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Abstract

This article is devoted to the use of a renewable resource based on its
withdrawal from the certain system, not leading to its destruction. Such
problems arise, for example, for resources that are managed by har-
vesting cohort-structured biological populations. Our aim is to present
a unified approach to modeling and managing such resource systems.
The purpose of optimization is to obtain the maximum admissible to-
tal effect of system exploitation. It is shown that this problem can be
reduced to some problem of mathematical programming.

1 Introduction

This work is devoted to problems of rational exploitation of ecological populations. Much of the research in this
area includes the use of matrix models (see the review, for example, in the book [Caswell, 2001]) to search for
the maximum operating regime for specific commercial populations (eg, in fisheries, forestry, etc.); a relatively
small group of papers is devoted to the theoretical study of resource management problems.

The problem of searching of the balanced (steady) level of operation of population, on the one hand, maximal in
these conditions, and, on the other hand, keeping its stable existence, was put and studied by many authors both
in theoretical researches, and in works of practical [Getz & Haight, 1989]. The concept of steady exploitation
variously was defined at different authors. G. Dunkel [Dunkel, 1970] introduced the concept of Sustainable Yield
and formulated the corresponding optimization problem. He proved the solvability of the optimization problem
in linear formulation. Doubleday [Doubleday, 1975] formalized some of the natural concepts and formulations
for the exploitation of ecosystems and proved the corresponding statements rigorously. He first noticed and
clearly formulated the connection between the issues of optimal exploitation of populations and the solution of
linear programming problems. The approach he proposed was later used by many authors in both theoretical
studies and practical work.

The characteristic property of optimal solutions of the proposed optimization problem was the number of
age classes to be exploited: it turned out that there necessarily exist optimal solutions having a maximum
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of two such classes. Early evidence of this property had a private, non-systemic character; later used lin-
ear programming methods. Apparently, these results were first obtained by R. Beddington, D. B. Taylor
[Beddington & Taylor, 1973] , and C. Rorres, W. Fair [Rorres & Fair, 1975]. Their authors established the
existence of bimodal optimal control, i.e. management, allowing the exploitation (withdrawal, partial or com-
plete) of not more than two age classes — a partial removing of one age class and a full removing the other (the
older). Such “two-age” strategies were obtained later by many authors not only for linear models, but also for
their generalizations with nonlinearities [Getz & Haight, 1989]. Approach to optimal exploitation, based on the
stationary structure of the population represented by an eigenvector corresponding to the dominant eigenvalue,
has long been a prevailing.

The first successful attempts of generalizations of these results to the case of density dependence associated
with the work of W. Reed [Reed, 1980], which dealt with the density-dependence only for the first age class.
This allowed them to decompose the problem into two parts, which respectively have been used methods of
linear or nonlinear optimization. It was found that the quality of this already non-linear optimization problem
is not fundamentally different from the corresponding linear, in the sense that the obtained optimal solutions
have “two-age” character too.

The task of optimizing the operation in this formulation — the task of finding the maximum balanced
(permissible, stable) level of operation was called Maximum Sustainable Yield Problem (MSY-Problem)
[Getz & Haight, 1989].

Attempts to investigate optimal strategies for general classes of discrete dynamical systems also continued.
So, in work [Smirnov, 1980], the asymptotic properties of system with constant additive control for the class of
concave separable mappings were characterized.

In this work, we proposed a general formulation of the stationary control of the system for a class of concave
mappings and reduce its solution to a solution of a certain mathematical programming problem.

2 Some Preliminary Results

We will use the following notation: Rq
+ denotes the non-negative orthant of the space Rq; x 5 y means y−x ∈ Rq

+;
x < y means y − x ∈ intRq

+; intM — the interior of the set M ; x ≤ y means x 5 y and x ̸= y; m,n = {i ∈
Z : m ≤ i ≤ n}; Z — the set of integers. Vectors x = (x1, x2, . . . , xq), F (x) = (f1(x), f2(x), . . . , fq(x)) will
be briefly written in the form x = (xi), F (x) = (fi(x)) respectively. The iterations of the map F are denoted
by F t(x) (t = 1, 2, . . .), F 0(x) ≡ x. All mappings considered further are monotonous (order-preserving), i.e.
x 5 y ⇒ F (x) 5 F (y) (∀x, y ∈ Rq

+).
It is supposed that there is an object (a system) whose state is described by vector x ∈ Rq

+. We assume that
the successive transitions of system states can be simulated by the iterative process:

xt+1 = F (xt), t = 0, 1, 2, . . . (1)

The detailed characteristics of the mapping F ∈ {Rq
+ 7→ Rq

+} are not available; however, we know its aggre-
gated properties. It is supposed that the mapping F is concave on Rq

+, hence, it is monotone. We assume that
the mapping F has the trivial fixed point: F (0) = 0.

We shall need the concept of irreducibility (indecomposability) of a mapping. Along with the classical
definition of the irreducibility [Nikaido, 1968], there exists its local aspect [Smirnov, 2016c]. The mapping
F ∈ {Rq

+ 7→ Rq
+} is called reducible at the point y ∈ Rq

+, if

∃x ∈ Rq
+ : x ≥ y, I0(x, y) ̸= ∅, I0(x, y) ⊆ I0(F (x), F (y)).

The mapping, reducible at every point of the set M is called reducible on the set M . Accordingly monotone
mapping F ∈ {Rq

+ 7→ Rq
+} is called irreducible at point of y, if

∀x ∈ Rq
+ : x ≥ y, I0(x, y) ̸= ∅ ⇒ I0(x, y) ∩ I+(F (x), F (y)) ̸= ∅.

The mapping, irreducible at every point of the set M is called irreducible on the set M .
We consider separately the case of irreducibility of the mapping at the point y = 0. The mapping F ∈ {Rq

+ 7→
Rq

+} is called reducible at point y = 0 (reducible at zero), if

∃x ∈ Rq
+ : x ≥ 0, I0(x) ̸= ∅, I0(x) ⊆ I0(F (x)). (2)
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Accordingly monotone mapping F ∈ {Rq
+ 7→ Rq

+} is called irreducible at point y = 0 (irreducible at zero), if

∀x ∈ Rq
+ : x ≥ 0, I0(x) ̸= ∅ ⇒ I0(x) ∩ I+(F (x)) ̸= ∅. (3)

An irreducible mapping in the sense [Nikaido, 1968] will be called globally irreducible. It is clear that the
global irreducibility of a mapping means irreducibility at any point Rq

+ and, in particular, irreducibility at zero.
The mapping F ∈ {Rq

+ 7→ Rq
+} is called primitive in point y ∈ Rq

+ [Nikaido, 1968] if for every x ≥ y holds
the inequality F k(x) > F k(y) for some integer non-negative k. Here F k denotes the iteration of the mapping F ;
F 0(x) ≡ x.

Irreducibility at zero is a weaker property in comparison with the primitivity at zero [Smirnov, 2016b,
Lemma 2.1.12]. Nevertheless, irreducibility at zero also guarantees the positiveness of non-zero fixed points.
This important property holds for any mappings that are irreducible at zero.

The conditions for local irreducibility of subhomogeneous mappings and their properties are considered in the
paper [Mazurov & Smirnov, 2016a], like some conditions for the coincidence of the concept of irreducibility at
zero with the concept of global irreducibility.

It will be recalled that the mapping F ∈ {Rq
+ 7→ Rq

+} is called subhomogeneous [Lemmens & Nussbaum, 2012]
if

F (αx) = αF (x) (∀x ∈ Rq
+, α ∈ [0, 1]). (4)

Note that concave mapping F ∈ {Rq
+ 7→ Rq

+} is monotone subhomogeneous mapping.
A monotone subhomogeneous mapping is nonexpansive in the Birkhoff-Thompson metric

[Lemmens & Nussbaum, 2012] (and, consequently, continuously) on the interior of a positive cone in a
Banach space, in particular, on intRq

+. Furthermore, a subhomogeneous monotone mapping always has a
continuous extension, in the case of the space Rq, to the whole cone Rq

+ [Lemmens & Nussbaum, 2012, Lemma
5.1.5]; so we can consider a monotone monotone mapping as continuous on the whole Rq

+.
It is easy to show that subhomogeneity equivalent to the property

F (βx) 5 βF (x) (∀x ∈ Rq
+, β ∈ (1,+∞)). (5)

The properties (4), (5) means that can be defined positively homogeneous of the first degree mapping

F0(x) = lim
α→+0

α−1F (αx), F∞(x) = lim
α→+∞

α−1F (αx), (6)

It was shown [Smirnov, 2016b] that the condition

λ(F∞) < 1 < λ(F0) (7)

is sufficient for existence of a nonzero fixed point of the subhomogeneous monotone mapping F . Here λ(H) is
the dominant eigenvalue of the positive-homogeneous mapping H [Nikaido, 1968]. If, in addition, the primitivity
condition of the mapping F on the set KF is satisfied, then the iterative process (1) is convergent to an element of
the set of positive fixed points of the mapping F from any nonzero initial state x(0). Here cone KF is generated
by the set of the nonzero fixed point of the mapping F [Smirnov, 2016b].

We shall assume for simplicity that the non-zero fixed point of the mapping F is unique. If this point is also
positive, then the iterative process (1) converges to it regardless of the choice of nonzero initial vector in the
absence of primitivity requirement. The positiveness of a non-zero fixed point will be ensured by the requirement
that the mapping F be irreducible at zero.

3 The Optimization Problem Formulation and Its Reduction to the Convex
Programming Problem

Suppose that the system to be operated in the absence of control is functioning according to law (1), where the
mapping F is concave, irreducible at zero, and satisfies condition (7), which, as noted above, guarantees the
existence of positive fixed point x̄F of the mapping F which is assumed to be unique. If the exploitation of this
system is understood as the removal of a certain number of its elements, the operation of such a managed system
can be specified in the form of an iterative process

xt+1 = Fu(xt), t = 0, 1, 2, . . . , (8)
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where x = (x1, x2, . . . , xq), u = (u1, u2, . . . , uq), Fu(x) = (F (x) − u)+, a+ = max{a, 0}, x+ = (x+
i ). The

realization of this iterative process with the initial vector x0 will be denoted by {xt(x0, u)}+∞
t=0 , xt(x0, u) =

(xi
t(x0, u)).

The purpose of optimization is to obtain the maximum admissible total effect of system exploitation: determine

c̃ = max{c(u) : u ∈ Ū}, (9)

where the monotone convex c(u) determine the total effect of using of system elements in the quantities
u1, u2, . . . , uq and the set Ū is the closure of the set

U = {u ∈ Rq
+ : X0(u) ̸= ∅}, (10)

of controls.

The control vector u is considered as admissible if there is at least one initial state x0 of the iterative process
(8), for which all units of the system stably exist for an indefinitely long time:

X0(u) = {x0 ∈ Rq
+ : inf

t
xi
t(x0, u) > 0 (∀i ∈ 1, q)}, (11)

Thus, the size of each unit of the system should not decrease with time to zero. As can be seen from this
definition, the set U formalizes the requirement of the indestructability of the managed object.

Unfortunately, the set U defined by (10) is not always closed, so, in the problem (9), its closure is considered
as an admissible set.

We will only be interested in the positive realizations of the iterative process (8), when xt(x0, u) > 0 (∀t =
1, 2, . . .). In this case Fu(x) = F (x)− u.

Denote by ũ and Ũ the optimal set and optimal vector of problem (9), respectively; and by Nu and N+
u the

sets of nonzero fixed points and positive fixed points of the mapping Fu , respectively.

We give the following auxiliary assertion characterizing the properties of the set U and the connection between
the fixed points of the mappings F and Fu.

Lemma 1. Suppose that the mapping F is concave on Rq
+ and the condition (7) is satisfied. Then the following

properties hold:

(1) u ∈ U, 0 5 v 5 u ⇒ v ∈ U ;

(2) u = 0 ⇒ xu 5 x̄F ; u > 0 ⇒ xu < x̄F (∀xu ∈ Nu);

(3) Nu ̸= ∅, 0 5 v 5 u ⇒ Nv ̸= ∅; Nu ̸= ∅, 0 5 v < u ⇒ N+
v ̸= ∅; N+

u ̸= ∅, 0 5 v 5 u ⇒ N+
v ̸= ∅;

(4) Nu ̸= ∅ ⇒ ∃ x̄u ∈ Nu : xu 5 x̄u (∀xu ∈ Nu);

(5) Nu = ∅ ⇒ limt→+∞ xt(x0, u) = 0; Nu ̸= ∅, x0 = x̄u ⇒ limt→+∞ xt(x0, u) = x̄u;

(6) Nu ̸= ∅, 0 5 v 5 u ⇒ x̄v = x̄u; Nu ̸= ∅, 0 5 v < u ⇒ x̄v > x̄u;

(7) u = 0 ⇒ x̄u 5 x̄F ; u > 0 ⇒ x̄u < x̄F .

As we see, in the case Nu ̸= ∅ among the fixed points of the mapping Fu there exists the largest element -
the fixed point x̄u, and the iterative process (8) converges to x̄u, if the initial vector x0 = x̄u. Thus, this level of
system exploitation allows it to stably exist unlimitedly for a long time.

We note that the existence of a positive fixed point of the mapping F ensures that U ̸= ∅, since 0 ∈ U . But
the question arises whether the set U contains positive vectors. The answer to this question is given by the
following statement.

Lemma 2. Suppose that the mapping F is concave on Rq
+, irreducible at zero and the condition (7) is satisfied.

Then the set U contains a positive vector. Moreover, the set U together with each positive vector u also contains
the segment [0, u].
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Proof. Since the mapping F is irreducible at zero, the condition λ(F0) > 1 implies the existence of the vector
x0 > 0 for which F (x0) > x0 [Smirnov, 2016b, Lemma 2.2.5]. Therefore, for sufficiently small u > 0 is also true
the inequality Fu(x0) > x0. Because of the monotonicity of the map F , this means that (Fu)

t(x0) > x0 (∀t =
1, 2, . . .), i.e. x0 ∈ X0(u), so X0(u) ̸= ∅. It means that u ∈ U . Further, the segment [0, u] ⊂ U by virtue of the
property (1) of the previous lemma. Proof is complete.

We have the following characterization of the set U .

Lemma 3. Suppose that the mapping F is concave on Rq
+, globally irreducible and the condition (7) is satisfied.

Then the following equality hold:
U = {u ∈ Rq

+ : N+
u ̸= ∅}, (12)

Proof. If U = ∅, then N+
u = ∅, since otherwise x̄u ∈ X0(u). If U ̸= ∅ and u ∈ U , then, according to the

definition of the set U , we have X0(u) ̸= ∅. This means the existence of vectors x0 ∈ X0(u), e > 0 satisfying the
inequalities (Fu)

t(x0) = e (∀t = 1, 2, . . .). By virtue of the inequality λ(F∞) < 1, there exists a vector x̄ = x0

that satisfies the inequality F (x̄) < x̄. For this vector, we have (Fu)
t(x̄) = (Fu)

t(x0) = e > 0 (∀t = 1, 2, . . .), so
that the sequence {(Fu)

t(x̄)}+∞
t=0 is positive and separated from zero. It follows from the inequalities Fu(x̄) =

F (x̄)− u 5 (x̄)− u 5 x̄ that this sequence is also monotonically decreasing and therefore converges to a certain
vector ȳ = e > 0. This means that ȳ ∈ N+

u , i.e. N+
u ̸= ∅. The assertion is proved.

As the following assertion shows, the set U (and hence the set Ū) is convex.

Lemma 4. Suppose that the mapping F is concave on Rq
+, irreducible at zero and the condition (7) is satisfied.

Then the set U is bounded and convex.

Proof. The boundedness of the set follows from assertion (7) of Lemma 1. Indeed, for any u ∈ U we have:
u 5 xu + u = F (xu) 5 F (x̄F ) = x̄F , i.e. u 5 x̄F (∀u ∈ U).

We now prove the convexity of the set U . If u1, u2 ∈ U and x1 ∈ N+
u1 , x2 ∈ N+

u2 , then x1 > 0, x2 > 0 ,
Fu1(x1) = x1 > 0, Fu2(x2) = x2 > 0. Let u = (1−α)u1 +αu2, x = (1−α)x1 +αx2, where α ∈ [0, 1]. Since F is
concave, we have:
F (x)− u = (1− α)F (x1) + αF (x2)− (1− α)u1 − αu2 = (1− α)Fu1(x1) + αFu2(x2) = (1− α)x1 + αx2 = x > 0.
Therefore F (x) − u > 0 and Fu(x) = F (x) − u = x. Hence, since the mapping F is monotone, the sequence
{(Fu)

t(x)}+∞
t=0 is monotonically increasing. It is also bounded as from inequalities x1 5 x̄F , x

2 5 x̄F it follows
that x 5 x̄F , Fu(x) 5 Fu(x̄F ) 5 F (x̄F ) = x̄F , so that (Fu)

t(x) 5 x̄F (∀t = 1, 2, . . .). Thus, the sequence
{(Fu)

t(x)}+∞
t=0 is monotonically increasing and bounded and, consequently, converges to a finite limit x̄ = x > 0

belonging, by virtue of its positivity, to the set N+
u . This means, in accordance with the representation (12),

that the vector u = (1− α)u1 + αu2 ∈ U . The proof is complete.

By applying previous statements, we obtain the following consequence.

Lemma 5. Suppose that the mapping F is concave on Rq
+, irreducible at zero and the condition (7) is satisfied.

Then the following equality hold:
Ū = {u ∈ Rq

+ : Nu ̸= ∅}. (13)

Using this result, we can to obtain the following assertion reducing the solution of the problem (9) to the
solution of a problem of mathematical programming

Theorem. Suppose that the mapping F is concave on Rq
+, irreducible at zero and the condition (7) is satisfied.

Then the problem of mathematical programming

max{c(u) : x = F (x)− u, x = 0, u = 0} (14)

is solvable in the sense that c̃ < +∞ and this value is attained on certain admissible vectors ũ, x̃.
Moreover, c̃, ũ is a solution of problem (9) if and only if c̃, ũ, x̃ is a solution of problem (14).

4 Conclusion

For a wide class of ecosystem models represented by iterative processes with concave mapping as the step
operator, we proposed a general approach to formalization of the problem of their stable exploitation. Note that
specific varieties of concave mappings are often used in ecosystem modeling, since they reflect the effect of the
limited resources of real natural ecosystems.
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We note the following important circumstance. From the problem (9), which is transparent from the point of
view of interpretation, but does not give constructive approaches to the solution, we turned to the problem of
mathematical programming (14), the methods of solving which are well known.

For specific classes of models that are in demand at present in the study of natural ecosystems, the solution
of the problem of mathematical programming (14) can be substantially simplified. This is true, in particular, for
the generalization of the classical Leslie model of the age structure of the population proposed and investigated in
[Smirnov, 2010]. This generalization takes place in two directions: firstly, a population with a binary structure is
considered (i.e., there is a partition of one more feature besides age), and secondly, the dependence of the numbers
of the initial age classes of these additional population subdivisions on the population density is described by
subhomogeneous function. In the case of using this generalization, the problem (14) with a linear objective
function can be considered as a set of linear programming problems that depend on a numerical parameter. This
allows us to obtain a fairly simple algorithm for solving it, based on the transition to the dual linear programming
problem.

We note that in this paper additive control is considered, in contrast to the above-mentioned research on the
exploitation of populations using multiplicative control, when a certain fraction of each of the subdivision of the
population is removed. It seems to us that the use of additive control for problems of stable exploitation is more
natural and realistic.

Unfortunately, passing from the set U of positive trajectories of the iterative process (8) to its closure in the
problem (14), we can no longer guarantee the positivity of the optimal vector x. Nevertheless, for certain classes
of mappings F , one can guarantee the existence of positive optimal solutions x of this problem. In particular,
this is true for the generalization of the Leslie model [Smirnov, 2010] mentioned above with the concave map as
the step operator.

All of the above allows us to hope that the approach we proposed to formalize the notion of rational exploitation
of populations will be useful both for the development of theoretical models of ecological systems and for the
solving specific problems of nature management.
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