
Comparison of the Hybrid and Lemke-Howson Methods

for Solving Bimatrix Games

Evgeny G. Golshteyn Ustav Kh. Malkov Nikolay A. Sokolov

Central Economics and Mathematics Institute RAS
Nachimovky prospect 47,
117418 Moscow, Russia.

golshtn@cemi.rssi.ru, ustav-malkov@yandex.ru, sokolov@cemi.rssi.ru

Abstract

There exists a well-known efficient method for solving bimatrix games,
namely, the Lemke–Howson method (LH). The proposed Hybrid
method using a 2LP algorithm first obtains a point with a small Nash
criterion value. Then it transforms this point to a starting point for
the LH method. The numerical results of solving bimatrix games of
the dimension up to 5000 are also presented.

The paper addresses the classical problem of the game theory: bimatrix games [Osborne, 2004]. After nec-
essary preliminaries the 2LP method for solving bimatrix games, well known Lemke–Howson (LH) method
[Lemke & Howson, 1964], its derivative algorithms (LH1 and LH2), and Hybrid method are described. The Hy-
brid method (with its steps 2LP, LH1 and LH2) was proposed as an alternative to the method of Lemke–Howson
for finding Nash equilibrium. The second half of the paper is devoted to numerical comparison of these meth-
ods. At the conference OPTIMA-2013 [Golshtein et al., 2013] we presented the results of studies of an effective
numerical method for finding approximate solutions of bimatrix games (2LP).

1 Bimatrix Games

Consider a bimatrix game Γ, where the players 1 and 2 operate with m and n strategies, respectively. Let
A = (aij) and B = (bij) be the (m × n)-matrices that determine the payoffs obtained by player 1 and 2 when
the former uses strategy i (1 6 i 6 m) and the latter j (1 6 j 6 n), respectively.

The bimatrix game Γ in mixed strategies is defined with the aid of the above-mentioned matrices A and B as
well as the strategy sets

X = {x = (x1, . . . , xm) ∈ Em
+ , xTem = 1}, Y = {y = (y1, . . . , yn) ∈ En

+, yTen = 1}, (1)

and the players’ payoff functions
f1(x, y) = xTAy, f2(x, y) = xTBy, (2)

defined on the compact subset Z = X × Y of the Euclidean space E = Em × En. Here and onward, for any
l > 0, the subset El

+ is the nonnegative orthant of the space El, the vector el has all its components equal to 1.
Since the payoff functions fi(x, y) (i = 1, 2) are bilinear, the game Γ is convex, hence the set of its Nash points
Z∗ is nonempty (but not necessarily convex). The definition of convex games and their properties can be found
in [Osborne, 2004].

Copyright c⃝ by the paper’s authors. Copying permitted for private and academic purposes.

In: Yu. G. Evtushenko, M. Yu. Khachay, O. V. Khamisov, Yu. A. Kochetov, V.U. Malkova, M.A. Posypkin (eds.): Proceedings of
the OPTIMA-2017 Conference, Petrovac, Montenegro, 02-Oct-2017, published at http://ceur-ws.org

224



2 Nash Function

For the game Γ, one can introduce the standard (unnormed) Nash function as follows

F (z) = max
x∈X

f1(x, y)− f1(z) + max
y∈Y

f2(x, y)− f2(z), z ∈ Z. (3)

Firstly such a function was introduced by H. Mills [Mills, 1960]. The inequality F (z) > 0 is true for all z =
(x, y) ∈ Z. Moreover, F (z) = 0 if, and only if z is a Nash equilibrium or point of the game Γ. Therefore, the
set of global minimum points of the function F = F (z) on Z coincides with the set Z∗ of the Nash points of
the game Γ, with the global minimum value 0. In other words, solving the game Γ is tantamount to finding the
global minimum of the function F = F (z) over the subset Z, and the value of F (z) can be treated as a natural
measure of deviation of the point z from the set Z∗.

3 2LP-Method for Solving Bimatrix Games

The idea of consecutive solution of the LPs (see (4),(5) below) followed from the initial bilinear problem was
firstly introduced by H.Konno [Konno, 1976]. For bimatrix games this idea was used by B.M.Mukhamediev
[Mukhamediev, 1978] , A.V.Orlov and A. S. Strekalovsky [Orlov & Strekalovsky, 2005] and E.G.Golshtein et al.
[Golshtein et al., 2013]. Even though the problem of minimization of the function F (z) with respect to z ∈ Z
is extremely difficult because this function has a lot of local minima distinct from the global one, it is easy to
reduce its (partial) minimization with respect to, e.g., the variable x (as part of the global variable z = (x, y))
while the other part (the variable y) is fixed, to a linear program. (The same is true if one decides to minimize
F with respect to y with the first strategy x fixed.)

Indeed, let us fix the vector y (strategy of player 2) with values y = y′ = (y′1, . . . , y
′
n) ∈ Y and consider the

following linear programming problem P1(y
′) with m+n+1 variables (x, v, α), where v = (v1, . . . , vn) is a vector

of auxiliary variables, and with n+ 1 equality constraints:

−xT(A+B)y′ + α → min, xTB + v = α, xTem = 1, x ∈ Em
+ , v ∈ En

+, α ∈ E1. (4)

Denote as x∗ = x∗(y′) the first m components of an optimal solution of problem (4), then F (x∗, y′) 6 F (x′, y′)
for every x′ ∈ X.

Similarly, having fixed the first strategy x with some values x = x′ ∈ X, one can introduce the linear program
P2(x

′) with n +m + 1 variables (y, u, β) (where u = (u1, . . . , um) is a vector of auxiliary variables) and m + 1
equality constraints:

−(x′)T(A+B)y + β → min, Ay + v = β, yTen = 1, y ∈ En
+, u ∈ Em

+ , β ∈ E1. (5)

Again, if y∗ = y∗(x′) is the vector of the first n components of an optimal plan of problem P2(x
′), then clearly

F (x′, y∗) 6 F (x′, y′) for an arbitrary vector y′ ∈ Y .

Now starting with an arbitrary initial strategy y0 ∈ Y of player 2, let us generate the sequence of iterations
{zt} = {(xt, yt)}, t > 1, as follows: xt+1 is a solution of P1(y

t), while yt+1 solves problem P2(x
t+1), t = 0, 1, 2, . . .

It is evident the inequality F (zt+1) 6 F (zt) holds for all t > 1.

Let T be the maximum permitted number of iterations (pairs of tasks (4)-(5)), εf > 0 and εF > 0 be
small numbers, S be the set of pure starting strategies. For any z ∈ S define t(z) = min{t ∈ {1, . . . , T}:
F (zt)− F (zt−1) 6 εf}; We put t(z) = T at the failure of the inequality for all t. Denoting Q(z) = F (zt(z)), we
have Q(S) = minz∈S Q(z) the lowest value that can be obtained. The game is approximately solved at the point
z with accuracy εF if F (z) 6 εF . If Q(S) > εF we believe that the solution to the game not found.

4 The Lemke-Howson Algorithm for Solving Bimatrix Games

The LH-algorithm replaces the solution of a bimatrix game by the search of a solution of the system of linear
equations in a linear complementarity problem related to the game. By making the following change of variables
x := x/α, y := y/β in the system (4)–(5), we obtain the system of linear equalities and inequalities (call it the
LH-problem):

Ay + u = em, xTB + v = en, x, u ∈ Em
+ , y, v ∈ En

+, (6)

225



lacking the equalities xTem = 1, yTen = 1. Introduce the notation

H =

(
Om A

BT On

)
,

z = (z1, . . . , zm+n) ≡ (x, y),

w = (w1, . . . , wm+n) ≡ (u, v),

e ≡ em+n, E = diag (e),

o = (0, 0, . . . , 0) ∈ Em+n,
,

where Om and On are the square null matrices of dimension m and n, respectively; E is the unit matrix of
dimension m+n, and thus yield the linear complementarity problem: Find a nonnegative (z, w ∈ Em+n

+ ) solution
of the linear system

Hz + Ew = e, (7)

such that ziwi = 0 for each 1 6 i 6 m + n (complementarity conditions). Denote by ∆(z, w) the number of

complementarity conditions broken at the point (z, w) ∈ E
2(m+n)
+ . We will say that a solution (z, w) of system

(7) satisfies almost all complementarity conditions if ziwi ̸= 0 for only one index i, 1 6 i 6 m+ n.
The initial basis of the LH-problem is composed of all slack variables w. The latter satisfies the complemen-

tarity conditions, however, z = o, which means that the equalities xTem = 1, yTen = 1 don’t hold. By having
introduced into the basis one of the structural variables (say, z1) and violated therewith one of the complemen-
tarity conditions, the LH-method starts from the initial point (z1, w1) and makes further steps (iterations) of
the simplex-method-type until the broken complementarity condition becomes true. The generated sequence of
vertices (satisfying almost all complementarity conditions) forms the so-called Lemke path running the feasible
bases of system (7). After several iterations of the LH-method, the structural variables x and y will boast
various non-zero entries. One can make the inverse transformation of the variables back to their original form
and continue the Lemke steps by pivoting the bases of the initial problem taking into account the constraints
xTem = 1, yTen = 1. In this manner, we exclude the possibility of returning to the initial point z = o.

The algorithm stops if either it has run into a previously generated point (that is, a loop has been closed)
or the current point satisfies all complementarity conditions, i.e., it solves the linear system. As a rule (but not
always) the algorithm finds an exact solution of system (7), hence, it solves the game Γ. In order to come back
to the original variables, one must normalize the just obtained solution of the system as follows: x := x/(xTem),
y; = y/(yTen).

The LH-method (as well as its derivative algorithms LH1 and LH2) as steps of Hybrid algorithm is founded
on the LH-procedure that generates a sequence of pivoted bases under the principal rule: the leaving variable
is selected so that the other basic variables keep having nonnegative values, and the entering variable is either
zk or wk (1 6 k 6 n+m), which is complementary to the leaving variable (that is, wk or zk, respectively).

Thus, the LH-procedure determines the Lemke path uniquely after the starting structural variable has been
selected to introduce into the initial basis. The pitfalls of the LH-method are, on the one hand, a possibility
of loops (returns to the initial point), and on the other hand, a forbiddingly large number of iterations. If no
solution has been found for the selection of z = z1 as the initial point, we start the method again with the initial
z = z2, and so on. The game is considered as unsolved if no solution is found after all the initial points zi,
i = 1, . . . , n+m, have been tried.

5 The LH1-Algorithm with a “Hot Start”

We say that a point z = (x, y) ∈ Em+n approximately solves the bimatrix game Γ, whenever F (z) 6 εF and
∆(z, w) 6 1 (recall that ∆(z, w) = 0 at the exact solution of Γ). Next, we say that a point z = (x, y) is promising
if ε<F (z) 6 F and 1 6 ∆(z, w) 6 ∆, where εF , F , and ∆ are some preliminary selected parameters.

Let z be a promising starting point for the game Γ. With the former, we start the LH-method’s version
that finds the solution (Nash point) with a lower number of broken complementarity conditions. This version is
named as the LH1-algorithm.

In contrast to the “classical” LH-method where the unit matrix determines the initial basis and the comple-
mentarity condition ∆(z, w) = 0 holds for z = o, w = e, in the LH1-algorithm, ∆(z, w) = k > 0, i. e., the initial
basis comprises (in an arbitrary order) 2k basic variables zi, wi, i = i1, . . . , ik (called “offenders”), for which
ziwi > 0. At the same time, there are 2k nonbasic variables (“candidates” for entering the basis) such that
zj = wj = 0, j = j1, . . . , jk. In order to diminish the number of broken complementarity conditions, some of the
candidate variables are to enter the basis to replace the offenders.

An initial basis of an LH-problem for a “hot start” is combined from the bases (without variables α and β)
for problems (4) and (5), obtained by the 2LP-method, what we use as first step of Hybrid algorithm.

226



We try to introduce all the candidate variables one by one instead of the offenders. If we have managed to
do that with success and all the complementarity conditions have been satisfied, then the LH-problem (6) has
been solved. Otherwise, that is, when entering a candidate variable into the basis, the leaving basic variable
doesn’t break the corresponding complementarity condition (i.e., it isn’t an offender), then we again use the
LH-procedure and introduce the variable complementary to the variable that has just left the basis. We repeat
these operations until either the offender has been expelled from the basis and ∆0 has dropped, or the number
of those attempts has reached the upper limit of I(m+ n), where the constant I has been preliminary selected.
It is also possible that a loop closes before the upper limit has been achieved: in this case, we simply switch to
the next candidate variable without changing the value of ∆.

In our test numerical experiments, in the majority of the considered examples, the proposed algorithm did
manage to exclude from the basis one variable from each pair of offenders, that is, all the broken complementarity
conditions were successfully repaired. If there was left broken complementary conditions we go to step 6 as third
step of Hybrid algorithm.

6 The LH2-Algorithm with a Supplementary Column

If the LH1-algorithm has failed with excluding all offenders from the basis, we will try to do that with the aid
of a so-called supplementary column.

First, we will forcefully replace one of the variables in each offending pair by a candidate variable from the
list of candidate pairs with the aim of repairing the k broken complementarity conditions that the LH1-method
has failed to remove. Let kx > 0 and ky > 0 be the numbers of the invalid complementarity conditions related
to the variables x and y, respectively.

If kx > 0 then among all possible k2x candidates for entering the basis we select the variable that maximizes
the minimum negative value of the current basic variables among such negative basic values that must appear
after the forceful change of the basis. Now we update kx by subtracting 1 and repeat the procedure until we
reach kx = 0. The similar actions are undertaken towards ky > 0.

Having selected the next candidate variable, decompose the corresponding column with respect to the current
basis. Among the coefficients of this decomposition, find those belonging to the positions related to the offenders.
Detect the maximum (or large enough) absolute value among the just selected coefficients and introduce the
candidate variable exactly in this position.

A supplementary column should be generated in such a way that as a result of having introduced it into the
basis, all the negative values of the basic variables disappear. In order to do that, we compose the supplementary
column as a sum of the columns that correspond to the variables having negative values in the current basic
solution. This new column multiplied by the minimum negative weight (that is, having the maximum absolute
value among the above mentioned negative values) is introduced into the basis and occupies the position corre-
sponding to the same basic variable with the most negative value. It is easy to check that after that, all basic
variables will acquire positive values, while the variable related to the supplementary column will get the value 1.

Next, we begin the LH-procedure starting from the variable complementary to the variable that has left the
basis when introducing into it the supplementary column. We repeat the steps of the LH-procedure until either
the supplementary column leaves the basis (that is, a Nash point has been obtained), or the number of iterations
exceeds the upper limit.

7 The Hybrid Method (Hyb-Algorithm) for Solving Bimatrix Games

Now that all the necessary parts (the 2LP-method, LH1- , and LH2-algorithms) have been described we are in a
position to present our Hyb-Algorithm for solving bimatrix games as a solid alternative to the LH-method and
even as a possible tool for finding a solution to the game when the LH-method fails.

1. 1.
⇑ ⇑ Scheme

0. ⇒ 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ stop of hybrid
⇓ ⇓ algorithm
stop stop

Step 0. Define the start point, for example, the pure strategy y1 = 1, yi = 0, i = 2, n.
Step 1. Going through the set of initial points (pure strategies) look for a prospective starting point

(F (x, y) 6 εF ) by an 2LP algorithm, otherwise use a new start (pure strategy) point. If the set of starting points
has exhausted, the game Γ is reported as unsolved.

227



Step 2. Collect the basis of LH problem by making use of the solution obtained by the 2LP-algorithm.
Detect the broken complementarity conditions and list the offenders (the basic variables in broken complementary
conditions) and candidates (the pairs of nonbasic variables related by the complementary conditions).

Step 3. (Key) Attempt to remove the broken complementary conditions by introducing one candidate from
each pair as starting points into the basis in LH (LH1) method with “hot start”. If in the end, all the offenders
have been excluded from the basis, a Nash point has been obtained and the game solved. Otherwise, go to Step
4 to generate a supplementary column.

Step 4. It will get a equilibrium point by using the supplementary column if step 3 fails. In all pairs offenders
will forced replace one of them by one of the candidates. In the obtained solution will be negative values. An
supplementary column is collected as the sum of columns that correspond to variables with negative values in
the basic solution. This column is used as starting point for LH (LH2) method with “hot start”.

If the solution was not obtained through steps 1, 3 or 5, repeat from 1 step.

8 Numerical Experiments

The tested algorithms (2LP, LH, and Hyb) were coded and implemented with the software MATLAB 7.14.0.739
R2012a. The linear subprograms were solved by the procedure of cplexlp from the IBM ILOG CPLEX 12.6.2,
which is much more efficient than the procedure linprog of MATLAB. The personal computer IntelCore i5-
2400CPU (3.1GHz), 4GbRAM was used for the computation in the majority of cases.

The algorithms were tested and their efficiency was compared mainly on the base of a family of bimatrix games
containing 15 series of medium-size games with the parameters m,n ∈ {20, 40, 60, 80, 100}, m 6 n. For each
series, R = 100 of problems were initially generated. The main parameters of the algorithm(s) (if not specified
otherwise) are as follows: S = m, εF = 10−4, F = 0.01, I = ∆ = 5, I = 1.

With the purpose of saving the efforts and running time, the ordered set X0 = {e1m, . . . , emm} of pure strategies
of player 1 was selected as the set of possible starting points. Here, eim is the standard unit vector of the space
Em having all entries zero except entry i, which is 1.

The matrices A = (aij) and B = (bij) were generated in two stages. First, the entries a′ij and b′ij were
generated independently by the MATLAB generator of pseudo-random numbers uniformly distributed in the
interval (0, 1). After that, we applied the transformation aij = a′ij +φb′ij , bij = b′ij +φa′ij , 1 6 i 6 m, 1 6 j 6 n,
where φ is the coefficient of the matrix mutual interdependency, 0 6 φ 6 1. The latter transformation implies
that the entries of both matrices lie within the range of (0, 1 + φ).

The numerical experiments investigated the performance and compared the efficiency of the algorithms 2LP,
LH, and Hyb when solving bimatrix games. We also examined whether it was possible, starting with the 2LP
method, to obtain such a starting point for the LH-algorithm that would help find an exact solution of the game
with a save on the computational efforts (iterations, running time, etc.).

The numerical and testing results are given in the three tables below, where, in Tables 1–2, for the reader’s
convenience, the results are shown for 5 series of games, while the lines Sum provides the numbers obtained by
summing up over all the series of games.

The games having solutions in pure strategies needn’t be solved by the LH and Hybrid methods; Since
analyzing preliminary payoff matrixes we can simply establish whether the game has Nash equilibrium in pure
strategies.

Table 1 accumulates the testing results obtained for the family of 1500 games treated by the LH-method for
three values of the matrix mutual interdependency parameter (φ ∈ {0; 0.1; 0.2}). The notation of Table 1 means:
m,n are the game’s dimension parameters; the parameter I determines the upper limit (equal to I (m + n)) of
iterations allowed in the LH-algorithm;kPS is the number of games having solutions in pure strategies kLH is the
number of games solved by the LH-algorithm; kNO is the number of games on which the LH-algorithm failed.
To resume, kPS + kLH + kNO = 100; In addition, for each unsolved game, the total number of tested starting
points was m and the total number of iterations for every starting point didn’t exceed I(m + n); the value of
Ssum equals the total number of starting points tested, JLH is the total number of simplex-type iterations, Time
is the running time (in seconds) that the LH-method spent to find the solution, Smax is the maximum number
of the starting points tested when solving one (solved) game.

Analysis of the data from Table 1 allows one to make the following conclusions.

1. Generation of the independent matrices A and B gets 935 games solvable in the pure strategies. Therefore,
when φ = 0 one needs to solve only 565 games. For φ = 0.1 we had to solve 1477 games, for φ = 0.2 we treated

228



1496 games. For φ 6 0.1, ALL the games from the family were solved by the LH-algorithm, while for φ = 0.2,
the LH-method failed on 25 games of the total of 1500.

2. The value of the parameter I determining the maximum allowed number of iterations when solving a game
seriously affects the efficiency of the LH-method. When selecting an appropriate value for this parameter I, one
should take into account the value of φ as well as the dimension of the solved problem. For our test examples,
the following values proved to be well-suited (but not necessarily optimal): I = 0.5 for φ = 0 and I = 5 for φ
either 0.1 or 0.2.

Our test computations have proven that it makes sense to classify the initial points zi, i = 1, . . . ,m + n, by
trying to produce no more than I(n+m) iterations with each one, where 0.01 < I 6 5. As one can see from the
numerical results given below, the efficiency of the algorithm vitally depends on the constant value of I, which
is desirable to select particularly for each game.

Table 1: Solution Results Obtained by the LH-algorithm Tested on 100 Games for Various Values of φ

φ I Num Sizes Result Total amount Time

m = n kPS kLH kNO Ssum Smax JLH sec

1 20 63 37 0 68 6 1047 1
2 40 61 39 0 87 8 2704 5

0 0,5 3 60 67 33 0 115 23 5837 10
4 80 65 35 0 99 10 6125 13
5 100 56 44 0 142 10 11242 25

Sum 935 565 0 1364 — 66723 129

1 20 12 88 0 88 1 3829 3
2 40 0 100 0 140 8 28901 29

0.1 5 3 60 0 100 0 218 9 96196 124
4 80 0 100 0 345 18 232845 377
5 100 0 100 0 525 22 473061 935

Sum 23 1477 0 3210 — 1744759 2894

1 20 4 96 0 97 2 5521 4
2 40 0 100 0 158 9 42513 171

0.2 5 3 60 0 100 0 510 25 279997 349
4 80 0 100 0 1358 61 1050087 1656
5 100 0 84 16 4075 100 4039640 7782

Sum 4 1473 25 11860 — 9487817 16705

Table 2 presents the test results for solving the same family of 1500 games with the aid of the Hyb-algorithm
for the same three distinct value of the matrix interdependence parameter φ ∈ {0; 0.1; 0.2}. The following
notation is accepted: m,n are the game’s dimension parameters;where kPS is the number of games solvable in
the pure strategies, such games needn’t the Hyb-method to solve them; k2LP, kLH1, kLH2 are the numbers of the
games solved by the 2LP-, LH1-, and LH2-methods; kNO the number of the games on which the Hyb-algorithm
failed. Therefore, kPS + k2LP + kLH1 + kLH2 + kNO = 100; We also denote by Ssum the total number of the
used starting points, SHyb is the total number of the promising starting points used, J2LP is the total number of
iterations (i.e., the pairs of solved linear programs), performed by the 2LP-algorithm, JLH = JLH1 + JLH2 sums
the total numbers of iterations performed by the algorithms LH1 and LH2, Time is the total running time (in
seconds) that the Hyb-method spent to solve the games in question.

Based upon the data from Table 2, the following conclusions can be drawn.
1. Just as the LH-method, the Hyb-algorithm needed to be applied to only 565 games when φ = 0, to 1477

games for φ = 0.1, and to 1496 games when φ = 0.2. For φ 6 0.1, the Hyb-algorithm solved all the games from
the tested list, for φ = 0.2 it failed in 60 games from 1500, which is 2,6 times more than happened to the pure
LH-method.

2. Each series of games admitted all three solution modes: for φ = 0 there occurred k2LP = 187, kLH1 = 313,

229



Table 2: The Results Shown by the Hyb-Algorithms When Solving the Test Games for Various Values of φ

φ Num Sizes Result Total amount Time

m = n kPS k2LP kLH1 kLH2 kNO Ssum SHyb J2LP JLH sec

1 20 63 18 16 3 0 69 53 222 4607 47
2 40 61 12 22 5 0 86 73 310 10648 72

0 3 60 67 9 18 6 0 86 80 293 12937 78
4 80 65 14 17 4 0 82 80 302 15192 80
5 100 56 11 25 8 0 118 114 431 22045 119

Sum 935 187 313 65 0 1282 1154 4665 187650 1175

1 20 12 33 41 14 0 171 132 585 13973 120
2 40 0 36 43 21 0 337 260 1355 54860 300

0.1 3 60 0 25 51 24 0 508 406 2298 120700 529
4 80 0 30 56 14 0 787 599 3752 238982 953
5 100 0 25 49 26 0 939 644 4727 338795 1196

Sum 23 429 760 288 0 7440 5687 33794 1910344 8923

1 20 4 21 49 26 0 264 177 1014 28583 204
2 40 0 34 44 22 0 629 436 3040 149248 658

0.2 3 60 0 26 47 26 1 1723 988 9288 624208 2115
4 80 0 30 49 14 7 2327 1059 13842 1157629 3235
5 100 0 33 42 12 13 3988 1451 25706 2563992 6166

Sum 4 387 717 332 60 20960 10625 120343 9504944 28147

kLH2 = 65; for φ = 0.1 there happened k2LP = 429, kLH1 = 760, kLH2 = 288; for φ = 0.2 there appeared
k2LP = 387, kLH1 = 717, kLH2 = 332.

3. The average number S̃ of the used starting points for one solved problem for φ = 0; 0.1; 0.2 was, respectively,
2.3; 5; 14. As φ grows the ratio SHyb/Ssum of the promising starting points to the total number of the (used)
starting points drops as follows: (0.9; 0.8; 0.5). The total running time needed to solve all tested games prove to
be 20, 138, and 469, respectively.

Table 3 provides the numerical results obtained by the LH- and Hyb-algorithms when solving several bimatrix
games of a large size. Here, the following notation is used: the parameter I determines the upper bound (equal
to I(m + n)) for the number of iterations allowed to produce by the LH-algorithm; m,n define the size of the
bimatrix game; ϱ is the number of the games in the serie, while kNO denotes the number of unsolved games in
the series in question. Ssum gives the total number of the used starting points, Jsum is the total number of the
simplex-type iterations conducted, and Time denotes the aggregate running time (in seconds).

Having analyzed the data of Table 3, we come to the following conclusions.

1. Once again, the results have shown that a lucky choice of the parameter I greatly affects the velocity of
the LH-algorithm. For instance, when solving the 400 × 800 game, for the value of I = 500 (that is, the upper
bound of iterations equalling I(m + n) = 600000) the totality of iterations (substitutions of the basis) resulted
in 4× 600000+ 221 = 2400221, whereas for I = 0, 25 only 4× 0, 25(400+ 800)+ 221 (iterations on the 5-th start
point) u = 1421 were made.

In both cases, the final result was achieved after the fifth starting point has been employed and altogether 221
iterations has been made, but the difference in the running time was enormous. However, the Hyb-algorithm
made use of only three starting points, and the final solution was obtained by the LH1-procedure, after 1464
iterations performed for 17 seconds.

2. When applied to the two games listed in Table 3 with the dimensions 400× 800 and 500× 500, both with
the value of φ = 0.1, the LH-algorithm failed for various values of the parameter I. At the same time, these
games were solved successfully with the Hyb-method: the game of the size 400 × 800 was solved after having
checked 208 starting points and conducted 381653 iterations for1382 seconds; the solution of other game of the

230



Table 3: Comparison of the Results Obtained by the LH- and Hyb-Algorithms Solving Big-Sized Bimatrix Games

Num Sizes ϱ φ Method Result Time

m n LH or Hyb I kNO Ssum Jsum sec

1 400 800 1 0 LH 500 0 5 2400221 6051
400 800 1 0 LH 0.25 0 5 1421 19
400 800 1 0 Hyb – 0 3 1468 17

2 400 800 1 0.1 LH 50 1 400 4800000 4831
400 800 1 0.1 Hyb – 0 208 381653 1382

3 500 500 1 0.1 LH 10 1 500 5000000 45727
500 500 1 0.1 Hyb – 0 39 74978 179

4 3000 3000 39 0 LH 0.01 0 6004 358826 19374
3000 3000 39 0 Hyb – 0 328 485359 17238

5 5000 5000 5 0 LH 0.01 0 880 87732 13566
5000 5000 5 0 Hyb – 0 66 118317 27499

dimensions 500× 500 was similarly finished after having tried 39 starting points and applied 74978 iterations for
179 seconds.

3. Both algorithms efficiently solve the games with independent matrices at about the same computational
cost provided that the value of the parameter I has been appropriately selected. For instance, when solving
the problem of the size 3000 × 3000 the Hyb-algorithm made use of 328 starting points and performed 485359
iterations for 17238 seconds. The LH-method had to check 6004 starting points and perform 358826 iterations
for 19374 seconds, with the value of the parameter I = 0.01 (the upper bound for the number of iterations thus
being I (m+ n) = 60).

Figure 1: Two problems, unsolved by LH method, but solved with a hybrid algorithm.

You can see on Figure 1. the results of solving two problems (with interdependent matrices) by LH method
and the hybrid algorithm. LH method failed to solve these problems using all the initial points (400 and 500,
respectively). The hybrid algorithm got the solution of the first problem on the 208-th start point using the
additional column, and the second problem was solved on the 39th starting point on the local search step.

231



9 Conclusions

All the above presented leads to the following conclusion: The proposed Hyb-algorithm has proven to be compet-
itive as compared to the 2LP-method and LH-algorithm. Moreover, in some instances, the Hyb-method manages
to solve the games on which both the 2LP-method and LH-algorithm fail.

References

[Osborne, 2004] M.Osborne (2004). An Introduction to Game Theory. New York: OxfordUniversity Press.

[Mills, 1960] H.Mills (1960). Equilibrium points in finite games. Journal of the Society for Industrial and Applied
Mathematics, 8(2):397–402.

[Golshtein et al., 2013] E.G.Golshtein, U.Kh.Malkov, N.A. Sokolov (2013). A Numerical Method for Solving
Bimatrix Games (2LP). In Proceedings of OPTIMA’2013 (Petrovac, Montenegro September 22 - 28,
2013), p. 67

[Golshtein et al., 2013] E.G.Golshtein, U.Kh.Malkov, N.A. Sokolov (2013). A Numerical Method for Solving
Bimatrix Games. Economica i Matematicheskie Metody, 49(4):94–104 (In Russian).

[Konno, 1976] H.Konno, (1976). A cutting plane algorithm for solving bilinear programs. Mathematical Pro-
gramming, 11:14–27.

[Mukhamediev, 1978] B.M. Mukhamediev (1978). On solving bilinear programming problems and cutting off. All
equilibrium situations in bimatrix games. Zh. Vychisl. Mat. Mat. Fiz., 18:351–359 (in Russian).

[Orlov & Strekalovsky, 2005] A.V.Orlov, A. S. Strekalovsky, (2005). Numerical search for equilibria in bimatrix
games. Computational Mathematics and Mathematical Physics, 45:947–960.

[Lemke & Howson, 1964] C. E. Lemke, J. T.Howson, Jr. (1964). Equilibrium points of bimatrix games. Journal
of the Society for Industrial and Applied Mathematics, 12:778–780.

232


