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Abstract

The problem of maximizing a linear function with linear and quadratic
constraints is considered. The solution of the problem is obtained in a
constructive form using the Lagrange function and the optimality con-
ditions. Many optimization problems can be reduced to the problem of
this type. In this paper, as an application, the problems of maximizing
the profitability of an investment portfolio while limiting the variance
or the probability of negative return are solved.

1 Introduction

The problem of maximizing a linear function with linear and quadratic constraints is considered. Many op-
timization problems can be reduced to this type of problems. Improper and incorrect linear programming
problems represent an important class of such problems. In [Gorelik, 2001], the formalization of an improper
linear programming problem with an inconsistent system of constraints was proposed in the form of the problem
of minimizing the spectral or Euclidean norm of the initial data correction matrix with a lower bound on the
initial criterion, and its solution was found. If this problem is formalized as the problem of maximizing the
initial criterion with a restriction on the spectral or Euclidean norm of the correction matrix, then we obtain a
problem with a linear criterion and a quadratic constraint. If the improper problem of quadratic programming is
formalized in the form of minimizing some polyhedral norm of the initial data correction matrix with restriction
on the original criterion, we obtain an analogous problem. If regularizing an incorrect optimization problem
or an unstable system of linear equations and inequalities we introduce, instead of finding a normal solution
(see, for example, [Golikov, 2015]), constraints on the discrepancy or the generalized norm of the vector x, then
problems of the indicated type are also obtained. The linear problem of stochastic programming, which is usually
formalized in the form of maximizing the mathematical expectation of the objective function, provided that the
probability of the restriction fulfilling is not less than a given value, can also be reduced to a linearly-quadratic
problem under the assumption of a normal distribution of the initial parameters.

In this paper, we investigate a linear-quadratic problem and find its solution explicitly. As an application
of the results obtained, we consider the problem of maximizing of the investment portfolio profitability while
limiting its variance and the problem of maximizing its profitability with a restriction on the probability of
negative returns, which are concrete examples of a stochastic programming problem [Gorelik & Zolotova, 2016a],
[Gorelik & Zolotova, 2016b].
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2 Maximization of a Linear Function with Linear and Quadratic Constraints (Gen-
eral Case)

The mathematical formulation of the problem has the form

⟨c, x⟩ → max
x∈X

, X = {x| ⟨Dx, x⟩ ≤ d, Ax = b}. (1)

Here x ∈ En, c ∈ En, b ∈ Em are column vectors, ⟨.,.⟩ denotes the scalar product of vectors, D is a symmetric
positive definite matrix of a size n×n, A is a matrix of a size m×n. It is assumed that the set X is not empty.
This is the case if the system Ax=b is consistent and d ≥ d0, where

d0 = min
x∈X0

⟨Dx, x⟩, X0 = {x|Ax = b}. (2)

Let’s find d0, solving the auxiliary problem of quadratic programming (2).
We compose the Lagrange function L0(x, µ) = ⟨Dx, x⟩ + ⟨µ, b − Ax⟩, differentiate it with respect to x and

equate to zero the partial derivatives: Dx−ATµ = 0 (T – transpose sign). Since the matrix D is non-degenerate,
the inverse matrix D−1 exists. So we have x = D−1ATµ and from the restriction AD−1ATµ = b. Let’s introduce
the notation R = AD−1AT . The matrix R is symmetric and nonnegative definite. In what follows we assume
that R is non-degenerate. Then we obtain µ = R−1b and x = D−1ATR−1b. Substituting x in the objective
function (2), we have

d0 = ⟨ATR−1b,D−1ATR−1b⟩ = ⟨R−1b, AD−1ATR−1b⟩ = ⟨R−1b,RR−1b⟩ = ⟨R−1b, b⟩.

Let’s return to the main problem (1). We will assume that d > d0, since if d = d0, then the set X consists
of one point x = D−1ATR−1b and the problem (1) becomes trivial. For this problem the Lagrange function has
the form

L(x, λ, µ) = ⟨c, x⟩+ λ(d− ⟨Dx, x⟩) + ⟨µ, b−Ax⟩, λ ≥ 0.

The problem (1) is a convex programming problem that satisfies the Slater condition under the assumptions
made. Therefore, by the Kuhn-Tucker theorem, in order that x0 be a solution of (1), it is necessary and
sufficient that there exists such y0 = (λ0, µ0) that the pair (x0, y0) is a saddle point of the Lagrange function L.
To find the saddle point (x0, y0), we differentiate the function L with respect to x and equate the derivatives to
zero: c − 2λDx − µTA = 0. We assume that the restriction ⟨Dx, x⟩ ≤ d is essential, i.e. at the solution point
it is active (otherwise (1) is simply a linear programming problem), and the conditions of strict complementary
non-rigidity fulfill λ0 > 0. Then x = 1

2λD
−1(c− µTA). We substitute x into the constraints of problem (1):

Ax =
1

2λ
AD−1(c− µTA) = b,

⟨Dx, x⟩ = 1

2λ
(⟨c, x⟩ − ⟨µ,Ax⟩) = 1

2λ
(⟨c, x⟩ − ⟨µ, b⟩) = 1

4λ2
(⟨c,D−1(c− µTA)⟩ − 1

2λ
⟨µ, b⟩) = d.

We denote by r = AD−1c. From the first equality we have r − Rµ = 2λb, whence µ = R−1(r − 2λb). We
substitute µ into the second equality:

⟨D−1c, c⟩ − ⟨c,D−1ATR−1(r − 2λb)⟩ − 2λ⟨R−1(r − 2λb), b⟩ = 4λ2d,

and obtain a quadratic equation with respect to λ:

4(d− ⟨R−1b, b⟩)λ2 + 2λ(⟨R−1r, b⟩ − ⟨c,D−1ATR−1b)⟩)− ⟨D−1c, c⟩+ ⟨c,D−1ATR−1r⟩ = 0. (3)

By virtue of the transpose properties of the matrix product and the symmetry of the matrices R−1 and D−1

coefficient for λ in equation (3) is zero. Indeed,

⟨R−1r, b⟩ − ⟨c,D−1ATR−1b)⟩ = ⟨R−1AD−1c, b⟩ − ⟨c,D−1ATR−1b)⟩ =

= ⟨R−1AD−1c, b⟩ − ⟨(D−1ATR−1)T c, b)⟩ = ⟨R−1AD−1c, b⟩ − ⟨R−1AD−1c, b)⟩ = 0.

Then from (3) taking into account that λ0 > 0 (the negative value of λ0 corresponds to the minimum in
problem (1)), we obtain
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λ0 =
1

2

√
⟨D−1c, c⟩ − ⟨c,D−1ATR−1r⟩

d− ⟨R−1b, b⟩
. (4)

The denominator in expression (4) is positive, because d > d0 = ⟨R−1b, b⟩, therefore the conditions for the
essentiality of the quadratic restriction ⟨Dx, x⟩ ≤ d and the complementary non-rigidity are satisfied, if the
numerator in (4) is positive. Wherein

µ0 = R−1(r − 2λ0b), x0 =
1

2λ0
D−1(c−ATµ0).

3 Optimization of the Investment Portfolio by the Criterion of Expected Profitabil-
ity with Constraint on the Variance (a Special Case of the General Problem)

As an application of the results obtained, let us consider the problem of finding an optimal portfolio of securities
as a task for a maximum of the expected value of the portfolio’s profitability with the upper bound on its variance
(risk):

⟨c, x⟩ → max
x∈X

, X = {x| ⟨Dx, x⟩ ≤ d, ⟨x, e⟩ = 1}, (5)

where x is the vector of the shares of funds invested in various securities, c is the vector of expected returns of
securities, D is the covariance matrix (it is always nonnegative definite, we will consider it to be non-degenerate),
e = (1, . . . , 1)T . Here in the investment task, it is assumed that there are short sales (sales without coverage),
therefore in the problem (5) the condition of non-negativity x is absent. The problem (5) is a special case of
the problem (1), in which A=e, b=1 (if there are sector restrictions on the portfolio structure, we simply have
problem (1)).

The solution of problem (5) takes the form: R = ⟨e,D−1e⟩, r = ⟨e,D−1c⟩, d0 = R−1,

λ0 =
1

2

√
⟨D−1c, c⟩ −R−1r⟨c,D−1e⟩

d−R−1
=

1

2

√
R⟨D−1c, c⟩ − r⟨c,D−1e⟩

Rd− 1
.

Substituting the value of R, we have

λ0 =
1

2

√
⟨D−1e, e⟩ ⟨D−1c, c⟩ − ⟨c,D−1e⟩2

d⟨D−1e, e⟩ − 1
. (6)

Further, µ0 = R−1(r − 2λ0), x0 = 1
2λ0D

−1(c− eµ0) = 1
2λ0D

−1(c− eR−1(r − 2λ0)), whence

x0 =
D−1c⟨e,D−1e⟩ −D−1e⟨e,D−1c⟩

2λ0⟨e,D−1e⟩
+

D−1e

⟨e,D−1e⟩
. (7)

We calculate the maximum value of the objective function:

⟨c, x0⟩ = ⟨c,
(
D−1c⟨e,D−1e⟩ −D−1e⟨e,D−1c⟩

2λ0⟨e,D−1e⟩
+

D−1e

⟨e,D−1e⟩

)
⟩ = ⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2

2λ0⟨e,D−1e⟩
+

⟨c,D−1e⟩
⟨e,D−1e⟩

.

Substituting λ0, we have

⟨c, x0⟩ =
√
(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(d⟨e,D−1e⟩ − 1) + ⟨c,D−1e⟩

⟨e,D−1e⟩
(8)

4 The Problem of Maximizing the Expected Return of the Investment Portfo-
lio, while Limiting the Probability of Negative Returns (a Special Case of the
General Problem)

We define now the optimal portfolio as the solution of the problem for maximum of the mathematical expectation
of the portfolio return, provided that the probability of a negative random value of portfolio returns does not
exceed a given sufficiently small value ε:
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⟨c, x⟩ → max
x∈X

, X = {x| P (⟨r, x⟩ ≤ 0) ≤ ε, ⟨x, e⟩ = 1}, (9)

where r = (r1, ..., rn)
T is a vector of random values of returns, P – the probability of a negative value of

profitability (in principle, any required value of profitability can be taken). Note that problem (9) is a special
case of the linear stochastic programming problem, for which results analogous to those described below can
be obtained. We’ll show that the problem (9) can be reduced to the problem of convex programming, and
ultimately, to the solution of problem (5) for some choice of the parameter d.

Theorem. Let {ri} be a system of random variables, each of which is normally distributed, ci are their
mathematical expectations, D = (σij)n×n is a covariance matrix. Then the solution of problem (9) coincides
with the solution of the problem:

⟨c, x⟩ → max
x∈X

, X = {x| δ⟨c, x⟩2 ≥ ⟨Dx, x⟩, ⟨x, e⟩ = 1}, (10)

where δ = (Φ−1(1−2ε))−2, Φ(·) is Laplace function.
Proof. The random variable ⟨r, x⟩ is normally distributed with mathematical expectation m = ⟨c, x⟩ and

standard deviation σ = ⟨Dx, x⟩1/2, so

P (⟨r, x⟩ ≤ 0) =
1

σ
√
2π

∫ 0

−∞
e

−(t−m)2

2σ2 dt.

Using the Laplace function Φ(y) = 2√
2π

∫ y

0
e

−t2

2 dt, we get

P (⟨r, x⟩ ≤ 0) =
1

σ
√
2π

∫ 0

−∞
e

−(t−m)2

2σ2 dt =
1√
2π

∫ −m
σ

−∞
e

−z2

2 dz,

where z = t−m
σ or t = m+ σz. Further we have

P (⟨r, x⟩ ≤ 0) =
1√
2π

∫ 0

−∞
e

−z2

2 dz − 1√
2π

∫ m
σ

0

e
−z2

2 dz =
1

2
+ Φ(0)− Φ(

m

σ
) =

1

2
− 1

2
Φ(

m

σ
).

By condition of (9) 1
2 − 1

2Φ(
m
σ ) ≤ ε, so m

σ ≥ Φ−1(1− 2ε) or σ
m ≤ (Φ−1(1− 2ε))−1. We introduce the variable

δ = (Φ−1(1−2ε))−2 and have the problem of convex programming (10). The theorem is proved.
In problem (10) the restrictions do not coincide with the type of constraints of problem (1) (or (5)) and are

generally inconvenient for obtaining optimality conditions. Therefore, hereafter we reduce the problem (10) to
the problem (5), in which the parameter d is connected with the parameter δ.

If the quadratic constraint in problem (5) and the risk restriction in problem (10) are active at the optimal
point x0, then δ⟨c, x0⟩2 = ⟨Dx0, x0⟩ = d. In the previous section we have obtained the optimal value of the
objective function (8) in problem (5) for a given value of the parameter d. Using (8), we obtain the equation of
the relation between d and δ:

δ

(√
(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(d⟨e,D−1e⟩ − 1) + ⟨c,D−1e⟩

⟨e,D−1e⟩

)2

= d.

After a series of transformations, we obtain a quadratic equation for finding d for a given δ. Indeed, we will open
the expression in parentheses:

(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(d⟨e,D−1e⟩ − 1)+

+2⟨c,D−1e⟩
√
(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(d⟨e,D−1e⟩ − 1) + ⟨c,D−1e⟩2 = δ−1d⟨e,D−1e⟩2.

We transfer members without a root to the right-hand side and square both sides:

4⟨c,D−1e⟩2(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(d⟨D−1e, e⟩ − 1) =
= ((⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(1− d⟨D−1e, e⟩) + δ−1d⟨e,D−1e⟩2 − ⟨c,D−1e⟩2)2.
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In the right-hand side of the last equality, we group the terms for d:

4⟨c,D−1e⟩2(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2)(d⟨e,D−1e⟩ − 1) =
= (d(⟨c,D−1e⟩2 − ⟨e,D−1e⟩ ⟨c,D−1c⟩)⟨e,D−1e⟩+ δ−1⟨e,D−1e⟩2)− 2⟨c,D−1e⟩2 + ⟨c,D−1c⟩ ⟨e,D−1e⟩)2.

We expand the square on the right-hand side, transfer all the terms to the left-hand side and group the terms
for d2 and d. Introduce the notation

k1(δ) = (⟨c,D−1e⟩2⟨e,D−1e⟩ − ⟨e,D−1e⟩2⟨c,D−1c⟩+ δ−1⟨e,D−1e⟩2)2,

k2(δ) = −2⟨e,D−1e⟩3⟨c,D−1c⟩2 + 2δ−1⟨e,D−1e⟩3⟨c,D−1c⟩+
+2⟨c,D−1e⟩2⟨e,D−1e⟩2⟨c,D−1c⟩ − 4δ−1⟨e,D−1e⟩2⟨c,D−1e⟩2,

k3 = 4⟨c,D−1e⟩2(⟨c,D−1c⟩ ⟨e,D−1e⟩ − ⟨c,D−1e⟩2) + (2⟨c,D−1e⟩2 − ⟨c,D−1c⟩ ⟨e,D−1e⟩)2 =

= ⟨c,D−1c⟩2⟨e,D−1e⟩2.

Then the quadratic equation for finding d takes the form

k1(δ)d
2 + k2(δ)d+ k3 = 0. (11)

If there exists a real root of this equation and it satisfies the condition d > d0, then problem (10) has a
solution. We note that, although the Kuhn-Tucker conditions for the convex programming problem are necessary
and sufficient, in view of the transformations (squaring), equation (11) gives only a necessary condition for
determining d, so a side root may appear. If both roots of equation (11) turn out to be real and satisfy the
condition d > d0, then it is necessary to check which of them converts the quadratic constraint to the active one.
If a root does not convert this restriction into equality, and according to formula (6), the corresponding λ0>0,
then this root is discarded.

5 Determination of the Optimal Portfolios of Russian Companies Shares (Numer-
ical Calculations)

Example 1. Let’s find the solution of the problem (5) for the portfolio of shares of Aeroflot, MTS and Megafon.
The rate of return of shares of the companies under consideration were determined using daily closing prices of
trading sessions. For shares of these companies, using real statistics of the prices for the year, we obtain the
vector of mathematical expectations of returns r̄ = (0.967, 0.189, 0.327)T and the covariance matrix

K =

 0.65 0.466 −0.18
0.466 1.678 −0.189
−0.18 −0.189 0.379

 .

We calculate d0=0.149 and choose d=0.5>d0. We find by formula (6) λ0=0.68. Then by formula (7)
x0=(1.017, -0.315, 0.299)T . Note that the restriction in problem (5) at the optimal point is active, i.e. it is
satisfied as an equality.

Example 2. Suppose that in problem (9) ε = 0.1. Then 1− 2ε = 0.8 and the value of the inverse Laplace
function is Φ−1(1−2ε) = 1.282, and δ = (Φ−1(1−2ε))−2 = 0.609. We solve the quadratic equation (11) for finding
d and substituting it in the restriction of problem (5). In this case k1 = 1979.225, k2 = -2335.312, k3 = 309.957
and equation (11) gives two roots d1=1.027, d2=0.152. Both these roots satisfy condition d > d0 = 0.149.
Then for d1=1.027, using formulas (6) and (7), we obtain λ0=0.43, x10=(1.404, -0.533, 0.129)T . Note that the
constraints in problems (1) and (10) at the point x10 are active. For d2=0.152 by formulas (6) and (7) we obtain
λ0= 7.385, x2=(0.413, 0.023, 0.563)T . But the restriction δ⟨A, x2⟩2 ≥ ⟨Dx2, x2⟩ = d2 of the problem (10) at the
point x2 is not active (0.211 > 0.152); this case corresponds to λ = 0, therefore x2 cannot be a solution of the
problem (9). Thus, x10 is the optimal point in problem (9) (using the built-in optimization method of Mathcad
for problem (10) we get the same solution with high accuracy). Note that for ε=0.07435 we obtain d=0.5 as one
of the roots of equation (11) and have the same solution as in Example 1.
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6 Maximization of a Linear Function with Linear and Quadratic Constraints and
the Condition of Non-negativity

We have obtained in an explicit form a solution of the problem of maximizing a linear function with linear
constraints of the type of equalities and a quadratic restriction of the type of inequality. Naturally, the question
arises: what will happen in the case of linear inequality restriction, in particular, when the condition of non-
negativity of x is present. In this case, the Kuhn-Tucker conditions give us systems of linear equations for the
non-zero components of the vectors x0, y0. Therefore, in all the formulas obtained instead of these vectors, the
”reduced” vectors will appear, and there will be instead of the matrices A and D some of their sub-matrices
(square for D). Of course, this will lead to back-to-back algorithm and complicate the calculations. However,
for small dimensions, in principle, everything is quite feasible. Here we consider those changes in the solution
that are associated with the addition of the non-negativity condition x≥0, which is widespread in the linear
programming. In this case, the Kuhn-Tucker conditions for the problem (1) have the form

∂L(x0, λ0, µ0)

∂xi
= 0, x0

i > 0,
∂L(x0, λ0, µ0)

∂xi
≤ 0, x0

i = 0, i = 1, . . . , n.

For nonzero components x0 we have a system of equations c − 2λD1x
0 − µTA1 = 0, where D1 is the square

sub-matrix of the matrix D obtained by deleting rows and columns with numbers corresponding to the zero
components of x0, and A1 is the sub-matrix of the matrix A with deleted corresponding rows. The square sub-
matrices of a positive definite matrix D are also positive definite and, consequently, non-degenerate. Therefore,
we get x̃0 = 1

2λ0D
−1
1 (c−AT

1 µ
0), where x̃0 is the vector of nonzero components x0, and in the expressions for λ0

and µ0 there are also sub-matrices D1 and A1. We note that, for the given case, the Kuhn-Tucker conditions are
necessary and sufficient, so the search stops as soon as the point satisfying it is found. In particular, in the task
of forming portfolios without short sales, the condition of non-negativity appears, however, according to market
professionals, the portfolio dimension of more than eight components does not make sense (further increase in
dimension does not reduce the risk). Thus, if we add the non-negativity condition x≥0 in Example 2, we obtain
the optimal portfolio x0=(0.898, 0, 0.102)T corresponding to the root of equation (11) d1=0.495.

7 Conclusion

Thus, we have obtained a solution of the problem of maximizing a linear function with linear constraints of
the equality type and a quadratic restriction of the type of inequality, and as its specification the problems of
optimizing the investment portfolio are considered. However, the scope of applications of the results obtained
is much broader. In the future, we plan to apply them to the correction of improper and unstable problems of
linear and quadratic programming.
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