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Abstract

This paper addresses the bilevel programming problems (BPPs) with
the quadratic objective functions at the upper and the lower lev-
els. The new solution method for such BPPs is developed. The
main feature of the approach proposed is employment of the original
A.S. Strekalovsky’s Global Search Theory. Numerical testing of the
method on specially constructed instances demonstrated the efficiency
of the approach.

1 Introduction

A hierarchy has been one of the most principal paradigms in mathematical programming in recent years. De-
velopment of the new efficient numerical methods for solving different classes of bilevel programming problems
(BPPs) is a challenge in the modern theory and methods of Mathematical Optimization [Pang, 2010].

In this work we investigate the BPPs with the quadratic objective functions at the upper and the lower levels.
The solution method for such BPPs is based on the equivalent representation of a quadratic bilevel problem
as a nonconvex optimization problem. For this purpose, we use the optimality conditions for the lower level
problem and the penalty approach [Dempe, 2002]. To solve the resulting nonconvex problem, we apply the
special A.S. Strekalovsky’s Global Search Theory [Strekalovsky, 2003, Strekalovsky, 2014].

The field of test quadratic bilevel problems is constructed according to the approach by Calamai and Vicente
[Calamai & Vicente, 1994]. It allows us to build problems of various dimension and complexity. The final section
of the paper presents and analyzes the results of numerical solution of generated problems.

2 Problem Formulation and Its Reduction

Consider the following quadratic-quadratic problem of bilevel optimization in its optimistic statement. In this
case, according to the theory [Dempe, 2002], at the upper level we perform the minimization with respect to the
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variables of both levels which are in cooperation:

F (x, y) :=
1

2
⟨x,Cx⟩+ ⟨c, x⟩+ 1

2
⟨y,Dy⟩+ ⟨d, y⟩ ↓ min

x,y
,

x ∈ X := {x ∈ IRm|Ax ≤ b},
y ∈ Y∗(x) := Argmin

y
{1
2
⟨y,D1y⟩+ ⟨d1, y⟩+ ⟨x,Qy⟩| y ∈ Y (x)},

Y (x)
△
={y ∈ IRn|A1x+B1y ≤ b1},


(QBP)

where A ∈ IRp×m, A1 ∈ IRq×m, B1 ∈ IRq×n, C ∈ IRm×m, D,D1 ∈ IRn×n, Q ∈ IRm×n, c ∈ IRm, d, d1 ∈ IRn,
b ∈ IRp, b1 ∈ IRq. Additionally, C = CT ≥ 0, D = DT ≥ 0, D1 = DT

1 ≥ 0.
Here we will present a brief scheme of the reduction bilevel problem (QBP) to a single-level problem. Addi-

tional details about this issue can be found in [Orlov, 2017].
According to the well known KKT-approach [Dempe, 2002, Strekalovsky et al., 2010], we can reduce Problem

(QBP) to the following single-level problem replacing the lower level problem in (QBP) with its optimality
conditions:

F (x, y) ↓ min
x,y,v

, Ax ≤ b,

D1y + d1 + xQ+ vB1 = 0, v ≥ 0, A1x+B1y ≤ b1, ⟨v,A1x+B1y − b1⟩ = 0,

}
(DCC)

where the variable v is the vector of Lagrange multipliers.
The next step of our reduction is to use the so-called penalty approach [Dempe, 2002]. Thus we obtain the

following σ-parametrized nonconvex problem with a convex feasible set:

Φ(x, y, v) :=
1

2
⟨x,Cx⟩+ ⟨c, x⟩+ 1

2
⟨y,Dy⟩+ ⟨d, y⟩+ σ ⟨v, b1 −A1x−B1y⟩ ↓ min

x,y,v
, (x, y, v) ∈ D, (DC(σ))

where σ > 0 is a penalty parameter and D := {(x, y, v) | Ax ≤ b, D1y + d1 + xQ + vB1 = 0, v ≥ 0,
A1x+B1y ≤ b1}. We can prove the standard results about the connection between problems (DCC) and (DC(σ))
[Dempe, 2002, Strekalovsky et al., 2010]. In particular, if the triplet (x(σ), y(σ), v(σ)) is a solution of problem
(DC(σ)) and ⟨v(σ), b1 − A1x(σ) − B1y(σ)⟩ = 0, then (x(σ), y(σ), v(σ)) turns out to be a solution of problem
(DCC). Moreover, it can be shown that there exists a finite value of σ with ⟨v(σ), b1 −A1x(σ)−B1y(σ)⟩ = 0.

Note that for a fixed σ problem (DC(σ)) has a bilinear structure and belongs to the class of d.c.
minimization problems [Strekalovsky, 2003, Strekalovsky, 2014] with a convex feasible set. It is easy to
see that the objective function of (DC(σ)) can be represented as a difference of two convex functions
[Strekalovsky, 2003, Strekalovsky, 2014].

We will employ, for example, the following d.c. representation based on the known property of a scalar
product:

Φ(x, y, v) = g(x, y, v)− h(x, y, v), (1)

where g(x, y, v) =
1

2
⟨x,Cx⟩+ ⟨c, x⟩+ 1

2
⟨y,Dy⟩+ ⟨d, y⟩+ σ⟨b1, v⟩+

σ

4
∥A1x− v∥2 + σ

4
∥B1y − v∥2,

h(x, y, v) =
σ

4
∥A1x+ v∥2 + σ

4
∥B1y + v∥2. Note that the so-called basic nonconvexity in Problem (DC(σ)) is

provided by the function h (for more details, refer to [Strekalovsky, 2003, Strekalovsky, 2014]).
So we can apply the Global Search Theory in d.c. minimization problems [Strekalovsky, 2003,

Strekalovsky, 2014] to seek a global solution to Problem (DC(σ)) with a fixed σ.

3 Global Optimality Conditions and Solution Algorithm

The Global Search Procedure is based on the Global Optimality Conditions (GOCs) developed by
A.S. Strekalovsky [Strekalovsky, 2003, Strekalovsky, 2014]. In particular, the necessary Global Optimality Con-
ditions have the following form in terms of Problem (DC(σ)).

Theorem 1. [Strekalovsky, 2003, Strekalovsky, 2014]. If the feasible point (x∗, y∗, v∗) is a (global) solution
to Problem (DC(σ)), then ∀(z, u, w, ξ) ∈ Rm+n+q+1 :

h(z, u, w) = ξ − ζ, ζ := Φ(x∗, y∗, v∗), g(x, y, v) ≤ ξ ≤ sup
x,y,v

(g,D), (2)
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the following inequality holds

g(x, y, v)− ξ ≥ ⟨∇h(z, u, w), (x, y, v)− (z, u, w)⟩ ∀(x, y, v) ∈ D. (3)

The conditions (2)-(3) possess the so-called algorithmic (constructive) property: if the GOCs are violated, we
can construct a feasible point that will be better than the (critical) point in question (the value of the objective
function in the new point will be less) [Strekalovsky, 2003, Strekalovsky, 2014, Orlov, 2017].

The constructive property is a foundation of global search algorithms for nonconvex problems
[Strekalovsky, 2003, Strekalovsky, 2014]. Taking into account the d.c. representation (1), on the basis of Theorem
1, the Global Search Algorithm (GSA) for quadratic bilevel problems can be formulated in the following way.

Let there be given a starting point (x0, y0, v0) ∈ D, numerical sequences {τk}, {δk}. (τk, δk > 0,
k = 0, 1, 2, ..., τk ↓ 0, δk ↓ 0, (k → ∞)), a set Dir = {(z̄1, ū1, w̄1), ..., (z̄N , ūN , w̄N ) ∈ IRm+n+q |(z̄i, ūi, w̄i) ̸= 0,

i = 1, ..., N}, the numbers ξ−
△
= inf(g,D) and ξ+

△
= sup(g,D), and the algorithm’s parameters M and η.

Step 0. Set k := 0, (x̄k, ȳk, v̄k) := (x0, y0, v0), i := 1, ξ := ξ−, △ξ = (ξ+ − ξ−)/M .
Step 1. Proceeding from the point (x̄k, ȳk, v̄k) by a local search method, build a τk-critical point (x

k, yk, vk) ∈
D to Problem (DC(σ)). Set ζk := Φ(xk, yk, vk).

Step 2. Using (z̄i, ūi, w̄i) ∈ Dir, construct a point (zi, ui, wi) of the approximation
Ak = {(z1, u1, w1), ..., (zN , uN , wN ) | h(zi, ui, wi) = ξ − ζk, i = 1, ..., N} of the level surface
U(ζk) = {(x, y, v) | h(x, y, v) = ξ − ζk} of the convex function h(x, y, z), such that h(zi, ui, wi) = ξ − ζk.

Step 3. If g(zi, ui, wi) > ξ + ηξ, then i := i+ 1 and return to Step 2.
Step 4. Find a δk-solution (x̄i, ȳi, v̄i) of the following linearized problem:

g(x, y, v)− ⟨∇h(zi, ui, wi), (x, y, v)⟩ ↓ min
x,y,v

, (x, y, v) ∈ D. (PLi)

Step 5. Starting at the point (x̄i, ȳi, v̄i), build a τk-critical point (x̂i, ŷi, v̂i) ∈ D to Problem (DC(σ)) by
means of the local search method.

Step 6. If Φ(x̂i, ŷi, v̂i) ≥ Φ(xk, yk, vk), i < N, then set i := i+ 1 and return to Step 2.
Step 7. If Φ(x̂i, ŷi, v̂i) ≥ Φ(xk, yk, vk), i = N and ξ < ξ+, then set ξ := ξ +△ξ, i := 1 and go to Step 2.
Step 8. If Φ(x̂i, ŷi, v̂i) < Φ(xk, yk, vk), then set ξ := ξ−, (x̄

k+1, ȳk+1, v̄k+1) := (x̂i, ŷi, v̂i), k := k + 1, i := 1
and return to Step 1.

Step 9. If Φ(x̂i, ŷi, v̂i) ≥ Φ(xk, yk, vk), i = N and ξ = ξ+, then stop. (xk, yk, vk) is the obtained solution of
the problem.

It can be readily seen that this algorithm is not an algorithm in the conventional sense, because some of its
steps are not specified. For example, we do not know how to construct a starting point and the set Dir, how to
implement a local search, how to solve the problem (PLi) etc. These issues will be considered below.

4 Implementation of the Global Search Algorithm

First, to construct a feasible starting point, we used the projection of the chosen infeasible point
(x0, y0, v0) onto the feasible set D by solving the following quadratic programming problem:

1

2
∥(x, y, v)− (x0, y0, v0)∥2 ↓ min

x,y,v
, (x, y, v) ∈ D. (PR(x0, y0, v0))

The solution to Problem (PR(x0, y0, v0)) was taken as a starting point (x0, y0, v0) ∈ D. In this work
(x0, y0, v0) = (0, 0, 0). The value of the penalty parameter σ was chosen experimentally: σ = 10.

The local search (see Steps 1 and 5) can be based on the consecutive solution of the following convex quadratic
(QP) and linear programming (LP) problems derived from Problem (DC(σ)):

1

2
⟨x,Cx⟩+ ⟨c, x⟩+ 1

2
⟨y,Dy⟩+ ⟨d, y⟩ − σ ⟨vsA1, x⟩ − σ ⟨vsB1, y⟩ ↓ min

x,y
,

Ax ≤ b, A1x+B1y ≤ b1, D1y + d1 + xQ+ vsB1 = 0.

 (QP(vs))

⟨b1 −A1x
s −B1y

s, v⟩ ↓ min
v

,

D1y
s+1 + d1 + xsQ+ vB1 = 0, v ≥ 0,

}
(LP(xs, ys))
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where (xs, ys, vs) ∈ D is a feasible point in Problem (DC(σ)). Such local search methods show their
efficiency in optimization problems with bilinear structure [Orlov et al., 2016, Orlov & Strekalovsky, 2016,
Strekalovsky & Orlov, 2007, Strekalovsky et al., 2010, Strekalovsky, 2014]. Note that the accuracy for auxiliary
problems is ρs = 10−7. The accuracy of the local search is τk = 10−5.

The key element of the above GSA consists in constructing an approximation of the level surface of the
convex function h(·), which generates the basic nonconvexity in the problem under consideration. For Prob-
lem (DC(σ)) the approximation Ak = A(ζk) has been constructed with the help of a special set of directions
Dir = {((x, y) + el, v + ej), l = 1, ...,m+ n, j = 1, ..., q}, where el ∈ IRm+n, ej ∈ IRq are the Euclidean basis
vectors of the corresponding dimension, (x, y, v) is a current critical point.

Dir is the standard direction set for problems with a bilinear structure according to our previous experi-
ence [Orlov & Strekalovsky, 2005, Orlov, 2008, Orlov et al., 2016, Strekalovsky et al., 2010]. Unfortunately, we
cannot theoretically guarantee the global optimality of the point generated by the GSA with the set Dir. But
numerically we obtain global solutions in most cases. In addition, we apply a special technique for reducing the
approximation, because the number of points in the original set is rather large (especially when the dimension
of the problem grows).

Consider an arbitrary set of directions with q(m+ n) points:

Dir0 = {(z̄i, w̄j) | (z̄i, w̄j) ̸= 0, i = 1, ...,m+ n, j = 1, ..., q}.

In the matrices A1 and B1, find rows and columns with the maximum sum of their elements. Denote them as
iA, iB and jA, jB , respectively. Then the new direction set will have the following form:

Cut(Dir0) = {(z̄iA , w̄j), (z̄iB , w̄j), j = 1, ..., q; (z̄i, w̄jA), (z̄i, w̄jB ), i = 1, ...,m+ n}.

The number of points in the approximation based on the set Cut(Dir0) is equal to 2(q +m+ n). Therefore, as
the dimension of the problem grows, it increases slower than the number of points in the approximation based
on the set Dir0. Note that here we use the matrices A1 and B1, because they are included in the definition of
the function h(·) which generates the basic nonconvexity of the problem in question.

We employ the following technique to construct approximation points Ak = A(ζk) on the basis of the direction
set: the triples (zi, ui, wi) are found in the form (zi, ui, wi) = λi(z̄

i, ūi, w̄i), i = 1, ..., N , where λi ∈ IR are
computed using the condition h(λi(z̄

i, ūi, w̄i)) = ξ−ζk. In that case the search of λi can be performed analytically
(see also [Orlov & Strekalovsky, 2005, Orlov, 2008, Orlov et al., 2016, Strekalovsky et al., 2010]).

Further note that the selection of the algorithm parameters M and η can be carried out on the basis of
our previous experience in solving problems with a bilinear structure [Orlov & Strekalovsky, 2005, Orlov, 2008,
Orlov et al., 2016, Strekalovsky et al., 2010]. The parameter η is responsible for the accuracy of the inequality
(2) from the GOCs (in order to diminish the computer rounding errors) [Orlov & Strekalovsky, 2005, Orlov, 2008,
Orlov et al., 2016, Strekalovsky et al., 2010] (Step 3). Different values of the parameter M are responsible for
splitting the interval [ξ−, ξ+] into a suitable number of parts to realize a passive one-dimensional search along ξ.
Here we use the following sets: 1) M = 2, η = 0.0; 2) M = 5, η = 0.02; 3) M = 33, η = 0.1. If it is required
that an approximation to the global solution to Problem (DC(σ)) be found rapidly, we may use option 1). With
increase of M and η (options 2) and 3)), the algorithm gains in precision but loses in performance rate.

To compute the segment [ξ−, ξ+] for one-dimensional search according to the GOCs, we need to solve two
problems: on the minimum and maximum of a convex quadratic function g(·). The minimum problem can
be solved by any quadratic programming method and an appropriate software subroutine. By the way, the
same is true for the linearized problem (PLi) at Step 4 (δk = 10−5). To tackle the maximum problem, we
can employ a known global search strategy for convex maximization problems [Strekalovsky, 2003]. But in this
case the computational process does not require an exact knowledge of these bounds. It is sufficient to have
comparatively rough estimates [Strekalovsky, 2003]. Therefore, here we use: ξ− := 0.0; ξ+ := (m+ n+ l) ∗ σ.

Finally, Steps 6-9 represent verification of the main inequality (3) from the GOCs, the stopping criteria, and
looping.

5 Test Problem Generation Method and Numerical Computations

One of the most important issues in the testing of new numerical methods is the selection or construc-
tion of test cases. In the present work, we use the method for generation of bilevel test cases proposed in
[Calamai & Vicente, 1994]. The idea of such generation is based on constructing bilevel problems of an arbitrary
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dimension with the help of the so-called kernel problems, which are one-dimensional bilevel problems with known
local and global solutions (see also [Orlov, 2008, Strekalovsky et al., 2010]).

In generation of quadratic bilevel test problems of the type (QBP), we used the kernel problems of the form

F (x, y) =
1

2
x2 − x+

1

2
y2 ↓ min

x,y
,

x ∈ X = {x ∈ IR1 | x ≥ 0}, y ∈ Y∗(x) = Argmin
y

{1
2
y2 − xy | y ∈ Y (x)},

Y (x) = {y ∈ IR1 | x− y ≤ 1, x+ y ≤ ν, − x− y ≤ −1},

 (4)

where ν is a parameter whose value affects the number of local and global solutions in the problem.
In particular, according to [Calamai & Vicente, 1994], we can prove that: 1) if ν = 1, then the optimal value

of the problem (4) F∗ = −0.5, and (x∗, y∗) = (1, 0); 2) if ν = 1.5, then F∗ = −0.4375, and (x∗, y∗) = (1.25, 0.25);
3) if ν = 2 then F∗ = −0.25, (x∗, y∗) = (0.5, 0.5) or (x∗, y∗) = (1.5, 0.5); 4) if ν = 3 then F∗ = −0.25,
(x∗, y∗) = (0.5, 0.5). So we separate 4 classes of kernel problems (4).

Then, in accordance with the generation scheme, an arbitrary number of kernel problems of various classes
are united into the problem

F (x, y) =

r∑
i=1

(
1

2
x2
i − xi +

1

2
y2i ) ↓ min

x,y
, x ∈ X = {x ∈ IRm | xi ≥ 0, i = 1, ..., r},

y ∈ Y∗(x) = Argmin
y

{
r∑

i=1

(
1

2
y2i − xiyi) | y ∈ Y (x)},

Y (x) = {y ∈ IRn | xi − yi ≤ 1, xi + yi ≤ νi, − xi − yi ≤ −1},


(5)

where νi ∈ {1; 1.5; 2; 3}, i = 1, ..., r.
Let cl1, cl2, cl3, cl4 be the number of kernel problems of each class included into the “big” problem. Then

the dimension of the “big” problem will be m = n = p = cl1 + cl2 + cl3 + cl4; q = 3 ∗ (cl1 + cl2 + cl3 + cl4).
Note that we can compute the number local and global solutions to the “big” problem.
Proposition 1 [Calamai & Vicente, 1994]. Problem (5) has 2cl3 global solutions, and it has additional local

solutions only when cl2 + cl4 > 0. In this case the number of additional local minima to problem (5) equals
2cl2+cl3+cl4 − 2cl3.

Let us now describe the numerical testing of the global search method on series of problems generated by the
method described above. The software that implements the method developed was coded in MATLAB 7.11.0.584
R2010b. To run the software, we used the computer with Intel Core i5-2400 processor (3.1 GHz) and 4Gb RAM.
In total, 333 problems of dimension from 2 up to 200 were generated and solved.

The most interesting and typical results are presented in Table 1 with the following denotations:
NN = m = n = p is the dimension of the problem; M/ξ is the number of the set of parameters by which
we can find a solution; GIt is the number of iterations of the global search method; Loc stands for the number
of start-ups of the local search procedure performed to find the approximate global solution to the problem; LP ,
QP are the numbers of the LP and QP problems solved, respectively; T is the operating time of the program
(in seconds); Glob/Loc are the numbers of global solutions in the “big” problem and local solutions which are
not global, respectively.

First of all, note that all generated problems were solved with the prescribed accuracy ε = 10−3. Further, pay
attention to a huge number of global and local solutions in some cases. It is interesting that the hardness of a
problem does not depend on these values directly. Here we can see easy problems which are solved at the local
search stage. And we can also see hard problems which take more than one hour to find a global solution. We
propose a hypothesis that the hardness of problems depends on the set of classes of kernel problems in the “big”
problem. At the end of the paper we present an overall statistics about complexity of classes combinations in
the “big” problem.

Let us introduce a special complexity coefficient (CC): CC = (Loc/NN)/Cnt, where Loc is the number of the
local search procedures for a given classes combination; NN = m = n = p is the dimension of the problem with
the given classes combination; Cnt is the total number of problems solved with the given classes combination.

The diagram about values of CC in different cases is presented in Figure 1, where the denotation 0x0x, for
example, means that in the “big” problem we use kernel problems of classes 2 and 4; at the same time, the
denotation 00x0 means that in the “big” problem we use the kernel problems of class 3 only etc.
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Table 1: Global search in generated problems

NN cl1 cl2 cl3 cl4 M/ξ GIt Loc LP QP T Glob/Loc

100 0 0 0 100 - - 1 2 2 0.2 1/1.2677 · 1030
75 0 0 75 0 2 1 2998 5462 8460 70.5 3.7779 · 1022/0
100 0 0 100 0 - - 1 2 2 0.1 1.2677 · 1030/0
100 0 0 5 95 - - 1 2 2 0.1 32/1.2677 · 1030
200 0 0 100 100 2 1 7195 14390 21585 490 3.8686 · 1025/1.4966 · 1051
10 0 10 0 0 2 19 368 552 920 4.4 1/1023

6 0 5 0 1 1 20 100 139 239 1.2 1/63

50 0 25 25 0 2 60 5854 8998 14852 120 33555532/1.1259 · 1015
30 0 10 10 10 2 35 1442 2660 4102 24.5 1024/1.0737 · 109
60 0 20 20 20 3 161 170095 271481 441576 3600 1048576/1.1529 · 1018
150 150 0 0 0 1 2 1503 1505 3008 47.6 1/0

175 5 0 0 170 2 4 7005 14141 21146 418 1/1.4966 · 1051
100 50 0 50 0 2 19 3219 4065 7284 84.7 1.1259 · 1015/0
100 40 0 30 30 1 4 1005 2445 3450 40.7 1.0737 · 109/1.1529 · 1018
120 20 100 0 0 1 4 1205 2001 3206 43.2 1/1.2677 · 1030
150 50 50 0 50 1 3 1504 3079 4583 74.2 1/1.2677 · 1030
100 30 30 40 0 2 38 3061 4051 7112 89.3 1.0995 · 1012/1.1806 · 1021
20 5 5 5 5 1 5 206 412 618 3.6 32/32736
50 5 20 20 5 3 230 205849 315978 521827 4143 1048576/3.5184 · 1013
100 5 5 45 45 2 4 4009 10423 14432 155 3.5184 · 1013/3.9614 · 1028
100 5 45 45 5 1 252 427477 657020 1084497 12094 3.5184 · 1013/3.9614 · 1028
130 5 50 25 50 2 55 10834 18084 28918 680 33554432/4.2535 · 1037
200 2 194 2 2 2 59 18858 28532 47390 1335 4/4.0173 · 1059

Figure 1: Complexity diagram of classes combinations

So, we can conclude that the hardest problems either consist of all four classes of kernel problems or
comprise 2, 3, and 4 classes. This conclusion will be used in our future works when we will address more
complicated test problems with a special random transformation (see [Calamai & Vicente, 1994, Orlov, 2008,
Strekalovsky et al., 2010]).
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