
A Bimatrix Game with Fuzzy Payoffs and Crisp Game

Konstantin N. Kudryavtsev
South Ural State University

Lenin prospekt, 76,
454080 Chelyabinsk, Russia

kudrkn@gmail.com

Irina S. Stabulit
Chelyabinsk State University
Bratiev Kashirinykh st., 129
454001 Chelyabinsk, Russia

irisku76@mail.ru
Viktor I. Ukhobotov

Chelyabinsk State University
Bratiev Kashirinykh st., 129
454001 Chelyabinsk, Russia

ukh@csu.ru

Abstract

In this paper we consider a bimatrix game with fuzzy payoffs. To
compare a fuzzy numbers, some different ordering operators can be
used. We define a Nash equilibrium in fuzzy game using the ordering
operator. The game with crisp payoffs is associated with the original
game. Here, a crisp payoffs are the operator’s value on a fuzzy payoff.
We propose the following statement: if the ordering operator is linear,
then the game with payoffs have same Nash equilibrium strategy profile
as the crisp game. We present an algorithm for constructing a Nash
equilibriumin in a bimatrix game with fuzzy payoffs and we are using
this fact. We use such ordering operators, and construct the Nash
equilibrium in examples of bimatrix games.

1 Introduction

Game theory takes an important role in decision making and actively is used for modeling the real world.
Applying game theory in real situations, it is difficult to have strict value of payoffs, because players are not able
to analyze some data of game and as a result, their information isn‘t complete. This lack of precision and certainty
may be modeled by different ways such as fuzzy games. Initially, fuzzy sets were used by [Butnariu, 1978] in
non-cooperative game theory. He used fuzzy sets to represent the belief of each player for strategies of other
players. Since then, fuzzy set theory has been used in many non-cooperative and cooperative games. Overview
of the results of fuzzy games are in [Larbani, 2009]. In recent past, various attempt have been made in fuzzy
bi-matrix game theory namely [Maeda, 2003], [Nayak, 2009], [Dutta, 2014], [Seikh et al., 2015]

In this paper, we present an approach that generalizes some other ideas ([Campos, 1989],
[Cunlin, 2011],[Dutta, 2014] at al.).
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2 Fuzzy Numbers

In this section, we recall some basic concepts and result of fuzzy numbers and fuzzy arithmetic operations. Here,
we follow [Zimmermann, 1996].

A fuzzy set is defined as a subset Ã of universal set X ⊆ R by its membership function µÃ(·) with assigns to
each element x ∈ R, a real number µÃ(x) in the interval [0, 1].

Definition 2.1. A fuzzy subset Ã defined on R, is said to be a fuzzy number if its membership function µÃ(x)
satisfies the following conditions:
(1) µÃ(x) : R → [0, 1] is upper semi-continuous;
(2) µÃ(x) = 0 outside some interval [a, d];
(3) There exist real numbers b, c such that a 6 b 6 c 6 d and

(a) µÃ(x) is monotonic increasing on [a, b];
(b) µÃ(x) is monotonic decreasing on [c, d];
(c) µÃ(x) = 1, ∀x ∈ [b, c].

The α-cut of a fuzzy number Ã plays an important role in parametric ordering of fuzzy numbers. The α-cut
or α-level set of a fuzzy number Ã, denoted by Ãα, is defined as Ãα = {x ∈ R | µÃ(x) > α} for all α ∈ (0, 1].

The support or 0-cut Ã0 is defined as the closure of the set Ã0 = {x ∈ R | µÃ(x) > 0}. Every α-cut is a closed

interval Ãα = [gÃ(α), GÃ(α)] ⊂ R, where gÃ(α) = inf{x ∈ R | µÃ(x) > α} and GÃ(α) = sup{x ∈ R | µÃ(x) > α}
for any α ∈ [0, 1].

We denote the sets of fuzzy number as F. Next, we use two types of fuzzy numbers.
Definition 2.2. Let Ã be a fuzzy number. If the membership function of Ã is given by

µÃ(x) =


x−a+l

l , for x ∈ [a− l, a],
a+r−x

r , for x ∈ [a, a+ r],
0, otherwise,

where, a, l and r are all real (crisp) numbers, and l, r are non-negative. Then Ã is called a triangular fuzzy
number, denoted by Ã = (a, l, r).

We denote the sets of triangular fuzzy number as F3.
Definition 2.3. Let Ã be a fuzzy number. If the membership function of Ã is given by

µÃ(x) =


x−a+l

l , for x ∈ [a− l, a],
1, for x ∈ [a, b]

b+r−x
r , for x ∈ [b, b+ r],
0, otherwise,

where, a, b, l and r are all real (crisp) numbers, and l, r are non-negative. Then Ã is called a trapezoidal fuzzy
number, denoted by Ã = (a, b, l, r). [a, b] is the core of Ã.

We denote the sets of trapezoidal fuzzy number as F4.
Let Ã = (a1, l1, r1) and B̃ = (a2, l2, r2) be two triangular fuzzy numbers. Then arithmetic operations on Ã

and B̃ are defined as follows:
Addition: Ã+ B̃ = C̃ = (a1 + a2, l1 + l2, r1 + r2), C̃ ∈ F3.
Scalar multiplication: ∀ k > 0, k ∈ R,

kÃ = (ka1, kl1, kr1), kÃ ∈ F3.

Let Ã = (a1, b1, l1, r1) and B̃ = (a2, b2, l2, r2) be two trapezoidal fuzzy numbers. Then arithmetic operations
on Ã and B̃ are defined as follows:

Addition: Ã+ B̃ = C̃ = (a1 + a2, b1 + b2, l1 + l2, r1 + r2), C̃ ∈ F4.
Scalar multiplication: ∀ k > 0, k ∈ R,

kÃ = (ka1, kb1, kl1, kr1), kÃ ∈ F4.

In general, let Ã and B̃ be two fuzzy numbers. If Ã+ B̃ = C̃, λÃ = D̃ and λ = const > 0, then

C̃α = [gÃ(α) + gB̃(α), GÃ(α) +GB̃(α)],
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and
D̃α = [λgÃ(α), λGÃ(α)]

for any α ∈ [0, 1].
Comparing of fuzzy numbers is a very important question. Various methods for comparing fuzzy numbers have

been proposed. For example, fuzzy numbers can be ranked using the defuzzification methods. A defuzzification is
the process of producing a real (crisp) value corresponding to a fuzzy number. In order to rank fuzzy numbers are
using the defuzzification approach, the fuzzy numbers are first defuzzified and then, the obtained crisp numbers
are ordered using the order relation of real numbers.

Yager in [Yager, 1981] introduced a function for ranking fuzzy subsets in unit interval, which is based on the
integral of mean of the α-cuts. Yager index is

Y (Ã) =
1

2

1∫
0

(gÃ(α) +GÃ(α)) dα.

Jain in [Jain, 1977], Baldwin and Guild in [Baldwin, 1979] were also suggested methods for ordering fuzzy
subsets in the unit interval.

Ibanez and Munoz in [Ibanez, 1989] have developed a subjective approach for ranking fuzzy numbers. In
[Ibanez, 1989], Ibanez and Munoz defined the following number as the average index for fuzzy number Ã

VP (Ã) =

∫
Y

fÃ(α)dP (α),

where Y is a subset of the unit interval and P is a probability distribution on Y . The definition of fÃ could be
subjective for decision maker.

Ukhobotov in [Ukhobotov, 2016] proposed the ordering operator

U(Ã, ν) =

1∫
0

((1− ν)gÃ(α) + νGÃ(α)) dα,

where crisp parameter ν ∈ [0, 1]. Different ν correspond to different behavior of the decision maker.
Some other defuzzification operators were given in [Basiura et al., 2015].

Definition 2.4. Let Ã and B̃ are a fuzzy numbers, T : F → R is the operator of defuzzification (T (·) = Y (·),
VP (·), U(·, ν) etc.).

We say that B̃ is preferable to Ã by the defuzzification operator T (Ã ≼T B̃) if and only if

T (Ã) 6 T (B̃).

The order relation ≼T depends on the defuzzification operator T . Next we give the example.
Example 2.1. Let Ã, B̃, C̃ ∈ F3, Ã = (50, 10, 20), B̃ = (55, 30, 12), C̃ = (52, 30, 30), T (·) = U(·, ν).
If X̃ = (a, l, r) ∈ F3, then

U(X̃, ν) = a+
νr − (1− ν)l

2
.

Next, if ν = 0, then U(Ã, 0) = 45, U(B̃, 0) = 40, U(C̃, 0) = 37. If ν = 1
2 , then U(Ã, 1

2 ) = 52, 5, U(B̃, 1
2 ) = 51, 5,

U(C̃, 1
2 ) = 52. If ν = 1, then U(Ã, 1) = 60, U(B̃, 1) = 61, U(C̃, 1) = 67.

Therefore,

C̃ ≼U(·,0) B̃ ≼U(·,0) Ã,

B̃ ≼U(·, 12 )
C̃ ≼U(·, 12 )

Ã,

Ã ≼U(·,1) B̃ ≼U(·,1) C̃.

Definition 2.5. If ∀ Ã, B̃ ∈ F, ∀ α, β = const

T (αÃ+ βB̃) = αT (Ã) + βT (B̃),

then the defuzzification operator T (·) is the linear defuzzification operator.
Clear, Yager index Y (·) and operator U(·, ν) is linear.
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3 Crisp Games

In this section, we present some basic definitions of non-cooperative game theory.

3.1 Noncooperative N-Person Games

Consider a non-cooperative game of N players in the class of pure strategies

Γ = ⟨N, {Xi}i∈N, {fi(x)}i∈N⟩, (1)

where N = 1, ..., N is the set of players’ serial numbers; each player i chooses and applies his own pure strategy
xi ∈ Xi ⊆ Rni , forming no coalition with the others, which induces a strategy profile

x = (x1, ..., xN ) ∈ X =
∏
i∈N

Xi ⊂ Rn (n =
∑
i∈N

ni);

for each i ∈ N, a payoff function fi(x) is defined on the strategy profile set X, which gives the payoff of
player i. fi(x) is payoff function of player i (i ∈ N). In addition, denote (x∥zi) = (x1, ..., xi−1, zi, xi+1, ...xN ),
f = (f1, ..., fN ).
Definition 3.1. A strategy profile xe = (xe

1, ..., x
e
N ) ∈ X is called a Nash equilibrium in the game (1) if

max
xi∈Xi

fi(x
e∥xi) = fi(x

e) (i ∈ N). (2)

The set of all {xe} in the game (1) will be designated by Xe.

3.2 Bimatrix Games

We consider a bimatrix game defined by a pair (A,B) of real m× n matrices. Matrices A and B are payoffs to
play I and II, respectively. The set of pure strategies of player I (matrix rows) is denoted by M and the set of
pure strategies of player II (columns) is denoted by N .

M = (1, . . . ,m), N = (1, . . . , n).

The sets of mixed strategies of the two players are called X and Y . For mixed strategies x and y, we want to
write expected payoffs as matrix products xAy and xBy, so that x should be a row vector and y should be a
column vector. That is,

X = {(x1, . . . , xm) | xi > 0 (∀i ∈ M),
∑
i∈M

xi = 1}

and
Y = {(y1, . . . , yn) | yj > 0 (∀j ∈ N),

∑
j∈N

yj = 1}.

Definition 3.2. A pair (xe, ye) ∈ X × Y is called a Nash equilibrium for the game (A,B) if

xeAye > xAye ∀x ∈ X,
xeBye > xeBy ∀y ∈ Y.

From [Nash, 1950] implies that the set of Nash equilibrium for a game (A,B) is non-empty.
We recall, a bimatrix game is a zero-sum bimatrix game if matrix B = −A. A solve of a zero-sum bimatrix

game is sadle-point.

4 Game with Fuzzy Payoffs

Further, we consider a non-cooperative N -person game

Γ̃ = ⟨N, {Xi}i∈N, {f̃i(x)}i∈N⟩, (3)

which differs from (1) only payoffs functions. In (3), a payoff function of player i is f̃i(x) : X → F. In addition,

Xi contains only a finite number of elements. Γ̃ is a finite game with fuzzy payoffs. If N = {1, 2}, then (3) is a
bimatrix game with fuzzy payoffs.
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To determine the concept of optimality, we must compare payoffs. We use some defuzzification operator T
(T (·) = Y (·), VP (·), U(·, ν) etc.). We propose the following definition.
Definition 4.1. A strategy profile xe = (xe

1, ..., x
e
N ) ∈ X is called a T (·)-Nash equilibrium in the game (3) if

fi(x
e∥xi) ≼T fi(x

e) (i ∈ N).

We note that the solutions, which defined in [Maeda, 2003], [Cunlin, 2011] and [Dutta, 2014], are particular cases
of Definition 4.1.

Next, we consider the associated crisp game for (3)

Γ̃c = ⟨N, {Xi}i∈N, {T (f̃i(x))}i∈N⟩. (4)

Theorem 4.1. Let xe is a Nash equilibrium in (4) and T (·) is a linear defuzzification operator, then xe is
T (·)-Nash equilibrium in a game (3).

For example, we consider one bimatrix game with a triangular fuzzy payoffs.
Example 4.1. Let Ã and B̃ are the triangular fuzzy payoff matrixes of the fuzzy bimatrix game Γ̃, given as
follows:

Ã =

(
(20, 5, 10) (5, 10, 5)
(5, 10, 5) (10, 5, 5)

)
, B̃ =

(
(10, 10, 5) (15, 5, 10)
(10, 10, 20) (5, 10, 5)

)
.

We use the operator U(·, ν).
If ν = 0, then the associated crisp game (4) given as follows

A =

(
17, 5 0
0 7, 5

)
, B =

(
5 12, 5
5 0

)
.

The mixed U(·, 0)-Nash equilibrium is xe = (xe
1, x

e
2), where xe

1 = ( 25 ,
3
5 ), x

e
2 = ( 3

10 ,
7
10 ).

If ν = 1
2 , then the associated crisp game (4) given as follows

A =

(
21, 25 3, 75
3, 75 10

)
, B =

(
8, 75 16, 25
12, 5 3, 75

)
.

The mixed U(·, 1
2 )-Nash equilibrium is xe = (xe

1, x
e
2), where xe

1 = ( 7
13 ,

6
13 ), x

e
2 = ( 5

19 ,
14
19 ).

If ν = 1, then the associated crisp game (4) given as follows

A =

(
25 7, 5
7, 5 12, 5

)
, B =

(
12, 5 20
20 7, 5

)
.

The mixed U(·, 1)-Nash equilibrium is xe = (xe
1, x

e
2), where xe

1 = ( 58 ,
3
8 ), x

e
2 = ( 29 ,

7
9 ).

To give another example: we consider one zero-sum bimatrix game with a trapezoidal fuzzy payoffs.
Example 4.2. Let Ã is the triangular fuzzy payoff matrixes of the fuzzy zero-sum bimatrix game Γ̃, given as
follows: (

(20, 30, 12, 8) (1, 5, 8, 4)
(5, 9, 20, 4) (10, 30, 8, 12)

)
.

We use the operator Y (·). The associated crisp game (4) given as follows

A =

(
24 2
3 19

)
.

The mixed Y (·)-Nash equilibrium is xe = (xe
1, x

e
2), where xe

1 = ( 8
19 ,

11
19 ), x

e
2 = ( 1738 ,

21
38 ).

5 Conclusion

In this article, we proposed a method for formalizing and constructing equilibria in fuzzy games. This method
generalized some already known methods. In the future, we plan to apply it for formalization a Berge equi-
librium [Zhukovskiy, 2017 a], a Pareto optimal Nash equilibrium [Zhukovskiy, 2016], [Kudryavtsev et al., 2016],
a coalition equilibrium [Zhukovskiy, 2017 b] in n-person games with fuzzy payoffs. Also, we will study games
under uncertainty [Zhukovskiy, 2013] with fuzzy payoffs.
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