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Abstract

We consider the problem of partitioning a finite set of Euclidean points
into two clusters minimizing the sum over both clusters the weighted
sums of the squared intracluster distances from the elements of the
clusters to their centers. The center of one of the clusters is unknown
and determined as the average value over all points in the cluster, while
the center of the other cluster is the origin. The weight factors for both
intracluster sums are the cardinalities of the corresponding clusters. In
this work, we present a short survey on the results for this problem and
a new result: a 2-approximation algorithm.

1 Introduction

In this work, we consider a strongly NP-hard problem of discrete optimization. The goal of our work is to present
a short survey on the results for these problems.

The problem under study is closely related to the well-known strongly NP-hard
Weighted variance-based 2-clustering Problem
Given a set Y = {y1, . . . , yN} of points from Rq. Find a partition of Y into two non-empty clusters C and

Y \ C such that

|C|
∑
y∈C

∥y − y(C)∥2 + |Y \ C|
∑

y∈Y\C

∥y − y(Y \ C)∥2 −→ min ,

where y(C) = 1
|C|

∑
y∈C y and y(Y \ C) = 1

|C|
∑

y∈Y\C y are the geometric centers (centroids) of both clusters C
and Y \ C.

The main difference between the problem under study and this problem is that in the considered problem
the center of one of the clusters is fixed in the origin (without loss of generality). It is obvious, that the
considered problem and the Weighted variance-based 2-clustering problem are not equivalent and so both of
them need an individual study. The importance of the problem for applications motivates to continue researches,
e.g. importance for geometric problems, approximation problems, statistical problems of joint evaluations and
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testing hypotheses by nonuniform samples, problems of Data clustering, Data mining, Machine learning, Big
data, applied problems in technical and medical diagnostics, etc.

2 Cardinality-weighted Variance-based 2-clustering with Given Center

Problem 1. Given a set Y = {y1, . . . , yN} of points from Rq and a positive integer M . Find a partition of Y
into two non-empty clusters C and Y \ C such that

F1(C) = |C|
∑
y∈C

∥y − y(C)∥2 + |Y \ C|
∑

y∈Y\C

∥y∥2 −→ min , (1)

where y(C) = 1
|C|

∑
y∈C

y is the geometric center (centroid) of C and such that |C| = M .

Problem 1 is strongly NP-hard [Kel’manov & Pyatkin, 2015, Kel’manov & Pyatkin, 2016]. Therefore, by
[Garey & Johnson, 1979], there are neither exact polynomial-time nor exact pseudopolynomial-time algorithms
for this problem, unless P=NP.

Despite of this, a pseudopolynomial algorithm for the special case of Problem 1 exists. It proposed in
[Kel’manov & Motkova, 2016a] and finds an optimal solution in the case of integer components of the points
in the input set and fixed space dimension.

Algorithm A1 (exact pseudopolynomial algorithm).
Input: A set Y and some positive integer M ≤ N .
Step 1. Construct G — a multidimensional cubic uniform in each coordinate grid of size 2D with the distance

1
M between the nodes and the center at the origin, and D is the maximal modulus of the coordinates of input
points.

Step 2. For each node x ∈ G, calculate

gx(y) = (2M −N)∥y∥2 − 2M ⟨y, x⟩ , y ∈ Y; (2)

find the subset Bx which consists of M points of the set Y, at which the function gx(y) has the smallest values.
Calculate F1(Bx) by (1).

Step 3. In the family F1(Bx), x ∈ G constructed at Step 2, find the node xA1 = argmin
x∈G

F1(Bx) and the

subset BxA1 . Put CA1 = BxA1 .
Output: The set CA1 .
Theorem 1. Assume that the elements of Y have integer values from the interval [−D,D]. Then algorithm

A1 finds an optimal solution of Problem 1 in O(qN(2MD + 1)q) time.
In the case of fixed space dimension q the algorithm is pseudopolynomial.
In [Kel’manov & Pyatkin, 2015, Kel’manov & Pyatkin, 2016] it is also shown that for Problems 1

there does not exist any fully polynomial time approximation scheme (FPTAS), unless P=NP. In
[Kel’manov & Motkova, 2016b] was proposed such approximation scheme for a special case of the Problem 1
when the space dimension q is fixed.

Algorithm A2 (approximation scheme).
Input : a set Y and numbers M and ε.
For each point y ∈ Y Steps 1–6 are executed.
Step 1. Compute the values gy(z), z ∈ Y, using formula (2); find a subset By ⊆ Y with M smallest values

gy(z), compute F (By) using formula (1).
Step 2. If F (By) = 0, then put CA3 = By; exit.

Step 3. Compute H = H(y) = 1
M

√
F1(By) and h = h(y, ε) = 1

M

√
2ε
q F1(By).

Step 4. Construct the lattice G(y, h,H + h/2) using formula

G(y, h,H + h/2) = {d ∈ Rq| d = y + h · (i1, . . . , iq), ik ∈ Z, |hik| ≤ H + h/2, k ∈ {1, . . . , q}}.

Step 5. For each node x of the lattice G(y, h,H + h/2) compute the values gx(y), y ∈ Y, using formula (2)
and find a subset Bx ⊆ Y with M smallest values gx(y). Compute F1(Bx) using formula (1), remember this
value and the set Bx.

Step 6. If F (Bx) = 0, then put CA2 = Bx; exit.
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Step 7. In the family {Bx|x ∈ G(y, h,H +h/2), y ∈ Y} of candidate sets that have been constructed in Steps
1–6, choose as a solution CA2 the set Bx for which F1(Bx) is minimal.

Output : the set CA2 .

Theorem 2. For any fixed ε > 0 algorithm A2 finds a (1 + ε)-approximate solution of Problem 1 in

O
(
qN2

(√
2q
ε + 2

)q)
time.

Corollary 1. In the case when the dimension q of space is bounded by a constant value, this algorithm is an
FPTAS.

Later in [Kel’manov et al., 2017] was proposed the similar approximation scheme with the same time com-
plexity for the generalization of Problem 1 in which the weight factors are given as input (positive real numbers).
Also there was presented an improved algorithm that allows to find (1 + ε)-approximate solution of generalized

problem in O
(
√
qN2

(
πe
2

)q/2(√
2
ε + 2

)q
)

time. In the case when the dimension q of space is bounded by a

constant value, this algorithm is also an FPTAS. In addition, improved algorithm remains polynomial even when
the dimension q of the space is bounded by the value C logN , where C is the positive constant. It is clear that
in this case algorithm implements a PTAS with time complexity NO(log 1

ε ).

The last proposed algorithm for Problem 1 until this moment is a 2-approximation algorithm. It was proposed
in [Kel’manov & Motkova, 2017] and allows us to find an approximate solution in the polynomial time.

Algorithm A3 (2-approximation algorithm).

Input : N -elements set Y ⊂ Rq, natural number M ≤ N.

For each point y ∈ Y Steps 1–2 are executed.

Step 1. Compute the values gy(z), z ∈ Y, using formula (2); find an M -elements subset By ⊆ Y with the
smallest values gy(z), compute F1(By) using formula (1).

Step 2. If F1(By) = 0, then put CA2 = By; exit.

Step 3. In the family {By|, y ∈ Y} of candidate sets that have been constructed in Steps 1–2, choose as a
solution CA3 the set Bx, for which F1(Bx) is minimal.

Output : the set CA3 .

Two examples of an input set (of 1000 points) and admissible solutions (i.e. 300-elements subset By) found
by Algorithm A3 at step 1 are presented at Fig.1 (a) and (b).

(a) (b)

Fig. 1.

Let us substuntiate this algorithm below.
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The following two lemmas are well known. (see, for example, [Kel’manov & Romanchenko, 2012,
Kel’manov & Romanchenko, 2014]).

Lemma 1. For an arbitrary point x ∈ Rq, a finite set Z ⊂ Rq and z = 1
|Z|

∑
z∈Z z (z is the centroid of Z),

it is true that ∑
z∈Z

∥z − x∥2 =
∑
z∈Z

∥z − z∥2 + |Z| · ∥x− z∥2 .

Lemma 2. For a finite set Z ⊂ Rq, if a point u ∈ Rq is closer (in terms of distance) to the centroid z of Z
than any point in Z, then ∑

z∈Z

∥z − u∥2 ≤ 2
∑
z∈Z

∥z − z∥2 .

Lemma 3. Let
S(C, x) = |C|

∑
y∈C

∥y − x∥2 + |Y \ C|
∑

y∈Y\C

∥y∥2, C ⊆ Y, x ∈ Rq .

Then the next statements are true:
(1) for any nonempty fixed set C ⊆ Y the minimum of the function S(C, x) over x ∈ Rq is reached at the point

y(C) = 1
|C|

∑
y∈C

y;

(2) if |C| = M = const, then for any fixed point x ∈ Rq the minimum of function S(C, x) over C ⊆ Y is reached
at the subset Bx that consists of M points of the set Y, at which the function (2) has the smallest values.

Proof. The first statement follows from Lemma 2 and the definition of the functions S and F . Since |Y| = N
and |C| = M , the second statement follows from the next chain of equalities:

S(C, x) = M
∑
y∈C

∥y − x∥2 + (N −M)
∑

y∈Y\C

∥y∥2 = M
∑
y∈C

∥y∥2 − 2M
∑
y∈C

⟨y, x⟩+M2∥x∥2+

(N −M) (
∑
y∈Y

∥y∥2 −
∑
y∈C

∥y∥2) =
∑
y∈C

{
(2M −N)∥y∥2 − 2M⟨y, x⟩

}
+M2∥x∥2 + (N −M)

∑
y∈Y

∥y∥2 .

It remains to note that in the last two equalities the last two addends do not depend on C.
Lemma is proved.
Theorem 3. An Algorithm A3 finds a 2-approximate solution of Problem 1 in time O

(
qN2

)
.

Proof. Let C∗ be an optimal subset and t = arg min
y∈C∗

||y − y(C∗)||2 be a point from a subset C∗ that is the

closest to its centroid.
Step-by-step, the algorithm goes through every points y of the set Y. Since t ∈ Y, a permissible solution also

will be formed for the point t: the subset Bt, defined by Lemma 3 (if x = t).
Besides, a value F (Bt) of objective function for the Problem 1 will be calculated. For this value we have this

inequalities from definitions of the functions F and S and Lemma 3 and a definition of the point t:

F (Bt) = Sy(Bt)(Bt) ≤ St(Bt) ≤ St(C∗). (3)

Applying Lemma 2 to the set Z = C∗ and the point u = t, we have∑
y∈C∗

||y − t||2 ≤ 2
∑
y∈C∗

||y − y(C∗)||2.

Using this inequality and definition (2), we find an estimation for a right part of (3)

St(C∗) = M
∑
y∈C∗

||y − t||2 + (N −M)
∑

y∈Y\C∗

||y||2

≤ 2M
∑
y∈C∗

||y − y(C∗)||2 + (N −M)
∑

y∈Y\C∗

||y||2 ≤ 2F (C∗). (4)

Combining (3) and (4), we have
F (Bt) ≤ 2F (C∗). (5)
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From Step 3 we know that the algorithm finds a solution of Problem 1 in the next form:

CA = argmin
y∈Y

F (By). (6)

Since Bt ∈ {By|y ∈ Y}, from (6) we have an inequality

F (CA) ≤ F (Bt). (7)

Finally, (5) and (7) implies an estimate

F (CA) ≤ 2F (C∗). (8)

Let us consider the case when at Step 2 of the algorithm the condition F (By) = 0 is executed for some
input point y ∈ Y. For every subset C ⊆ Y inequality F (C) ≥ 0 is correct, so the subset CA = By ⊆ Y is an
optimal solution of Problem 1. Inequality (8) is correct for this solution too. It means that a subset CA is a
2-approximation solution of Problem 1.

Let us estimate the time complexity of the algorithm. At Step 1 we need no more than O(qN) operations to
calculate values gy(z). Searching of M the smallest elements in the set of N elements requires O(N) operations
(for example, using an algorithm of finding n-th smallest value in an unordered array [Wirth, 1976]). Step 2
need constant time. So for any point y ∈ Y total execution time of Steps 1 and 2 is O(qN).

As Steps 1 and 2 are executed N times, total time complexity of this steps is O(qN2). Time complexity of
Step 3 is estimated by value O(N). So, the time complexity of the algorithm is O(qN2). Theorem 3 is proved.

Two examples of an input set (of 1000 points) and 2-approximate solutions found by Algorithm A3 are
presented at Fig.2 (a) (i.e. 400-elements subset CA) and (b) (i.e. 600-elements subset CA).

(a) (b)

Fig. 2.

3 Conclusion

In this work, we presented a short survey on the results for the problem of 2-partitioning of points in Euclidean
space into two clusters. Also we presented the new result: a 2-approximation algorithm.

It seems important to continue studying and the issue of great interest is the substantiation of randomized
algorithms for this problem with linear or sub-linear time complexity.
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