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Abstract

We prove that every K-quasiconformal mapping w of the unit ball
B” onto a C?-Jordan domain € is Hoélder continuous with constant
a=2— %, provided that its weak Laplacean Aw is in LP(B™) for some
n/2 < p < n. In particular it is Holder continuous for every 0 < a < 1
provided that Aw € L™(B™).

1 Introduction

B™ denotes the unit ball in R”, n > 2 and S*~! denotes the unit sphere. Also we will assume that n > 2 (the case
n = 2 has been already treated in [Kalaj & Pavlovi¢, 2011]). We will consider the vector norm |z| = (31, x2)1/2
and the matrix norms |A| = sup{|Az| : |z| = 1}.

A homeomorphism u : Q — Q' between two open subsets  and Q' of Euclid space R™ will be called a K
(K > 1) quasi-conformal or shortly a q.c mapping if

(i) u is absolutely continuous function in almost every segment parallel to some of the coordinate axes and
there exist the partial derivatives which are locally L™ integrable functions on 2. We will write u € ACL™ and

(ii) u satisfies the condition
[Vu(@)["/K < Ju(x) < KI(Vu(z))",

at almost everywhere = in () where
I(Vu(z)) := inf{|Vu(z)(] : (] = 1}

and Jy,(z) is the Jacobian determinant of u (see [Reshetnyak, 1968]).

Notice that, for a continuous mapping u the condition (i) is equivalent to the condition that u belongs to the
Sobolev space WL ().

Let P be Poisson kernel i.e. the function

1—|x|?
P(z,n) = m,

and let G be the Green function i.e. the function

1"_ - L =z | ifn> 3;
G(z,y) =cp (|$_|zyl2 (zlyl=y /Tyl )™ 2) nne . "
IOgll—wl’ if n=2and z,y € C = R2
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where ¢, = W—%%Q—N and €2, is the measure of S"~!. Both P and G are harmonic for |z| < 1, x # y .

Let f: S"~! — R" be a L?, p > 1 integrable function on the unit sphere S”~! and let g : B” — R" be
continuous. The weak solution of the equation (in the sense of distributions) Au = g in the unit ball satisfying
the boundary condition u|gn-1 = f € L1(S"1) is given by

u(w) = Plf)(z) - Glg)(x) := [5 P et = [ G (2)
|z| < 1. Here do is Lebesgue n — 1 dimensional measure of Euclid sphere satisfying the condition: P[1](x) = 1.
It is well known that if f and g are continuous in S”~! and in B" respectively, then the mapping u = P[f] — G|g]
has a continuous extension @ to the boundary and @ = f on S"~!. If g € L* then G[g] € C1*(B"). See
[Gilbarg & Trudinger, 1983, Theorem 8.33] for this argument.

We will consider those solutions of the PDE Au = g that are quasiconformal as well and investigate their
Lipschitz character.

A mapping f of a set A in Euclidean n-space R™ into R™, n > 2, is said to belong to the Holder class Lip,, (4),
a > 0, if there exists a constant M > 0 such that

[f(z) = f(y)l < Mz —y|* (3)

for all x and y in A. If D is a bounded domain in R™ and if f is quasiconformal in D with f(D) C R", then f
is in Lip,, (A) for each compact A C D, where a = K;(f)"/~™) and K;(f) is the inner dilatation of f. Simple
examples show that f need not be in Lip, (D) even when f is continuous in D.

However O. Martio and R. Nakki in [Martio & Nakki, 1991] showed that if f induces a boundary mapping
which belongs to Lip, (0D), then f is in Lipg(D), where

B = min(a, Kr(f)=™);

the exponent [ is sharp.

In a recent paper of the first author and Saksman [Kalaj & Saksman, 2014] it is proved the following result,
if f is quasiconformal mapping of the unit disk onto a Jordan domain with C? boundary such that its weak
Laplacean Af € LP(B?), for p > 2, then f is Lipschitz continuous. The condition p > 2 is necessary also. Further
in the same paper they proved that if p = 1, then f is absolutely continuous on the boundary of OB2.

We are interested in the condition under which the quasiconformal mapping is in Lip, (B™), for every o < 1.
It follows form our results that the condition that u is quasiconformal and |Au| € LP, such that p > n/2 guaranty
that the selfmapping of the unit ball is in Lip, (B"), where a = 2 — £. In particular if p = n, then f € Lip,(B")
for a < 1.

It should be noted that the topic is very active area of research in geometric function theory, and the fol-
lowing people have obtained some substantial results in this area: Pavlovi¢ and Kalaj, Mateljevié¢, Partyka,
Sakan ([Kalaj & Pavlovié, 2011, Kalaj & Pavlovié, 2005, Pavlovié¢, 2002, Kalaj, 2011, Kalaj, 2012, Kalaj, 2013,
Kalaj & Mateljevic, 2012, Kalaj & Mateljevic, 2011a, Kalaj & Mateljevic, 2011b, Kalaj & Mateljevic, 2006,
Zhu & Kalaj, 2017, Kalaj, 2015, Partyka & Sakan, 2007]). The pioneering work on this topic have been done by
Martio [Martio, 1968].

Our new result in several-dimensional case is the following:

Theorem 1 Let n > 2 and let p > n/2 and assume that g € LP(B™). Assume that w is a K-quasiconformal
solution of Aw = g, that maps the unit ball onto a bounded Jordan domain Q C R™ with C%-boundary.

e [fp < n, then w is Holder continuous with the Holder constant a = 2 — %.

e Ifp=mn, then w is Hélder continuous for every a € (0,1).

The sketch of the proof is given in the next section.

2 Sketch of the Proofs

In what follows, we say that a bounded Jordan domain Q C R™ has C?-boundary if it is the image of the unit
ball B” under a C?-diffeomorphism of the whole Euclidean space. For Jordan domains 2 C R™ this is well-known
to be equivalent to the more standard definition, that requires the boundary to be locally isometric to the graph
of a C%-function on R™~!. In what follows, A refers to the distributional Laplacian. We shall make use of the
following well-known facts.
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Proposition 2.1 (Morrey’s inequality) Assume that n < p < oo and assume that U is a domain in R™ with
C' boundary. Then there exists a constant C depending only on n, p and U so that

l[ullco«@y < Cllullwrew) (4)
for every u € CY(U) N LP(U), where
a=1-— 2.
p

Lemma 1 See e.g.[Astala & Manojlovic, 2015]. Suppose that w € I/Vlicl (B")NC(B"), that h € LP(B") for some
1 < p < oo and that
Aw = h in B", with w‘Sn_l =0,

a) If 1 < p < n, then
pn

||V’LU||LQ(BW) < C(pa n)”hHLp(]B")’ q
b) Ifp=mn and 1 < g < oo then
IVwllLan) < (g n)l|A]ln@n).-

¢) if p > n, then
||vw||Loo(Bn) S C(p, n)||hHLn(Bn)

Now we formulate the following fundamental result of Gehring

Proposition 2.2 [Gehring, 1973] Let f be a quasiconformal mapping of the unit ball B™ onto a Jordan domain
Q with C% boundary. Then there is a constant p = p(K,n) > n so that

/n IDFIP < Cn, K, £(0),0).

Now we formulate two lemmas, whose proofs are easily, but the details will be printed elsewhere

Lemma 2 If Au=g € LP and r < 1, then Du € Li(rB) for q < n"—_";.

To prove Theorem 1, we need as well this lemma.

Lemma 3 If H : R" —» R and w = (wy,...,w,) : A — B (where A, B are open subsets in R™) are functions
from C? class, then:

A(H ow) Za 2|sz|2+2 > o°H (Vw;, Vw,) +23?

, ow;0w;
=1 1<i<j<n

Sketch of the proof of Theorem 1.
In addition to the previous propositions, the proof depends on an approach discovered in
[Kalaj & Saksman, 2014]. Details will be published elsewhere.

References

[Agmon et al., 1959] Agmon, S., Douglis, A., & Nirenberg, L. (1959). Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions. I. Communications on
pure and applied mathematics, 12(4), 623-727.

[Ahlfors, 1966] L. Ahlfors: Lectures on Quasiconformal mappings, Van Nostrand Mathematical Studies, D. Van
Nostrand 1966.

[Aleksandrov et al., 1999] A.B. Aleksandrov, J.M. Anderson and A Nicolau: Inner functions, Bloch spaces and
symmetric measures, Proc. London Math. Soc. 79 (1999), 318-352.

[Astala & Manojlovic, 2015] Astala, K., & Manojlovic, V. (2015). On Pavlovics theorem in space. Potential
Analysis, 43(3), 361-370. DOI 10.1007/s11118-015-9475-4.

270



[Fefferman et al., 1991] R.A. Fefferman, C.E. Kenig and J. Pipher: The theory of weights and the Dirichlet
problem for elliptic equations, Ann. of Math. 134 (1991), 65-124.

[Gehring, 1973] Gehring, F.W., The LP-integrability of the partial derivatives of a quasiconformal mapping. Acta
Math. 130, 265277 (1973)

[Gilbarg & Trudinger, 1983] D. Gilbarg and N. Trudinger: FElliptic Partial Differential Equations of Second
Order. 2 Edition, Springer 1977, 1983.

[Goluzin, 1966] G. L. Goluzin: Geometric function theory. Nauka, Moskva 1966.
[Kahane, 1969] J. P. Kahane: Trois notes sur les ensembles parfait linearés, Enseign. Math. 15 (1969) 185-192.

[Kalaj et al., 2013] D. Kalaj, M. Markovic and M. Mateljevié: Carathéodory and Smirnov type theorems for
harmonic mappings of the unit disk onto surfaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), 565-580.

[Kalaj & Saksman, 2014] D. Kalaj, E. Saksman,: Quasiconformal mappings with controlled Laplacean,
arXiv:1410.8439, to appear in Journal d’ Analyse Math

[Kalaj, 2011] D. Kalaj: Harmonic mappings and distance function. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10
(2011), 669-681 .

[Kalaj, 2012] D. Kalaj: On boundary correspondences under quasiconformal harmonic mappings between smooth
Jordan domains. Math. Nachr. 285, No. 2-3, 283-294 (2012).

[Kalaj, 2013] D. Kalaj: A priori estimate of gradient of a solution to certain differential inequality and quasireg-
ular mappings, Journal d’Analyse Mathematique 119 (2013), 63-88.

[Kalaj, 2015] D. Kalaj: Quasiconformal harmonic mappings between Dini-smooth Jordan domains. Pacific J.
Math. 276 (2015), no. 1, 213-228.

[Kalaj & Pavlovié, 2011] D. Kalaj, M. Pavlovié: On quasiconformal self-mappings of the unit disk satisfying the
Poisson equation, Trans. Amer. Math. Soc. 363 (2011) 4043-4061.

[Kalaj & Pavlovié, 2005] D. Kalaj, M. Pavlovié: Boundary correspondence under quasiconformal harmonic dif-
feomorphisms of a half-plane. Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 159-165.

[Kalaj & Mateljevic, 2012] D. Kalaj, M. Mateljevic: (K, K')-quasiconformal harmonic mappings. Potential
Anal. 36 (2012), no. 1, 117-135

[Kalaj & Mateljevic, 2011a] D. Kalaj, M. Mateljevic: On quasiconformal harmonic surfaces with rectifiable
boundary. Complex Anal. Oper. Theory 5 (2011), no. 3, 633-646.

[Kalaj & Mateljevic, 2011b] D. Kalaj, M. Mateljevic: On certain nonlinear elliptic PDE and quasiconformal
maps between Euclidean surfaces. Potential Anal. 34 (2011), no. 1, 13-22.

[Kalaj & Mateljevic, 2010] D. Kalaj, M. Mateljevic: Harmonic quasiconformal self-mappings and Mbius trans-
formations of the unit ball. Pacific J. Math. 247 (2010), no. 2, 389-406.

[Kalaj & Mateljevic, 2006] D. Kalaj, M. Mateljevic: Inner estimate and quasiconformal harmonic maps between
smooth domains. J. Anal. Math. 100 (2006), 117-132.

[Zhu & Kalaj, 2017] J.-F. Zhu, D. Kalaj: Quasiconformal harmonic mappings and the curvature of the bound-
ary. J. Math. Anal. Appl. 446 (2017), no. 2, 1154-1166.

[Martio, 1968] O. Martio: On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn., Ser. A T 425 (1968),
3-10.

[Martio & Nékki, 1987] Martio, O., & Nakki, R.: Continuation of quasiconformal mappings. (Russian) Trans-
lated from the English by N. S. Dairbekov. Sibirsk. Mat. Zh. 28 (1987), no. 4, 162-170.

[Martio & Nakki, 1991] O. Martio, R. Néakki, Boundary Hélder continuity and quasiconformal mappings. J.
London Math. Soc. (2) 44 (1991), no. 2, 339-350.

271



[Reshetnyak, 1968] Yu. G. Reshetnyak: Generalized derivatives and differentiability almost everywhere. (Rus-
sian) Mat. Sb. (N.S.) 75(117) 1968, 323-334.

[Pommerenke, 1992] C. Pommerenke: Boundary behaviour of conformal maps. Grundlehren der Mathematischen
Wissenschaften. 299. Berlin: Springer- Verlag. ix, 300 p. (1992).

[Partyka & Sakan, 2007] D. Partyka and K. Sakan: On bi-Lipschitz type inequalities for quasiconformal harmonic
mappings, Ann. Acad. Sci. Fenn. Math.. Vol 32, pp. 579-594 (2007).

[Pavlovié, 2002] M. Pavlovié: Boundary correspondence under harmonic quasiconformal homeomorfisms of the
unit disc, Ann. Acad. Sci. Fenn., Vol 27, (2002) 365-372.

[Piranian, 1966] G. Piranian: Two monotonic, singular, uniformly almost smooth functions, Duke Math. J. 33
(1966), 255-262.

[Rudin, 1886] W. Rudin: Real and complex analysis. Third edition. McGraw-Hill 1986.

[Stein, 1970] E. M. Stein: Singular integrals and differentiability properties of functions. Princeton Mathematical
Series, No. 30 Princeton University Press, Princeton, N.J. 1970

[Stein, 1993] E. M. Stein: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals.
With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Princeton University
Press, Princeton, NJ, 1993.

[Triebel, 1995] H. Triebel: Interpolation theory, function spaces, differential operators. 2. Auflage. Barth, Hei-
delberg 1995.

272



