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Abstract

An optimal control problem for the continuity equation is considered.
The aim of a controller is to maximize the total mass within a target set
at a given time moment. An iterative numerical algorithm for solving
this problem is presented.

1 Introduction

Consider a mass distributed on Rn that drifts along a controlled vector field v = v(t, x, u). The aim of the
controller is to bring as much mass as possible to a target set A by a time moment T .

Let us give the precise mathematical statement of the problem. Suppose that ρ = ρ(t, x) is the density of the
distribution and u = u(t) is a strategy of the controller. Then, ρ evolves in time according to the continuity
equation {

ρt + divx (v (t, x, u(t)) ρ) = 0,

ρ(0, x) = ρ0(x),
(1)

where ρ0 denotes the initial density. Our aim is to find a control u that maximizes the following integral

J [u] =

∫
A

ρ(T, x) dx . (2)

Typically, u belongs to a set U of admissible controls. Here we take the following one:

U = {u(·) is measurable, u(t) ∈ U a.e. t ∈ [0, T ]} , (3)

where U is a compact subset of Rm.
In this paper we propose an iterative method for solving problem (1)–(3), which is based on the needle

linearization algorithm for classical optimal control problems [Srochko, 2000]. Given an initial guess u0, the
algorithm produces a sequence of controls uk with the property J [uk+1] ≥ J [uk], for all k ∈ N.
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A different approach for numerical solution of (1)–(3) was proposed by S. Roy and A. Borz̀ı in [Roy, 2017].
The authors used a specific discretization of (1) to produce a finite dimensional optimization problem. It seems
difficult to compare the efficiency of both algorithms, because one was tested for 2D and the other for 1D
problems.

Finally, let us remark that problem (1)–(3) is equivalent to the following optimal control problem for an
ensemble of dynamical systems:

Maximize

∫
{x : x=y(T )}

ρ0(x) dx subject to

{
ẏ = −v(T − t, y, u(t)),

y0 ∈ A.

Indeed, instead of transporting the mass, one can transport the target A in reverse direction aiming at the region
that contains maximal mass.

2 Preliminaries

We begin this section by introducing basic notation and assumptions that will be used throughout the paper.
Next, we discuss a necessary optimality condition lying at the core of the algorithm.

Notation

In what follows, Φs,t denotes the flow of a time-dependent vector field w = w(t, x), i.e., Φs,t(x) = y(t), where
y(·) is a solution to the Cauchy problem {

ẏ(t) = w (t, y(t)) ,

y(s) = x.

Given a set A ⊂ Rn and a time interval [0, T ], we use the symbol At for the image of A under the map ΦT,t, i.e.,
At = ΦT,t(A). The Lebesgue measure on R is denoted by L1.

Assumptions

• The map v : [0, T ]× Rn × U → Rn is continuous.

• The map x 7→ v(t, x, u) is twice continuously differentiable, for all t ∈ [0, T ] and u ∈ U .

• There exist positive constants L, C such that |v(t, x, u)− v(t, x′, u)| ≤ L|x−x′| and |v(t, x, u)| ≤ C (1 + |x|),
for all t ∈ [0, T ], u ∈ U , and x, x′ ∈ Rn.

• The initial density ρ0 is continuously differentiable.

• The target set A ⊂ Rn is a compact tubular neighborhood, i.e., A is a compact set that can be expressed
as a union of closed n-dimensional balls of a certain positive radius r.

In addition, to guarantee the existence of an optimal control (see [Pogodaev, 2016] for details), we must assume
that

• the vector field v takes the form

v(t, x, u) = v0(t, x) +
l∑

i=1

φi(t, u)vi(t, x),

for some real-valued functions φi, and the set

Φ(t, U) =

φ1(t, U)
· · ·

φl(t, U)

 ⊂ Rl

is convex.

468



Necessary Optimality Condition

The necessary optimality condition for problem (1)–(3) looks as follows:

Theorem 2.1 ([Pogodaev, 2016]) Let u be an optimal control for (1)–(3) and ρ be the corresponding trajec-
tory with ρ0 ∈ C1(Rn). Then, for a.e. t ∈ [0, T ], we have∫

∂At

ρ(t, x)v (t, x, u(t)) · nAt(x) dσ(x) = min
ω∈U

∫
∂At

ρ(t, x)v(t, x, ω) · nAt(x) dσ(x) . (4)

Here At = Φt,T (A), where Φ is the phase flow of the vector field (t, x) 7→ v (t, x, u(t)), nAt(x) is the measure
theoretic outer unit normal to At at x, σ is the (n− 1)-dimensional Hausdorff measure.

The precise definitions of the measure theoretic unit normal and the Hausdorff measure can be found, e.g.,
in [Evans, 1992]. We remark that whenever ∂A is an (n− 1)-dimensional surface, nAt coincides with the usual
outer unit normal to At and σ coincides with the usual (n− 1)-dimensional volume form.

Let I(ε) ⊆ [0, T ] be a measurable set of Lebesgue measure ε. Given two controls u and w, we consider their
mixture

uw,I(ε)(t) =

{
w(t), t ∈ I(ε),

u(t), otherwise.
(5)

The proof of Theorem 2.1 gives, as a byproduct, the following increment formula

J [uw,I(ε)]− J [u] =

∫
I(ε)

∫
∂At

ρ(t, x) [v (t, x, u(t))− v (t, x, w(t))] · nAt(x) dσ(x) dt+ o(ε), (6)

which will be used in the next section.

3 Numerical Algorithm

In this section we describe the algorithm, prove the improvement property J [uk+1] ≥ J [uk], and discuss a possible
implementation.

3.1 Description

1. Let uk be a current guess. For each t, compute the set ∂At and ρ(t, ·) on ∂At.

2. For each t, find

w(t) ∈ argmin

{∫
∂At

ρ(t, x)v (t, x, ω) · nAt(x) dσ(x) : ω ∈ U

}
. (7)

3. Let

g(t) =

∫
∂At

ρ(t, x)
[
v
(
t, x, uk(t)

)
− v (t, x, w(t))

]
· nAt(x) dσ(x) .

4. For each ε ∈ (0, T ], find

I(ε) ∈ argmax

{∫
ι

g(t) dt : ι ⊂ [0, T ] is measurable and L1(ι) = ε

}
. (8)

5. Construct uw,I(ε) by (5).

6. Find
ε∗ ∈ argmax

{
J [uw,I(ε)] : ε ∈ (0, T ]

}
. (9)

7. Let uk+1 = uw,I(ε∗).

The algorithm produces an infinite sequence of admissible controls. Of course, any its implementation should
contain obvious modifications that would cause the algorithm to stop after a finite number of iterations. Note
that it may happen that problems (8) and (9) admit no solution. In this case I(ε) and ε∗ must be taken so that
the values of the corresponding cost functions lie near the supremums.
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3.2 Justification

If uk satisfies the optimality condition (4) then we obviously get that uk+j = uk, for all j ∈ N. In particular,
this means that J [uk+1] = J [uk].

If uk does not satisfy the optimality condition then
∫
I(ε)

g(t) dt > 0, for all small ε > 0. By the increment

formula (6), we have

J [uw,I(ε)]− J [uk] =

∫
I(ε)

g(t) dt+ o(ε).

Since the integral from the right-hand side is positive for all small ε, we conclude that J [uk+1] = J [uw,I(ε∗)] >

J [uk], as desired.

3.3 Implementation Details

The method was implemented for the case dimx = 2. All ODEs are solved by the Euler method. The set ∂A is
approximated by a finite number of points. Below we discuss in details all non-trivial steps of the algorithm.

Step 1

In this step we must compute ρ(t, x) for all t and x satisfying x ∈ ∂At. Recall that

ρ(t, x) =
ρ0(y)

detDΦ0,t(y)
, where y = Φt,0(x).

Using Jacobi’s formula, we may write

d

dt
(detDΦ0,t(y)) = (detDΦ0,t(y)) · tr

[
DΦ0,t(y)

−1 d

dt
DΦ0,t(y)

]
.

Meanwhile, by the definition of Φ, we have

d

dt
DΦ0,t(y) = Dxv (t,Φ0,t(y), u(t)) ·DΦ0,t(y).

Combining the above identities gives

d

dt
(detDΦ0,t(y)) = (detDΦ0,t(y)) divv (t,Φ0,t(y), u(t)) .

Thus, computing of ρ(t, x) requires solving two Cauchy problems, one for finding Φ0,t(y) and one for finding
detDΦ0,t(y).

Step 2

In general, the optimization problem (7) is nonlinear, which makes it difficult. On the other hand, in many cases
U and v enjoy the following extra properties:

• the set U is convex and the vector field v is affine with respect to the control:

v(t, x, u) = v0(t, x) +
m∑
i=1

vi(t, x)ui.

Now (7) becomes a convex optimization problem, and thus it can be effectively solved.

Step 4

The problem (8) seems difficult at first glance. But note that it is equivalent to the following one:

Minimize l(λ) :=
∣∣L1 ({t : g(t) ≥ λ})− ε

∣∣ subject to λ ∈ [min g,max g]. (10)

Indeed, if λ∗ solves (10), then the set I = {t : g(t) ≥ λ∗} solves the original problem (8). To find λ∗ numerically,
we may take a finite mesh on the interval [min g,max g] and look for a node that gives minimal value to l(·).
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Step 7

In this step the cost ∫
A

ρ(T, x) dx =

∫
A0

ρ0(x) dx

must be computed. To that end, we must know the whole set A0, while on the other steps of the algorithm we
deal only with the boundaries of At. It is interesting to note that, under the additional assumption that

• the target set A ⊂ Rn is contractible and its boundary ∂A is an (n− 1)-dimensional smooth surface,

the knowledge of ∂A0 is enough for computing the cost.
Indeed, since the target A = AT is contractible, the set A0 is contractible as well. Any differential form on

a contractible set is exact [Tu, 2011]. Hence ρ0 dx1 ∧ · · · ∧ dxn = da, for some (n − 1)-dimensional differential
form α. Now the Stokes theorem gives: ∫

A0

ρ0 dx1 ∧ · · · ∧ dxn =

∫
∂A0

α.

Let us compute α in the 2D case to illustrate this approach. We must find a form α = a1 dx1 + a2 dx2 such
that dα = ρ0 dx1 ∧ dx2. The latter equation holds when

ρ0 =
∂a2
∂x1

− ∂a1
∂x2

.

Hence, to get the desired α, we may take

a2(x1, x2) =

∫ x1

0

ρ0(ξ, x2) dξ , a1 ≡ 0.

4 Examples

This section describes several toy problems, which we used for testing the algorithm.

4.1 Boat

Consider a boat floating in the middle of a river at night. Since it is dark, the boatmen cannot see any landmarks,
and therefore are unsure about the boat’s position. They want to reach a river island at a certain time with
highest probability. How should they act?

Figure 1: Left: river drift. Right: pendulum drift.

Assume that the speed of the river water is given by

v0(x) =

(
α+ e−βx2

2

0

)
,
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Figure 2: Trajectory for the boat problem computed by the algorithm.

the island is a unit circle centered at x0, the initial position of the boat is described by the density function

ρ0(x) =
1

2πσ2
e−|x|2/(2σ2). (11)

Thus, the boat’s position x(t) evolves according to the differential equation

ẋ = v0(x) + u,

where u ∈ R2 is a component of the boat’s velocity due to rowing. Here |u| ≤ umax.
Parameters for the computation: σ = 1, α = β = 0.5, umax = 0.75, x0 = (−3, 0), T = 12.

4.2 Pendulum

Here we want to stop a moving pendulum whose initial position is uncertain. In this case we have

v0(x) =

(
x2

cosx1

)
, v1(x) =

(
1
0

)
.

Hence the control system takes the form
ẋ = v0(x) + uv1(x),

where u ∈ [−umax, umax] is an external force. The initial position of the pendulum is given by (11). The target
is a unit circle centered at (π/2, 0).

Parameters for the computation: σ = 1, umax = 0.5, x0 = (π/2, 0), T = 6.

4.3 Sheep

Consider a herd of sheep located near the origin. The sheep are effected by a vector field v0(x) pushing them
away from the origin. To prevent this we can turn on repellers, which are located at the following positions

xk =

(
R cos

2π(k − 1)

m
,R sin

2π(k − 1)

m

)
, k = 1, . . . ,m.

Each repeller produces a vector field vk(x). So we have

v(x, u) = v0(x) +
m∑

k=1

ukvk(x),
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Figure 3: Trajectory for the pendulum problem computed by the algorithm.

Figure 4: Left: sheep drift. Right: repeller’s force field.

where uk is an intensity of k-th repeller. The control u = (u1, . . . , um) belongs to the simplex

U =

{
(u1, . . . , um) :

m∑
k=1

uk = 1, uk ∈ [0, 1], k = 1, . . . ,m

}
.

In what follows we set

v0(x) = α
x− x0√

1 + |x− x0|2
,

where x0 is a certain point not far from the origin, and

vk(x) = β e−|x−xk|4(x− xk), k = 1, . . . ,m.

Suppose that the initial distribution is given by (11), the target is an ellipse centered at x0 whose major and
minor semi-axes are a and b.

Parameters for the computation: σ = 1, x0 = (0, 0), T = 3, m = 6, a = 2, b = 1.2.

473



Figure 5: Trajectory for the sheep problem computed by the algorithm.

Remark 4.1 The answer to the minimization problem

m∑
i=1

ciωi → min, ω ∈ U,

arising in the second step of the algorithm, is very simple. Let j be such that

cj ≤ ci for all i = 1, . . . ,m;

then an optimal solution is given by ω̄ = (0, . . . , 0, 1, 0, . . . , 0), where 1 is located at the j-th position. In particular,
this means that at every time moment t only one repeller is turned on. Hence instead of repellers, we may think
of a dog that jumps from one place to another.
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