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Abstract

We prove that every K-quasiconformal mapping w of the unit ball
Bn onto a C2-Jordan domain Ω is Hölder continuous with constant
α = 2− n

p , provided that its weak Laplacean ∆w is in Lp(Bn) for some

n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1
provided that ∆w ∈ Ln(Bn).

1 Introduction

Bn denotes the unit ball in Rn, n ≥ 2 and Sn−1 denotes the unit sphere. Also we will assume that n > 2 (the case
n = 2 has been already treated in [Kalaj & Pavlović, 2011]). We will consider the vector norm |x| = (

∑n
i=1 x

2
i )

1/2

and the matrix norms |A| = sup{|Ax| : |x| = 1}.
A homeomorphism u : Ω → Ω′ between two open subsets Ω and Ω′ of Euclid space Rn will be called a K

(K ≥ 1) quasi-conformal or shortly a q.c mapping if
(i) u is absolutely continuous function in almost every segment parallel to some of the coordinate axes and

there exist the partial derivatives which are locally Ln integrable functions on Ω. We will write u ∈ ACLn and
(ii) u satisfies the condition

|∇u(x)|n/K ≤ Ju(x) ≤ Kl(∇u(x))n,

at almost everywhere x in Ω where

l(∇u(x)) := inf{|∇u(x)ζ| : |ζ| = 1}

and Ju(x) is the Jacobian determinant of u (see [Reshetnyak, 1968]).
Notice that, for a continuous mapping u the condition (i) is equivalent to the condition that u belongs to the

Sobolev space W 1,n
loc (Ω).

Let P be Poisson kernel i.e. the function

P (x, η) =
1− |x|2

|x− η|n
,

and let G be the Green function i.e. the function

G(x, y) = cn

{ (
1

|x−y|n−2 − 1
(| x|y|−y/|y| |)n−2

)
, if n ≥ 3;

log |x−y|
|1−xȳ| , if n = 2 and x, y ∈ C ∼= R2.

(1)
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where cn = 1
(n−2)Ωn−1

, and Ωn−1 is the measure of Sn−1. Both P and G are harmonic for |x| < 1, x ̸= y .

Let f : Sn−1 → Rn be a Lp, p > 1 integrable function on the unit sphere Sn−1 and let g : Bn 7→ Rn be
continuous. The weak solution of the equation (in the sense of distributions) ∆u = g in the unit ball satisfying
the boundary condition u|Sn−1 = f ∈ L1(Sn−1) is given by

u(x) = P [f ](x)−G[g](x) :=

∫
Sn−1

P (x, η)f(η)dσ(η)−
∫
Bn

G(x, y)g(y)dy, (2)

|x| < 1. Here dσ is Lebesgue n− 1 dimensional measure of Euclid sphere satisfying the condition: P [1](x) ≡ 1.
It is well known that if f and g are continuous in Sn−1 and in Bn respectively, then the mapping u = P [f ]−G[g]
has a continuous extension ũ to the boundary and ũ = f on Sn−1. If g ∈ L∞ then G[g] ∈ C1,α(Bn). See
[Gilbarg & Trudinger, 1983, Theorem 8.33] for this argument.

We will consider those solutions of the PDE ∆u = g that are quasiconformal as well and investigate their
Lipschitz character.

A mapping f of a set A in Euclidean n-space Rn into Rn, n ≥ 2, is said to belong to the Hölder class Lipα(A),
α > 0, if there exists a constant M > 0 such that

|f(x)− f(y)| ≤ M |x− y|α (3)

for all x and y in A. If D is a bounded domain in Rn and if f is quasiconformal in D with f(D) ⊂ Rn, then f
is in Lipα(A) for each compact A ⊂ D, where α = KI(f)

1/(1−n) and KI(f) is the inner dilatation of f . Simple
examples show that f need not be in Lipα(D) even when f is continuous in D.

However O. Martio and R. Näkki in [Martio & Näkki, 1991] showed that if f induces a boundary mapping
which belongs to Lipα(∂D), then f is in Lipβ(D), where

β = min(α,KI(f)
1/(1−n));

the exponent β is sharp.
In a recent paper of the first author and Saksman [Kalaj & Saksman, 2014] it is proved the following result,

if f is quasiconformal mapping of the unit disk onto a Jordan domain with C2 boundary such that its weak
Laplacean ∆f ∈ Lp(B2), for p > 2, then f is Lipschitz continuous. The condition p > 2 is necessary also. Further
in the same paper they proved that if p = 1, then f is absolutely continuous on the boundary of ∂B2.

We are interested in the condition under which the quasiconformal mapping is in Lipα(B
n), for every α < 1.

It follows form our results that the condition that u is quasiconformal and |∆u| ∈ Lp, such that p > n/2 guaranty
that the selfmapping of the unit ball is in Lipα(B

n), where α = 2− p
n . In particular if p = n, then f ∈ Lipα(B

n)
for α < 1.

It should be noted that the topic is very active area of research in geometric function theory, and the fol-
lowing people have obtained some substantial results in this area: Pavlović and Kalaj, Mateljević, Partyka,
Sakan ([Kalaj & Pavlović, 2011, Kalaj & Pavlović, 2005, Pavlović, 2002, Kalaj, 2011, Kalaj, 2012, Kalaj, 2013,
Kalaj & Mateljevic, 2012, Kalaj & Mateljevic, 2011a, Kalaj & Mateljevic, 2011b, Kalaj & Mateljevic, 2006,
Zhu & Kalaj, 2017, Kalaj, 2015, Partyka & Sakan, 2007]). The pioneering work on this topic have been done by
Martio [Martio, 1968].

Our new result in several-dimensional case is the following:

Theorem 1 Let n ≥ 2 and let p > n/2 and assume that g ∈ Lp(Bn). Assume that w is a K-quasiconformal
solution of ∆w = g, that maps the unit ball onto a bounded Jordan domain Ω ⊂ Rn with C2-boundary.

• If p < n, then w is Hölder continuous with the Hölder constant α = 2− n
p .

• If p = n, then w is Hölder continuous for every α ∈ (0, 1).

The sketch of the proof is given in the next section.

2 Sketch of the Proofs

In what follows, we say that a bounded Jordan domain Ω ⊂ Rn has C2-boundary if it is the image of the unit
ball Bn under a C2-diffeomorphism of the whole Euclidean space. For Jordan domains Ω ⊂ Rn this is well-known
to be equivalent to the more standard definition, that requires the boundary to be locally isometric to the graph
of a C2-function on Rn−1. In what follows, ∆ refers to the distributional Laplacian. We shall make use of the
following well-known facts.
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Proposition 2.1 (Morrey’s inequality) Assume that n < p ≤ ∞ and assume that U is a domain in Rn with
C1 boundary. Then there exists a constant C depending only on n, p and U so that

∥u∥C0,α(U) ≤ C∥u∥W 1,p(U) (4)

for every u ∈ C1(U) ∩ Lp(U), where

α = 1− n

p
.

Lemma 1 See e.g.[Astala & Manojlovic, 2015]. Suppose that w ∈ W 2,1
loc (Bn)∩C(Bn ), that h ∈ Lp(Bn) for some

1 < p < ∞ and that
∆w = h in Bn, with w

∣∣
Sn−1 = 0,

a) If 1 < p < n, then

∥∇w∥Lq(Bn) ≤ c(p, n)∥h∥Lp(Bn), q =
pn

n− p
.

b) If p = n and 1 < q < ∞ then
∥∇w∥Lq(Bn) ≤ c(q, n)∥h∥Ln(Bn).

c) if p > n, then
∥∇w∥L∞(Bn) ≤ c(p, n)∥h∥Ln(Bn).

Now we formulate the following fundamental result of Gehring

Proposition 2.2 [Gehring, 1973] Let f be a quasiconformal mapping of the unit ball Bn onto a Jordan domain
Ω with C2 boundary. Then there is a constant p = p(K,n) > n so that∫

Bn

|Df |p < C(n,K, f(0),Ω).

Now we formulate two lemmas, whose proofs are easily, but the details will be printed elsewhere

Lemma 2 If ∆u = g ∈ Lp and r < 1, then Du ∈ Lq(rB) for q ≤ np
n−p .

To prove Theorem 1, we need as well this lemma.

Lemma 3 If H : Rn → R and w = (w1, . . . , wn) : A → B (where A,B are open subsets in Rn) are functions
from C2 class, then:

∆(H ◦ w) =
n∑

i=1

∂2H

∂w2
i

|∇wi|2 + 2
∑

1≤i<j≤n

∂2H

∂wi∂wj
⟨∇wi,∇wj⟩+

n∑
i=1

∂H

∂wi
∆wi

Sketch of the proof of Theorem 1.
In addition to the previous propositions, the proof depends on an approach discovered in
[Kalaj & Saksman, 2014]. Details will be published elsewhere.
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