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Abstract

Multi-input nonlinear affine systems represented in a canonical (nor-
mal) form are considered. The controls are assumed to be constrained.
The application of feedback linearization results in a closed-loop system
that is decomposed into an aggregate of independent linear subsystems
in a neighborhood of the origin and is nonlinear when controls reach
saturation. For the closed-loop system obtained, the problem of es-
timating the attraction domain is set. A method for constructing an
estimate of the attraction domain that is based on results of absolute
stability theory is suggested. An estimate is sought as a Cartesian
product of invariant ellipsoids each of which is found by solving a sys-
tem of linear matrix inequalities. An optimization problem of finding
the best estimate is posed. The discussion is illustrated by numerical
examples.

1 Introduction

Boundedness of control resources in practicable automatic control systems leads to saturation in actuators when
the feedback signal exceeds a certain limit value. Functioning of the system designed without regard to this
circumstance in a saturation mode may result in considerable reduction of regulation efficiency and, quite often,
in loss of stability. Thus, it is required, on the one hand, to design a controller with regard to the possibility
of the actuator saturation and, on the other hand, to have an estimate of the attraction domain for the system
with the saturated control.

Ways to overcome negative effects associated with saturation in the actuators are discussed in numerous
publications (see, e.g., [Tarbouriech, 2011, Tarbouriech, 2009, Turner, 2007, Blanchini, 2008, Formal’skii, 1974]
and references therein). In the majority of publications, linear control systems are considered, and the authors
pose either the problem of synthesizing a controller that takes into account the possibility of actuator saturation
or the problem of the development of a separate controller component, in addition to a linear controller designed
without regard to control constraints, that is activated in the case of saturation. Taking into account control
constraints in nonlinear systems is a much more complicated task, and the number of publications on this subject
is not too great. In the majority of them, an attempt is made to adapt methods designed for linear systems to
the nonlinear case.
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In this paper, we consider n-dimensional nonlinear affine systems with m inputs that can be represented in
a canonical (normal) form [Isidori, 1995]. The controls are assumed to be constrained. However, the problem
of designing a controller that takes into account constraints imposed on the control signal is not posed. It is
assumed that the system is closed by a linearizing feedback the coefficients of which are specified in advance, so
that the problem of determining the feedback coefficients is not considered. The control constraints are satisfied
by applying the saturation function to the feedback. For the nonlinear closed-loop system obtained, we set the
problem of finding an estimate of its attraction domain, which is sought as a Cartesian product of invariant
ellipsoids composing the system under study. We also pose the problem of finding the “best” (in one or another
sense) estimate of the considered class and reduce its solution to solving a conventional constrained optimization
problem.

The approach to construction of the attraction domain proposed in this paper relies on results of absolute
stability theory and linear matrix inequalities (LMIs) and extends the approach proposed in [Pesterev, 2017]
for the case of a scalar control to affine systems with m constrained inputs. The latter approach, in turn, is a
generalization of that used in [Rapoport, 2006] for estimating the attraction domain of a nonlinear second-order
system closed by a linearizing feedback that arises in the path following problem for a wheeled robot.

2 Problem Statement

We consider multidimensional affine control systems with vector inputs consisting of m connected subsystems of
the form

ẋi
1 = xi

2, . . . , ẋ
i
ri−1 = xi

ri , ẋ
i
ri = fi(x) + gi(x)ui, i = 1, . . . ,m. (1)

Here, x is an n-dimensional state vector, x ≡ (x1, . . . , xm) ∈ Dx ⊆ Rn, xi ∈ Rri , m is the number of controls,

r1 + · · ·+ rm = n, (2)

ui are continuous constrained controls, and fi(x) and gi(x) ̸= 0 are continuous functions. It is required to find
a feedback that stabilizes the zero solution x = 0 of system (1) and to construct an attraction domain of the
closed-loop system obtained.

System (1) is a normal (canonical) form of affine control systems with m inputs and m outputs that have
vector relative degree {r1, . . . , rm} satisfying condition (2) [Isidori, 1995]. The canonical representation (1) is
convenient in that, in the case of unconstrained controls, it is linearized by the feedback

ui(x) = −(σi(x
i) + fi(x))/gi(x), (3)

where σi(x
i) = cTi x

i, cTi = [ci1, . . . , ciri ], cij > 0, the application of which turns the system to an aggregate of m
independent linear subsystems ẋi

1 = xi
2, . . . , ẋ

i
ri−1 = xi

ri , ẋ
i
ri = −σi(x

i), or, in the matrix form, ẋi = Aix
i, i =

1, . . . ,m, where

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ci1 −ci2 −ci3 · · · −ciri

 . (4)

It can easily be seen that solution x = 0 of system (1) closed by feedback (3) is globally asymptotically stable
if and only if matrices Ai of all subsystems are Hurwitz ones. In what follows, we assume that this condition is
fulfilled.

However, in the general case, system (1) cannot be linearized by means of feedback (3) in the entire domain
of its definition in view of the boundedness of the control resources. For simplicity, let us assume that the upper
and lower bounds of the ith control are equal to one another, i.e., the controls satisfy the two-sided constraints

−ūi ≤ ui ≤ ūi. (5)

To meet them, we apply the saturation function to the right-hand side of formula (3):

ui(x) = −satūi [(σi(x
i) + fi(x))/gi(x)]. (6)
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Closing system (1) by feedback (6), we obtain the m nonlinear subsystems

ẋi
1 = xi

2, . . . , ẋ
i
ri−1 = xri , ẋri = −Φi(σi, x), i = 1, . . . ,m, (7)

connected with one another through the right-hand sides Φi(σi, x), which, in the case of saturated controls,
depend generally on all components of the state vector x:

Φi(σi, x) = −fi(x) + gi(x)ūi sign

(
σi(x

i) + fi(x)

gi(x)

)
≡ −fi(x) + |gi(x)|ūi sign(σi(x

i) + fi(x)). (8)

In a neighborhood of the origin where controls do not reach saturation, Φi(σ, x) = σi(x
i), and the subsystems

are linear and independent. Inclusion of σi into the arguments of functions Φi emphasizes the fact that the
right-hand side of the system depends not only on the current values of the state variables but also on the value
of the linear function σi(x

i).
The problem we consider here is to find an estimate of the attraction domain of the zero solution of system

(7). Note that, in order that x = 0 could be a stable equilibrium state of system (7), the following condition
must be satisfied: ∣∣∣∣fi(0)gi(0)

∣∣∣∣ < ūi, i = 1, . . . ,m. (9)

Note also that, if x = 0 is an equilibrium state of the closed-loop system, i.e., fi(0) = 0, i = 1, . . . ,m, then
conditions (9) are automatically satisfied.

In what follows, we assume that the domain of system (1) does not generally coincide with the entire space,
Dx ⊆ Rn, and that the right-hand side of the system satisfies conditions (9).

3 Estimate of the Attraction Domain

3.1 Comparison System

Along with system (7), we consider the linear nonstationary systems

ẋi
1 = xi

2, . . . , ẋ
i
ri−1 = xi

ri , ẋ
i
ri = −βi(t)σi(x

i), i = 1, . . . ,m, (10)

that are absolutely stable in sectors (βi0, 1], i = 1, . . . ,m, respectively. Recall that a linear nonstationary system
is said to be absolutely stable in the angle (sector) (βi0, 1] if its zero solution is asymptotically stable for any
measurable functions βi(t) satisfying the inequalities [Aizerman, 1964, Pyatnitskii, 1970]

0 < βi0 < βi(t) ≤ 1. (11)

Systems (10) will be referred to as the comparison systems for the nonlinear system (7).
If the right-hand side of the ith subsystem in (7) satisfied the “sector” condition

0 < βi0σ
2
i < Φi(σi, x)σi ≤ σ2

i , (12)

for any x ∈ Rn, then xi = 0 would be an asymptotically stable solution of this system on the whole (absolute
stability of a nonlinear subsystem in (7) in the angle (βi0, 1] follows from absolute stability of the corresponding
linear nonstationary system in the angle (βi0, 1] [Pyatnitskii, 1970]). Accordingly, the fulfillment of conditions
(12) for all i = 1, . . . ,m would imply absolute stability of the n-dimensional nonlinear system (7) consisting of
m subsystems.

For one-dimensional subsystems (ri = 1) in (7), the zero solution of the corresponding (scalar) comparison
system is asymptotically stable for any βi(t) > 0; i.e., βi0 = 0, and the sector condition (12) takes the form
Φi(x

i, x)xi > 0.
Conditions (12), however, are generally not satisfied in the entire coordinate space Rn (to say nothing of the

fact that system (1) is not generally defined in the entire coordinate space). Nevertheless, study of stability of
the nonlinear system (7) still can be reduced to study of absolute stability of linear nonstationary systems (10)
if we require that the sector conditions (12) hold in a positive invariant set (further, simply invariant set) of the
n-dimensional system (7) rather than in the entire coordinate space [Pesterev, 2017], i.e., in a set in Rn that,
together with any point belonging to the set, contains the entire half-trajectory of system (7) that begins at this
point. This brings us at the question of how to find an invariant set of system (7)?

454



3.2 Invariant Set of the System

In the case of the scalar control (m = 1), for an invariant set, one can take an invariant set of the comparison
system provided that the sector condition (12) holds in it [Pesterev, 2017]. In this paper, we extend this result
to the multi-input case. Namely, we will seek an invariant set of the nonlinear system in the form of a Cartesian
product of invariant sets of the comparison systems Υ = Υ1 × · · · × Υm, where Υi is a (positive) invariant set
of the ith comparison system (10), i.e., a set in Rri that, together with any point belonging to the set, contains
the entire half-trajectory of the ith system in (10) that begins at this point for any measurable functions βi(t)
satisfying condition (11).

Theorem 1 Let linear nonstationary systems in (10) be absolutely stable for any measurable functions βi(t)
satisfying inequalities (11). Let Υi ⊆ Rri be invariant sets of these systems and Υ = Υ1 × · · · × Υm ⊆ Dx. If
the right-hand sides of the nonlinear system (7) satisfy the sector conditions (12) in Υ, then Υ is an invariant
set of system (7) and, for any x0 ∈ Υ, solution x(t) of system (7) with the zero condition x(0) = x0 tends to the
equilibrium state x = 0 as t → ∞.

The proof of the theorem is similar to that for one-input affine systems given in [Pesterev, 2017].
Thus, if the comparison systems (10) are absolutely stable in sectors (βi0, 1], i = 1, . . . ,m, construction of

an estimate of the attraction domain for the nonlinear system (7) reduces, basically, to (a) finding families of
invariant sets of the comparison systems and (b) selecting from these families (possibly, with the use of some
optimality criterion) those sets belonging to the domain of system (1) in which sector conditions (12) hold.

The first task is easily solved if Lyapunov functions of the comparison systems (10), (11) are known. Con-
structive solution of both tasks seems to be possible if we confine ourselves to ellipsoidal invariant sets. In this
case, solution of the first task reduces to finding quadratic Lyapunov functions Li(x

i) = (xi)TPix
i, where Pi is

a positive definite matrix of order ri, and invariant sets of the comparison systems are ellipsoids

Ωi(Pi) = {xi : (xi)TPix
i ≤ 1}. (13)

The desired invariant set of the nonlinear system (7) is sought as the Cartesian product of invariant ellipsoids:

Ω = Ω1(P1)× · · · × Ωm(Pm). (14)

Further in the paper, we consider only ellipsoidal invariant sets of the comparison systems.

3.3 Invariant Ellipsoids of the Comparison Systems

Let us rewrite the ith equation in (10) when ri > 1 in the equivalent matrix form

ẋi = Aβi(t)x
i, (15)

where

Aβi(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−βi(t)ci1 −βi(t)ci2 −βi(t)ci3 · · · −βi(t)ciri

 . (16)

Let Aβi0 denote the constant matrix obtained from (16) by substituting βi(t) ≡ βi0. For βi(t) ≡ 1, we obtain
matrix Ai given by (4).

It is known [Boyd, 1994] that the sufficient condition of absolute stability of system (15) in a sector [βi0, 1] is
existence of a common Lyapunov function for the linear systems ẋi = Aix

i and ẋi = Aβi0x
i. In turn, a common

quadratic Lyapunov function Li = (xi)TPix
i for these two systems exists if and only if the LMI system

PiAi +AT
i Pi < 0, PiAβi0 +AT

βi0
Pi < 0 (17)

has a nontrivial solution [Boyd, 1994]. Hence, the sufficient condition of absolute stability of the linear nonsta-
tionary system (15) in a sector [βi0, 1] is existence of a positive definite matrix Pi satisfying inequalities (17).
Ellipsoid (14) the matrix of which satisfies LMIs (17) will be referred to as an invariant ellipsoid of the comparison
system. The desired matrices Pi are obtained independently for each comparison system.

455



For ri = 1 (one-dimensional subsystem), the comparison system is absolutely stable for any βi(t) satisfying
the condition βi(t) > 0, and its invariant set is an arbitrary interval of axis xi containing the zero point, with the
invariant ellipsoid being degenerated into an interval symmetric with respect to the origin (Pi > 0 is a scalar).

In accordance with Theorem 1, in order that the Cartesian product Ω of ellipsoids (14) whose matrices are
solutions of the LMIs (17) be an invariant set of the closed-loop system (7), it is sufficient that Ω ⊆ Dx and
inequalities (12) hold in Ω. First, let us show that, if the right-hand sides of system (1) satisfy certain additional
conditions, then the fulfillment of the sector inequalities (12) for ri > 1 is ensured by adding one matrix inequality
to each system (17).

3.4 Ensuring Fulfillment of Sector Conditions

Consider the functions Ui(x) ≡ |gi(x)|ūi − |fi(x)|, i = 1, . . . ,m, defined on Dx. The following assertion is valid.

Lemma 1 Let Ω be the Cartesian product of the ellipsoids Ωi ⊆ Rri such that Ω ⊆ Dx and the following
conditions hold:

Ui(x) > 0 ∀x ∈ Ω. (18)

Let also, for all the subsystems with ri > 1, matrices Pi of the ellipsoids Ωi(Pi) satisfy the LMIs

Pi ≥ cic
T
i

β2
i0

U2
i0

, (19)

where Ui0 = minx∈Ω Ui(x). Then, the sector conditions (12) hold in Ω.

The proof of the lemma is similar to that for one-input affine systems given in [Pesterev, 2017] and is omitted
to save room.

The assumptions of the lemma are trivially fulfilled if Dx = Rn and the lower bounds of the functions Ui(x)
in Rn are strictly positive. In this case, the desired ellipsoids Ωi(Pi) are found by solving the LMIs (17), (19)
for i = 1, . . . ,m, with Ui0 being the lower bounds of the functions Ui(x) in Rn.

If conditions (18) do not hold in the entire Rn and/or Dx ̸= Rn, then the fulfillment of the sector conditions
in Ω can be ensured if ellipsoids Ωi are constructed in regions Πi ⊆ Rri such that Π ≡ Π1 × · · · × Πm ⊆ Dx

and conditions Ui(x) > 0, i = 1, . . . ,m hold for all x ∈ Π. Such regions Πi exist by virtue of conditions (9) and
continuity of functions fi(x), gi(x). In this case, one arrives at the problem of inscribing an ellipsoid into a given
region Πi.

3.5 Inscribing Ellipsoid into a Region

The problem of inscribing an ellipsoid into a given region Πi is most easily solved when Πi is convex and its
boundary is formed by first- and/or second-order surfaces. In this case, the condition Ωi(Pi) ⊆ Πi can be written
as an LMI system of the form [Pesterev, 2017]

lij(Pi) ≤ 0, j = 1, . . . , si, (20)

where lij(Pi) is a linear form of matrix Pi. A region Πi the belonging of an ellipsoid Ωi(Pi) to which can be
written as an LMI system (20) will be further referred to as a region with simple boundary (in what follows, the
notation Πi is used only for regions with simple boundary).

The selection of regions Πi is generally not unique. A particular shape of the boundary of region Πi is selected
with regard to specifics of the problem under consideration and depends on the form of functions on the right-
hand side of system (1). Without loss of generality, we assume that, for a fixed shape of region Πi, its size is
determined by one parameter αi (all subsequent discussions are easily extended to the case where the size of the
region is a function of several parameters). The minimum of function Ui(x) in the general case depends on the
sizes of all regions Πi and is a monotonically nonincreasing function of αi’s: Ui0 = Ui0(α1, . . . , αm), i = 1, . . . ,m.

3.6 An Algorithm to Construct Attraction Domain Estimates

From the above-said, it follows that an estimate of the attraction domain is constructed essentially in two stages.
On the first stage, a subdomain Π ⊆ Dx ⊆ Rn of the form Π = Π1 × · · · × Πm is constructed, where Πi ⊆ Rri

are regions with simple boundaries in which conditions (18) hold. If Dx = Rn and ∀i Ui0 = infx∈Dx Ui(x) > 0,
we may set Πi = Rri and Π = Rn. As soon as such regions Πi are constructed, the problem is decomposed into
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m independent problems of constructing ellipsoidal estimates inscribed into the regions Πi for the subsystems
with scalar controls composing system (7), i.e., reduces to the problem considered in [Pesterev, 2017].

Recall how an estimate of the attraction domain for a system with scalar control is found when an approx-
imation of the system domain by a region with a simple boundary is available (in the given case, these are
regions Πi, i = 1, . . . ,m). A value βi0 ∈ (β∗

i0, 1] is taken, where (β∗
i0, 1] is the greatest sector in which system

(10) has a quadratic Lyapunov function the derivative of which by virtue of the system is negative for any βi(t)
belonging to the sector. For small dimensions ri and/or special choice of the feedback coefficients, β∗

i0 can be
found analytically. For instance, for ri = 1, the comparison system is obviously absolutely stable for any positive
functions βi(t); i.e., β

∗
i0 = 0. For ri > 1, if matrix Ai has only one repeated eigenvalue λ < 0, β∗

i0 does not
depend on λ [Pesterev, 2016] and, in particular, for ri = 2, β∗

i0 = 1/9 [Pesterev, 2011]. Numerical estimation
of the boundary of the stability sector in the general case of arbitrary distribution of eigenvalues of a Hurwitz
matrix Ai presents no problem. To this end, it will suffice to solve the LMI system (17) for several values of βi0

and take the least of them for which the system had a solution to be β∗
i0 [Pesterev, 2017]. Then, the system of

LMIs (17), (19), (20) is solved, and the ellipsoid Ωi(Pi) is constructed.

It should be noted that the second stage is not needed for one-dimensional (ri = 1) subsystems. Indeed, in
this case, the corresponding comparison system is absolutely stable for any positive βi(t), and any interval of
axis xi containing the zero point is its (positive) invariant set. On the other hand, a region with simple boundary
Πi in the one-dimensional case is an interval where condition (18) holds. Since condition (18) holds at any point
of Πi, any interval of axis xi containing the zero point that belongs to Πi (in particular, the entire interval Πi)
can be taken to be Ωi. From the above discussion, it also follows that the estimate obtained does not depend on
particular (positive) values of the feedback coefficients in the one-dimensional subsystems.

Let us see what the shape of the desired estimate Ω is for small n and m > 1 (for m = 1, Ω is an n-dimensional
ellipsoid [Pesterev, 2017]). For n = m = 2 (a system with vector relative degree {1, 1}), “invariant ellipsoids”
are intervals of two coordinate axes, so that the estimate of the attraction domain is a rectangle. For n = 3,
there exist two normal forms with relative degrees {1, 1, 1} (m = 3) and {2, 1} (m = 2). In the former case,
we have three one-dimensional subsystems, and the estimate is a parallelepiped. In the latter case (one- and
two-dimensional subsystems), the estimate is an elliptic cylinder (Cartesian product of an ellipse and an interval).
Note also that, for an arbitrary n and m = n, the estimate is an n-dimensional parallelepiped.

3.7 Finding an Optimal Estimate of the Attraction Domain

With each domain Ω = Ω1(P1) × · · · × Ωm(Pm), we associate a functional F (Ω) characterizing its “size” (e.g.,
volume of the domain) and pose the problem of finding ellipsoids Ω1, . . . ,Ωm the Cartesian product of which
is an invariant set of the nonlinear system under study such that the functional F (Ω) ≡ F (Ω1, . . . ,Ωm) takes
its maximum value on this domain. Since matrices of the ellipsoid depend on the parameters Ui0 andβi0,
where Ui0 = Ui0(α1, . . . , αm), F (Ω) is a function of 2m variables: F (Ω) ≡ F (α1, . . . , αm, β10, . . . , βm0). Clearly,
variables αi in the general case cannot be selected independently from one another. Indeed, when any αi

increases, the domain Πi (and, hence, the domain Π) also increases. As a result, the minimums of (generally,
all) functions Uj(x) in the general case decrease (even if the domain Πj remains the same) and may become
negative. Hence, αi, i = 1, . . . ,m may not vary independently; i.e., vector α ≡ [α1, . . . , αm]T belongs to some
domain A ⊂ Rm in the m-dimensional space of parameters αi. Thus, the problem of finding the best estimate
reduces to solving a constrained optimization problem for a function of 2m variables (the number of variables
can be less than 2m if some subsystems composing the systems are one-dimensional, since βi0 = 0 for such
subsystems) F (α1, . . . , αm, β10, . . . , βm0) under the constraints α ∈ A and βi0 ∈ [β∗

i0, 1], i = 1, . . . ,m. The values
of the function F (α1, . . . , αm, β10, . . . , βm0) are determined as a result of solving m LMI systems (17), (19), (20).

Now, note that, except for the case of m = n, the estimate found by solving the above-described optimization
problem is not, strictly speaking, the best estimate in the sense of the given performance index F . Indeed, since
the LMI system (17), (19), (20) has infinitely many solutions, function F (α1, . . . , αm, β10, . . . , βm0) is defined
ambiguously and its value depends on the criterion used in the LMI solver to select a single matrix Pi. Given the
same values of the arguments of function F , the value of the function will be different if we use different solvers.
Thus, when stating the problem of finding the “best” estimate of the attraction domain, it is required to specify
not only the performance index but also the criterion used in the LMI solver for selecting the single solution. To
emphasize this fact, we will write the functional F in the form Fφ(Ω) ≡ Fφ(α1, . . . , αm, β10, . . . , βm0), where the
subscript φ means that the solution of the LMI system outputted by the LMI solver used minimizes functional
φ(Pi) (in Matlab, functionals φ are allowed to be linear functions of entries of the desired matrix; e.g., matrix
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Figure 1: Phase portrait of the closed-loop system (21)–(23) and the best rectangular attraction domain estimate.

trace), and call the estimate obtained by maximizing the functional Fφ(α1, . . . , αm, β10, . . . , βm0) quasi-optimal
estimate of the attraction domain in the sense of the criterion F . In other words, the estimate obtained by
maximizing functional Fφ is the best estimate of the sought form in the sense of the criterion F under the
condition that the solution of the LMIs (17), (19), (20) minimizes the functional φ. Determination of the global
maximum seems to be unrealistic, since this requires searching for an infinite number of matrices Pi for any fixed
set of arguments of function F .

In the case of m = n, we have n one-dimensional subsystems, and the desired estimate is an n-dimensional
parallelepiped. As discussed above, construction of the estimate does not require solving LMIs, and, given a
performance index F , finding the “best” estimate reduces to solving a conventional constrained optimization
problem: find maxF (α) under the constraint α ∈ A.

4 Numerical Example

As an illustration, we consider a two-dimensional control systems with two constrained inputs represented in the
normal form:

ẋ1 = f1(x) + u1, ẋ2 = f2(x) + u2, Dx = R2, (21)

where

f1(x) = 3x2
1 sign(x1) + x2

2 sign(x2), f2(x) = x3
1 + 3x3

2. (22)

The open-loop system has one unstable equilibrium at the origin. Our goal is to stabilize the system at the
origin by applying constrained controls |u1| ≤ 1 and |u2| ≤ 1 in the form of the feedback

ui(x) = −sat1(fi(x) + µixi)), µi > 0, i = 1, 2. (23)

In accordance with the above-described algorithm, we need to find regions with simple boundaries Π1 and
Π2 such that Ui(x) > 0, i = 1, 2, ∀x ∈ Π = Π1 × Π2, where U1(x) = 1 − |3x2

1 sign(x1) + x2
2 sign(x2)| and

U2(x) = 1 − |x3
1 + 3x3

2|. Since the subsystems are one-dimensional, Π1 and Π2 are intervals of axes x1 and x2

containing the zero point (see Section 3.6), and Π is a rectangle. From the symmetry considerations, we set
Π1 = {x1 : −a < x1 < a} and Π2 = {x2 : −b < x2 < b}, a, b > 0. The minimums of functions U1(x) and U2(x)
on such a set are achieved at the corners of the rectangle with the coordinates (a, b) and (−a,−b). Substituting
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these values into the functions and equating the latter to zero, we obtain a system of two nonlinear equations,
the solution of which is easily found numerically: a = 0.426 and b = 0.675. As shown in Section 3.6, the set
of points belonging to the rectangle (−a, a) × (−b, b) is an invariant set of the system and can be taken to be
an estimate of the attraction domain. It is not difficult to show that the estimate obtained is the best estimate
in the considered class of (rectangular) estimates: the rectangle obtained has the largest square (as well as the
greatest perimeter) among all invariant rectangles.

The phase portrait of the closed-loop system (with the feedback coefficients µ1 = µ2 = 5.0) is shown in Fig.
1. The bold blue lines show separatrices and the boundary of the attraction domain. The lines bounding the
linearity regions of the susbsystems are depicted by the green bold curves. It can be seen from the figure that, in
addition to the stable equilibrium at the origin, the closed-loop system has eight unstable equilibria: four saddle
points at the intersections of the boundary of the attraction domain with the coordinate axes and four focuses at
the “corners” of the attraction domain. The optimal invariant rectangle is depicted by the thin line. The figure
demonstrates that the estimate obtained is a pretty good approximation of the attraction domain.
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