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Abstract

In this paper, we develop methods for frontier visualization of non-
convex Free Disposal Hull (FDH) models. Our approach is based on
constructions of input and output isoquants for multidimensional non-
convex frontier. Our theoretical results are confirmed by computational
experiments using real-life data sets from different areas.

1 Introduction

Free Disposal Hull (FDH) models were proposed by Deprins, Simar and Tulkens [Deprins et al., 1984]. In these
models the production possibility set is a nonconvex one. For this reason, it is required to develop special
methods in order to calculate different characteristics of production unit’s behavior. These methods are divided
into two groups. In the first group, methods are based on mathematical programming (MP) approach. The
second group of methods involved enumeration algorithms.

Kerstens and Vanden Eeckaut [Kerstens & Vanden, 1999] proposed a method for the estimation returns to
scale (RTS) of decision making units in FDH models. In their method, one has to solve mixed integer nonlinear
programming problems and to compare related efficiency scores. In paper [Podinovski, 2004] a method was
proposed where one has to solve mixed integer linear programming problems instead of nonlinear ones. However,
the size of LP-models is increased significantly. In the paper [Soleimani-damaneh et al., 2006] enumeration
algorithms were proposed for estimating the RTS in FDH models. In the paper [Leleu, 2006], it was proposed
to use linear programming framework in estimating RTS in FDH models.

However, Cesaroni, Kerstens and Van de Woestyne [Cesaroni et al., 2017] noted the absence of papers devoted
to methods for frontier visualization in FDH models.

In this paper, we develop methods for frontier reconstruction in FDH models. Our approach is based on meth-
ods that were proposed for convex DEA models [Krivonozhko et al., 2004]. We propose methods for constructions
of input and output isoquants for multidimensional frontier using both optimization and enumeration methods.
Our theoretical results are confirmed by computational experiments using real-life data sets from different areas.

2 Background

Consider a set of n observations of actual production units (Xj , Yj), j = 1, . . . , n, where the vector of outputs
Yj = (y1j , . . . , yrj) > 0 is produced from the vector of inputs Xj = (x1j , . . . , xmj) > 0. The traditional Free
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Disposal Hull technology proposed by Deprins, Simar and Tulkens [Deprins et al., 1984] is formulated as follows:

TFDH =
{
(X,Y )

∣∣∣ ∑n
j=1 Xj , λj ≤ X,

∑n
j=1 Yj , λj ≥ Y,

∑n
j=1 λj = 1, λj ∈ {0, 1}, j = 1, . . . , n

}
, (1)

where λj , j = 1, . . . , n are integer variables, taking on values 0 or 1.

The FDH input-oriented model for evaluating unit (Xo, Yo) under variable RTS assumption is written as
follows

θFDH
o = min θ∑n

j=1 Xjλj ≤ θXo,∑n
j=1 Yjλj ≥ Yo,∑n
j=1 λj = 1,

λj ∈ {0, 1}, j = 1, . . . , n,

(2)

where λj , j = 1, . . . , n are integer variables, taking on values 0 or 1.

Define the two-dimensional plane in space Em+r as

Pl(Xo, Yo, d1, d2) = (Xo, Yo) + αd1 + βd2, (3)

where (Xo, Yo) ∈ T , α and β are any real numbers, directions d1, d2 ∈ Em+r, and d1 is not parallel to d2. The
plane (3) goes through point (Xo, Yo) in Em+r and is spanned by vectors d1 and d2.

Next, define two intersections of the frontier with two-dimensional planes

Sec1(Xo, Yo, ep, es) =
{
(X,Y )

∣∣ (X,Y ) ∈ Pl(Xo, Yo, d1, d2) ∩WEffP T, d1 = (ep, 0), d2 = (es, 0)
}
, (4)

Sec2(Xo, Yo, g1, g2) =
{
(X,Y )

∣∣ (X,Y ) ∈ Pl(Xo, Yo, g1, g2) ∩WEffP T, g1 = (0, ēq), g2 = (0, ēt)
}
, (5)

where ep and es are m-identity vectors with a one in positions p and s, respectively, ēq and ēt are r-identity
vectors with a one in positions q and t, respectively. Here WEffP T is a set of weakly efficient points of set TFDH .
Using the same approach as in [Krivonozhko et al., 2004], we can prove that set WEffP T coincides with set
BoundT , where BoundT denotes the set of boundary points of TFDH .

By taking different directions d1 and d2, g1 and g2, we can obtain various sections going through unit (Xo, Yo)
and cutting the frontier. Moreover, we can construct the curves generalizing the well-known functions in macro-
and microeconomics. Section (4) is a generalized input isoquant, and section (5) is a generalized output isoquant.

3 Main Results

Now, consider an optimization algorithm for construction of the generalized input isoquant (4) for unit (Xo, Yo).
This isoquant is determined by directions ep ∈ Em and es ∈ Em, where ep and es are unity vectors.

Algorithm 1.

Step 1. Find a leftmost point on the input isoquant going through point (Xo, Yo) and determined by directions
ep ∈ Em and es ∈ Em, where ep and es are unity vectors.

min θ∑n
j=1 xpjλj ≤ θxpo,∑n
j=1 xsjλj ≤ τxso,∑n
j=1 xkjλj ≤ xko, k = 1, . . . ,m, k ̸= p, k ̸= s,∑n
j=1 Yjλj ≥ Yo,∑n
j=1 λj = 1,

λj ∈ {0, 1}, j = 1, . . . , n,
τ is a free variable.

(6)

Set α1 = θ∗, l = 1.

Step 2. Find two adjacent angular points on the input isoquant. Solve the following two optimization problems.
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a) Problem A:

min η∑n
j=1 xpjλj ≤ αlxpo,∑n
j=1 xsjλj ≤ ηxso,∑n
j=1 xkjλj ≤ xko, k = 1, . . . ,m, k ̸= p, k ̸= s,∑n
j=1 Yjλj ≥ Yo,∑n
j=1 λj = 1,

λj ∈ {0, 1}, j = 1, . . . , n.

(7)

Set βl = η∗.
b) Problem B:

min θ∑n
j=1 xpjλj ≤ θxpo,∑n
j=1 xsjλj ≤ τxso,∑n
j=1 xkjλj ≤ xko, k = 1, . . . ,m, k ̸= p, k ̸= s,∑n
j=1 Yjλj ≥ Yo,∑n
j=1 λj = 1,

τ ≤ βl(1− ε),
λj ∈ {0, 1}, j = 1, . . . , n,
τ is a free variable.

(8)

Here ε is a small parameter.
Set l = l + 1.
If the solution of problem (8) is infeasible, then αl = M , where M is a large number, go to Step 3.
Else αl = θ∗, go to the beginning of Step 2.
Step 3. Stop.
Points (αl, βl), l = 1, . . . , L, are angular points of the stepwise input isoquant of FDH model for unit (Xo, Yo)

with directions ep and es, where L is a number of angular points of input isoquant.
Next, proceed to description of an algorithm for construction of stepwise output isoquant (5) determined by

directions ēq ∈ Er and ēt ∈ Er, where ēq and ēt are unity vectors with a one in position q and t, respectively.
Algorithm 2.
Step 1. Find a leftmost point on the output isoquant going through point (Xo, Yo). For this purpose solve

the following optimization problem

max η∑n
j=1 Xjλj ≤ Xo,∑n
j=1 yijλj ≥ yio, i = 1, . . . , r, i ̸= q, i ̸= t,∑n
j=1 ytjλj ≥ ηyto,∑n
j=1 yqjλj ≥ τyqo,∑n
j=1 λj = 1,

λj ∈ {0, 1}, j = 1, . . . , n,
τ is a free variable.

(9)

Set α1 = 0, β1 = η∗, l = 1.
Step 2. Find two adjacent points on the output isoquant. Solve the following two optimization problems.
a) Problem A:

max θ∑n
j=1 Xjλj ≤ Xo,∑n
j=1 yijλj ≥ yio, i = 1, . . . , r, i ̸= q, i ̸= t,∑n
j=1 ytjλj ≥ βlyto,∑n
j=1 yqjλj ≥ θyqo,∑n
j=1 λj = 1,

λj ∈ {0, 1}, j = 1, . . . , n.

(10)

Set l = l + 1, αl = θ∗.
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b) Problem B:
max η∑n

j=1 Xjλj ≤ Xo,∑n
j=1 yijλj ≥ yio, i = 1, . . . , r, i ̸= q, i ̸= t,∑n
j=1 ytjλj ≥ ηyto,∑n
j=1 yqjλj ≥ τyqo,∑n
j=1 λj = 1,

τ ≥ αl(1 + ε),
λj ∈ {0, 1}, j = 1, . . . , n,
τ is a free variable.

(11)

Here ε is a small parameter.
If the solution of Problem B (11) is infeasible, then βl = 0, go to Step 3.
Else βl = η∗, go to the beginning of Step 2.
Step 3. Stop.
Points (αl, βl), l = 1, . . . , L, are angular points of the output stepwise isoquant of FDH model for unit (Xo, Yo)

with directions ēq and ēt, where L is a number of angular points of output isoquant.
Main steps of Algorithm 2 are explained on the Figure 1.

Figure 1: Construction of stepwise output isoquant for the FDH model

At Step 1 of the algorithm some leftmost point F on the isoquant is found, where F = (0, η∗). At Step 2a an
angular point A = (α1, β1) is calculated using the solution of Problem A (10). Thus, an angular point A on the
curve is determined. Then, algorithm moves slightly out the production possibility set and takes point A′. After
this the algorithm moves the current point parallel to horizontal line until this point reaches the feasible point A′′.
The algorithm stops if it discovers an infinite horizontal line or, in other words, the solution of Problem B at
some iteration will be infeasible.

Now, we dwell on algorithms for construction of stepwise input and output isoquant for the nonconvex FDH
model using enumeration approach.

Again, let input isoquant for unit (Xk, Yk) be determined by directions ep ∈ Em and es ∈ Em, where ep and
es are unity vectors with a one in positions p and s, respectively.

Algorithm 3.
Step 1. Determine set

Dps(k) =
{
j
∣∣∣ xij ≤ xik, i = 1, . . . ,m, i ̸= p, i ̸= s, yij ≥ yik, i = 1, . . . , r, j = 1, . . . , n

}
. (12)

Let
αp
1 = min

j∈Dps(k)

xpj

xpk
, βs

1 = min
j∈Dps(k)

xpj=αp
1

xsj

xsk
. (13)

Determine a vertical ray of isoquant from point (αp
1, β

s
1)

S =
{
(αp

1, β
s
1) + γ(0, 1), γ ≥ 0

}
. (14)
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Let l = 1.
Step 2. While D(l+1) =

{
j
∣∣∣ xpj

xpk
> αp

l ,
xsj

xsk
< βs

l , j ∈ Dps(k)
}
̸= ∅

do
αp
(l+1) = min

j∈D(l+1)

xpj

xpk
(15)

Add a horizontal and vertical segments to the isoquant

S = S ∪
[
(αp

l , β
s
l ), (α

p
(l+1), β

s
l )
]
, (16)

βs
(l+1) = min

j∈D(l+1)

xpj=αp
(l+1)

xsj

xsk
, (17)

S = S ∪
[
(αp

(l+1), β
s
l ), (α

p
(l+1), β

s
(l+1))

]
, (18)

l = l + 1. (19)

Step 3. Add a horizontal ray to the isoquant

S = S ∪
{
(αp

l , β
s
l ) + γ(1, 0), γ ≥ 0

}
. (20)

Step 4. Sec(Xk, Yk, ep, es) = S. Construction of the isoquant is completed.
Points (αp

l , β
s
l ), l = 1, . . . , L are angular points of the input isoquant, where L is a number of these points

computed by the algorithm.
Next, we proceed to construction of output stepwise isoquant using enumeration methods. Let this output

isoquant be determined by production unit (Xk, Yk) and directions ēq ∈ Er and ēt ∈ Er, respectively.
Algorithm 4.
Step 1. Determine set

Dqt(k) =
{
j
∣∣∣ xij ≤ xik, i = 1, . . . ,m, yij ≥ yik, i = 1, . . . , r, i ̸= q, i ̸= t, j = 1, . . . , n

}
. (21)

Let
βt
1 = max

j∈Dqt(k)

ytj
ytk

, αq
1 = max

j∈Dqt(k)

ytj=βt
1

yqj
yqk

. (22)

Determine the first segment of the output isoquant

S =
[
(0, βt

1), (α
q
1, β

t
1)
]
. (23)

Let l = 1.
Step 2. While D(l+1) =

{
j
∣∣∣ yqj
yqk

> αq
l ,

ytj
ytk

< βt
l , j ∈ Dqt(k)

}
̸= ∅

do
βt
(l+1) = max

j∈D(l+1)

ytj
ytk

(24)

Add a horizontal and vertical segments to the output isoquant

S = S ∪
[
(αq

l , β
t
l ), (α

q
l , β

t
(l+1))

]
, (25)

αq
(l+1) = max

j∈D(l+1)

ytj=βt
(l+1)

yqj
yqk

, (26)

S = S ∪
[
(αq

l , β
t
(l+1)), (α

q
(l+1), β

t
(l+1))

]
, (27)

l = l + 1. (28)

Step 3. Add a vertical segment to the isoquant

S = S ∪
[
(αq

l , β
t
l ), (α

q
l , 0)

]
. (29)

Step 4. Sec(Xk, Yk, eq, et) = S. Construction of the output stepwise isoquant is completed.
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4 Conclusions

Computational experiments were accomplished to check our algorithms using real-life data sets taken from
different areas: Russian banks, Swedish electricity utilities and Norwegian municipalities. Original data sets
are described in detail in papers [Krivonozhko et al., 2012, Forsund et al., 2007, Erlandsen & Førsund, 2002].
Computational experiments were conducted on the basis of personal computer with Intel Core i3 CPU 3.33 GHz
and lp solve solver, version 5.5.2.0. Computational results are presented in Table 1 and Table 2.

Table 1: Computations of efficiency scores

Real-life data sets
Number of
input and
output
indicators

Number of
production
units

Optimization methods Enumeration
methods

Time, s Number of
iterations

Time, s

Russian banks, 2008 6 200 1.0 37244 0.5
Swedish electricity utilities,1987 8 163 0.9 36096 0.1
Norwegian municipalities, 1997 13 469 20.1 564591 0.3

Table 2: Constructions of input and output isoquants

Real-life data sets
Number of
input and
output
indicators

Number of
production
units

Optimization methods Enumeration methods
all input isoquants all output isoquants
Time, s Avg. time

per iso-
quant, ms

Time, s Avg. time
per iso-
quant, ms

Russian banks, 2008 6 200 15.2 30 0.14 0.235
Swedish electricity utilities,1987 8 163 10.9 20 0.187 0.234
Norwegian municipalities, 1997 13 469 254.7 180 17.48 0.828

It is well known in scientific literature that enumeration methods have a great computational advantage over
optimization methods [Kerstens & Vanden, 1999]. Table 2 confirms that computational time for constructions of
isoquants is much less for enumeration method than for the method based on optimization algorithms. However,
there are a lot of standard optimization programs in scientific literature. For this reason it may be easier to
interface a new model with standard optimization solver than to develop new enumeration methods.
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