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Abstract

We study Newton’s method and method based on linearization for
solving quasi-variational inequalities in a finite-dimensional real vec-
tor space. Projection methods were the most studied methods for
solving quasi-variational inequalities and they have linear rates of the
convergence. In the paper we establish sufficient conditions for the
convergence of Newton’s method and method of linearization, derive
an estimates of the rate of their convergence.

1 Introduction

The theory and methods for solving variational inequalities are thoroughly treated in the scientific litera-
ture. An important generalization of variational inequalities are quasi-variational inequalities. Quasi-variational
inequalities were introduced in the impulse control theory [Bensoussan et al., 1973]. If we require that the
convex set, which is involved in the variational inequality also depends on the solution, then the vari-
ational inequality becomes the quasi-variational inequality. A thorough study of these problems can be
found in [Baiocchi et al., 1984, Mosco, 1976]. In recent years the theory of quasi-variational inequalities at-
tracts considerable interest of scientists. This theory develops mathematical tools for solving a wide range
of problems in game, equilibrium and optimization theory. In particular, quasi-variational inequalities can
be used to formulate generalized games (in sense of Nash) in which the strategy set of each player de-
pends on the strategies of other players. Other applications of quasi-variational inequalities can be found in
[Bliemer et al., 2003, Harker, 1991, Pang et al., 2005].

From the point of view of solution methods, quasi-variational inequalities do not have an extensive literature.
The existence and approximation theories for quasi-variational inequalities require that a variational inequality
and a fixed point problem should be solved simultaneously. Consequently, many solution techniques for varia-
tional inequalities have not been adapted for quasi-variational inequalities, and there are many questions to be
answered.

There are several approaches to the solution of variational inequality problem. One of these, based
on the gradient method, has been used as the basis of modifications intended for the solution of quasi-
variational inequality problem. Some methods for solving quasi-variational inequalities was considered
in [Antipin et al., 2011, Antipin et al., 2013, Facchinei et al., 2015, Nesterov et al, 2011, Mijajlovic et al., 2015,
Outrata et al.,1995, Ryazantseva, 2007].
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The paper is organized as follows. In the second section, we introduce the problem of quasi-variational
inequality and recall the main known results that will be used in the next sections. In the third section, we present
a first-order iterative method based on exterior linearization for solving quasi-variational inequalities. Some other
methods based on linearization for minimiziation problems were described in [Antipin et al., 1994, Ciric, 1987].
For now, we do not know that somebody discussed linearized method for solving quasi-variational inequality. In
the first part of this section we formulate sufficient conditions for the convergence. In the next theorem we give
the estimate of the rate of convergence of the proposed method. The last section contains the Newton’s method
for solving quasi-variational inequalities in the case of the moving set.

2 Preliminaries

In this paper we denote by E a finite-dimensional real vector space. The operator F : E → E is strongly
monotone if

⟨F (u)− F (v), u− v⟩ ≥ µ∥u− v∥2, ∀u, v ∈ E, (1)

and Lipschitz continuous if
∥F (u)− F (v)∥ ≤ L∥u− v∥, ∀u, v ∈ E. (2)

The constant µ ≥ 0 is a parameter of strong monotonicity of operator F , and L is a parameter of Lipschitz
continuity. If µ = 0, then F is a monotone operator. From the definitions (1) and (2), it is clear that µ ≤ L.

The problem of our interest is the following quasi-variational inequality: find x∗ ∈ C(x∗) for which

⟨F (x∗), y − x∗⟩ ≥ 0, ∀y ∈ C(x∗), (3)

where C : E 7→ 2E is a set valued mapping with non-empty closed convex values C(x) ⊆ E for all x in E.
If C(x) = C then quasi-variational inequality (3) becomes a conventional variational inequality. It is well

known that if F (x) = f ′(x) is a potential operator, then this variational inequality can be interpreted as a
necessary condition of optimality in the problem of minimizing the function f on the set C.

In the study of convergence of our methods, we will also use the following theorem:

Theorem 2.1 [Vasiliev, 2002] Let be operator F : E → E strongly monotone with parameter µ > 0 and Lipschitz
continuous with Lipschitz constant L > 0. Then

∥F (x)− F (y)∥2 + µL∥x− y∥2 ≤ (L+ µ)⟨F (x)− F (y), x− y⟩, ∀x, y ∈ E

holds.

By PC(x) we denote the Euclidean projection of point x onto the set C. The necessary and sufficient character-
izations of the projection are as follows:

PC(x) ∈ C,
⟨PC(x)− x, z − PC(x)⟩ ≥ 0 ∀z ∈ C.

In what follows, we will use known fixed point reformulation of the quasi-variational inequality (3):

Lemma 2.2 Let C(x) be a closed convex valued set in E, for all x ∈ E. Then x∗ ∈ C(x∗) is solution of problem
(3) if and only if

x∗ = PC(x∗)[x∗ − αF (x∗)]. (4)

The geometric meaning of (4) is simple: a step along the F (x∗) from the point x∗ after the projection again
reaches the point x∗. The discrepancy πC(x)(x−αF (x))−x can be regarded as a transformation of space E into
E. This transformation defines a vector field. Formally, the problem can be described by

xk+1 = πC(xk)[xk − αkF (xk)], k ≥ 0, (5)

where initial point x0 ∈ E is given, αk, k ≥ 0 is parameter of the method.
Computational experience has shown that application of the projection is justified if C(x) is a simple set. But,

if the admissible set has a complicated structure, projection becomes too complex operation, in which case it is
better to approximate the set C(x) by family of simpler sets. It seems natural to take approximating families of
the admissible set as the family of polygons for an exterior approximation.
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The theorem of existence of solutions shows a notable difference between variational and quasi-variational
inequalities. For example, if F is strongly monotone and Lipschitz continuous on a closed and convex set, then
the variational inequality has a unique solution. On the other hand, the following statement is the first result
related to the existence of solutions of quasi-variational inequalities (3):

Theorem 2.3 [Noor et al.,1994] If the map F is Lipschitz continuous and strongly monotone on E with con-
stants L and µ > 0, respectively, and C is a set-valued mapping with nonempty closed and convex values such
that

∥PC(x)(z)− PC(y)(z)∥ ≤ l∥x− y∥, l +
√
1− µ2/L2 < 1, ∀ x, y, z ∈ E. (6)

then the problem (3) has a unique solution.

Nesterov and Scrimali [Nesterov et al, 2011] proved that in (6) is sufficient to require l < µ
L . Now we mention

that assumption (6) is a kind of strengthening of the contraction property for multifunction C(x). An example
of such a mapping is given in the following lemma:

Theorem 2.4 [Nesterov et al, 2011] Let function c : E → E be Lipschitz continuous with Lipschitz constant l
and set C0 be a closed convex set. Then

C(x) := c(x) + C0 (7)

satisfies (6) with the same value of l.

This case of quasi-variational inequalities is most often discussed in the literature and it is known as the moving
set. In the last section we will consider Newton’s method for solving quasi-variational inequalities in the case of
moving set.

3 Linearization Method

Let X ⊂ E be defined by

X = {x ∈ E : x ∈ C(x)} = {x ∈ E : gi(x, x) ≤ 0, i = 1, 2, . . . ,m}.

This set is called the feasible set of quasi-variational inequality (3). Let us suppose that solution set of quasi-
variational inequality (3) is non-empty

X∗ = {x∗ ∈ X : ⟨F (x∗), y − x∗⟩ ≥ 0, ∀y ∈ C(x∗)} ̸= ∅.

In the theorems 2.3 and 2.4 are given sufficient conditions for X∗ ̸= ∅.
In the most practical settings, the set valued mapping C is defined through a parametric set of inequality

constraints [Facchinei et al., 2014, Fukushima, 2007]:

C(x) = {y ∈ E : gi(x, y) ≤ 0, i = 1, . . . ,m}, (8)

where gi : E×E → R, for all i = 1, . . . ,m. We will suppose that gi(x, ·) are convex and continuously differentiable
on E, for each x ∈ E and for each i = 1, . . . ,m.

The convexity of gi(x, ·) is obviously needed in order to guarantee that C(x) be convex, while we require the
differentiability assumption to be able to write down the KKT conditions of the quasi-variational inequality (3).
Let us remark that a point x∗ ∈ E satisfies the KKT conditions if multipliers λ∗ = (λ∗

1, . . . , λ
m
∗ ) ∈ Rm

+ exist such
that ⟨

F (x∗) +
m∑
i=1

λ∗
i ∂2gi(x∗, x∗), y − x∗

⟩
≥ 0, ∀y ∈ E,

gi(x∗, x∗) ≤ 0, i = 1, . . . ,m
m∑
i=1

λ∗
i gi(x∗, x∗) = 0,

(9)

Note that gi(x∗, x∗) ≤ 0 for each i = 1, . . . ,m, means that x∗ ∈ C(x∗). In [Facchinei et al., 2014] was proven the
following theorem
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Theorem 3.1 Suppose that gi(x, ·) are convex and continuously differentiable on E, for each x ∈ E and for each
i = 1, . . . ,m. If a point x∗, together with a suitable vector λ∗ ∈ Rm

+ of multipliers, satisfies the KKT system (9),
then x∗ is a solution of the quasi-variational inequlity (3). Vice versa, if x∗ is a solution of the quasi-variational
inequlity (3) and the constraints gi, i = 1, . . . ,m, satisfy the Slater’s condition, then multipliers exist such that
the pair (x∗, λ

∗) satisfies the KKT conditions (9).

To construct sequence {xk}, we use the idea of the approximation of the given set C(x) from outside by
polyhedron CL(x)

CL(x) = {y ∈ H : gi(x, x) + ⟨∂2gi(x, x), y − x⟩ ≤ 0, i = 1, . . .m}.
Now, (5) replace with

xk+1 = πCL(xk)[xk − αkF (xk)], k ≥ 0. (10)

Let us remark that for every k ≥ 0, C(xk) ⊆ CL(xk) ⊆ E. This implies that the closed convex set CL(xk) ⊆ E
is non empty and projection in (10) is well defined. Now, the set X can be written as (see [Fukushima, 2007])

X = {x ∈ E : x ∈ CL(x)}.

According to the properties of the projecting operator ([Vasiliev, 2002], p. 183), the relation (10) is equivalent
to the following variational inequality

⟨xk+1 − xk + αkF (xk), xk+1 − z⟩ ≥ 0, z ∈ Γ(xk), k ≥ 0.

In the following theorem we establish sufficient conditions for the convergence of the proposed method (10).

Theorem 3.2 Suppose that the following conditions are fulfilled:
1) Functions gi(x, ·) are convex, differentiable and satisfy the Slater’s condition, ∂2gi(x, x) are Lipschitz con-

tinuous with common constant L, for all i = 1, . . . ,m.
2) F : E → E is Lipschitz continuous with the same Lipschitz constant L and monotone operator.
3) Solution set X∗ of quasi-variational inequality (3) is not empty.
4) Sequence {αk} satisfies the following conditions:

0 < α ≤ αk ≤ ᾱ, ∀k ≥ 0, ᾱ <
2

L(1 + 2∥λ∗∥)
,

where α and ᾱ are positive real number such that α ≤ ᾱ.
Then the set {xk : k ≥ 0} is bounded and

lim inf
k→∞

∥xk+1 − xk∥ = 0,

and there exists a point x∞ ∈ X∗ such that

lim
k→∞

∥xk − x∞∥ = 0.

Now, we consider strongly monotone operator F . In this case we suppose that quasi-variational inequality (3)
has unique solution, i. e. X∗ = {x∗}. In the following theorem we give an estimate of convergence rate of the
proposed method.

Theorem 3.3 Suppose that the following conditions are fulfilled:
1) Functions gi(x, ·) are convex, differentiable and satisfy the Slater’s condition, ∂2gi(x, x) are Lipschitz con-

tinuous with constant L, for all i = 1, . . . ,m.
2) F : E → E is Lipschitz continuous with constant L and strongly monotone operator with constant µ > 0.
3) Solution set X∗ = {x∗}.
4) Sequence {αk} satisfies:

0 < α ≤ αk ≤ ᾱ ∀k ≥ 0 and ᾱ < min

{
1

L+ µ
,

1

2L∥λ∗∥

}
.

Then
∥xk+1 − x∗∥2 ≤ qk(α, ᾱ)∥x0 − x∗∥2,

where

q(α, ᾱ) =
1 + 6ᾱL∥λ∗∥+ 8ᾱ2µ2 − 8αµ

10− 12ᾱL∥λ∗∥2
.
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4 Newthon’s Method

It is well known that Newton method for solving nonlinear equations and unconstrained minimization problems
converges quadratically. First attempt to generalize Newton method to solve variational inequality problems was
made by [Josephy, 1979]. If we turn our attention to local Newton-type methods for quasi-variational inequalities,
the pioneering work was done in [Outrata et al.,1995]. In [Facchinei et al., 2015] also has been considered the
application of the one variant of Newton method for some classes of quasi-variational inequalities. Here, we
propose one different variant of Newton method for quasi-variational inequalities in the case of the moving set.
We consider quasi-variational inequality (3) when the set valued mapping C(x) is given by (4), i.e.

C(x) := c(x) + C0,

where c : E → E is Lipschitz continuous with Lipschitz constant l and set C0 is a closed convex set in E.

Algorithm 4.1. Newton method generates a sequence {xk}, where x0 is chosen in E and xk+1 is determined
to be a solution of the quasi-variational inequality problem obtained by linearizing F at the current iterate xk,
i.e., xk+1 − c(xk+1) ∈ C0 and

⟨F (xk) + F ′(xk)(xk+1 − xk), z − xk+1⟩ ≥ 0, (11)

for all z such that z − c(xk+1) ∈ C0.

The strongly monotonicity of F ensures that the linearized problem (11) always has a unique solution z. The
linearized problem (11) is usually easier to solve than the original problem (3). Algorithm 4.1 is an implicit
type Newton method, which is difficult to implement. It is possible to consider other variant of this method, for
example:

Algorithm 4.2. For given x0 ∈ E, find the approximate solution by solving the variational inequality
obtained by linearizing F at the current iterate xk, i.e., xk+1 ∈ C(xk) and

⟨F (xk) + F ′(xk)(xk+1 − xk), z − xk+1⟩ ≥ 0,

for all z ∈ C(xk).

It will be proven that, under suitable assumptions, the sequence generated by Newton method (11) quadrati-
cally converges to a solution x∗ of the original problem (3), if the starting point x0 is chosen sufficiently close to
the solution x∗ of quasi-variational inequality (3).

Theorem 4.1 Suppose that the following conditions are fulfilled:

1. Operator F : E → E is strongly monotone with parameter of strong monotonicity µ > 0, Lipschitz continuous
with constant L and

∥F ′(x)∥ ≤ L, ∀x ∈ E,

2. C0 ⊂ E is closed, convex set in a finite-dimensional real space E, function c : E → E is Lipschitz continuous
with constant l < µ/L and multifunction C : E → 2E has a form C(x) := c(x) + C0, (x ∈ E);

3. Initial approximation x0 ∈ E satisfy

q =
L(1 + l)

2(µ− lL)
∥x0 − x∗∥ < 1,

where x∗ is a solution of quasi-variational inequality (3).

Then, sequence (xk) from (11) exists and converges to the unique solution x∗ of quasi-variational inequality (3)
and the following estimate is valid

∥xk − x∗∥ ≤ 2(µ− lL)

L(1 + l)
q2

k

, k = 0, 1, . . .
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