1 |ri(x)|+
∑

min(0, x),
G = maxi |yni|+ a, a > 0 is a penalty parameter,
min(0, x) is a component-wise minimum of vector x.

D. If β is less than ε, then End.

E. Obtain new values of vector x as xn+1 := xn + βsn+1

F. Go to the item B

2.3 Scenario Lattice Construction Algorithm

The algorithm of the scenario lattice constructing is the following. We suppose that the principal component
analysis has been produced and all selected principal components are presented by the according ARIMA-
GARCH models. Denote by vjtk the vector of the parameters of the ARIMA-GARCH model with the vector of

forward prices f jtk. Further we will address the vectors vjtk and f jtk as “a k, j - pattern at the stage t”. For the
construction of this algorithm put l0 = 1 also.
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A. Assign the current values of the forward prices to the vector F 1
1 and the current parameters of ARIMA-

GARCH models to the vector v11,1 which form 1,1-pattern at the stage 1 of the scenario lattice.

B. Construct the degenerated probability distribution of the patterns at the first stage pnt−1,m = 1,m = 1, n = 1.

C. t := 2

D. k := 1

E. For j = 1, . . . , Lt Do:
Select one from the vectors vnt−1,m,m = 1, . . . , lt−2, n = 1, . . . , Lt−1 per the probability distribution
pnt−1,m,m = 1, . . . , lt−2, n = 1, . . . , Lt−1. Using this vector generate one k, j-pattern for the stage t by
Monte-Carlo method.

F. If k < lt−1 then k := k + 1 and go to the item E.

G. Solve problem (3) – (7) using Algorithms presented above. Assign forward and futures prices F i
t , i = 1, , lt

to the according nodes of the stage t.

H. Calculate transition probabilities ρitk, k = 1, . . . , lt−1, i = 1, . . . , lt using formula (2).

I. If t < T then t := t+ 1, else End.

J. Construct the distribution pnt−1,m =
∑lt−2

k=1 gmn
t−1,k

lt−1×Lt−1
,m = 1, . . . , lt−1, n = 1, . . . , Lt−1. Go to the item D.

3 Empirical Results

Table 1: Comparison of the algorithms

Parameter Set 1 Set 2
Number of stages, T 1 3
Vector dimensionality, nx 5 5
Number of nodes at each stage, lt, lt−1 6 6
Number of simulations at each stage, Lt 50 50
Value of objective function in the last node, Algorithm 1.1 3.84 6324138.50
Value of objective function in the last node, Algorithm 1.2 2711.96 44598540.30
Value of objective function in the last node, Algorithm 2 1042820.69 2088855976.00
Time consumed (seconds), Algorithm 1.1 45.05 2067.00
Time consumed (seconds), Algorithm 1.2 47.70 896.83
Time consumed (seconds), Algorithm 2 33.90 117.44
Total number of iterations, Algorithm 1.1 422 1211
Total number of iterations, Algorithm 1.2 275 699
Total number of iterations, Algorithm 2 23 32

As an empirical example, the joint dynamic of 5 variables was examined. The first variable represents a
spot exchange rate for the currencies USD and RUB, while others are interest rates of different maturities in
Russia and the United States. Principal component analysis (PCA) was applied to these variables to construct 5
independent time series. After that ARIMA-GARCH model parameters were estimated for each time series and
all principal components were simulated. This allowed to produce, after using the factor loadings matrix, the set
of Monte-Carlo realizations of the original variables. Then the scenario lattice was constructed using Algorithms
presented in Section 2. The results of the study are presented in the table 1.

As it can be seen from the presented table, the SQP algorithm despite being the most time-efficient in all
cases gives the worst approximation of optimal solution. Among algorithms that use variables separation the one
based on consecutive optimization over each group of variables is preferable. It should be also mentioned, that
after completing of both Algorithm 1.1 and Algorithm 1.2 its solutions were utilized as a starting value for SQP
algorithm. The latter one has not improved the value of objective function which means that obtained solutions
represent stationary points of the objective function.
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