
From Empirical-Probabilistic to
Entropy-Randomized Machine Learning

Yuri S. Popkov

Institute for Systems Analysis
Federal Research Center “Computer Science and Control”

Russian Academy of Sciences
44-2 Vavilova str., 119333 Moscow, Russia,

popkov@isa.ru

Abstract

New problems of machine learning theory named random-
ized machine learning are considered. They are based on
the entropy maximization methods, that give the best solu-
tions under maximum uncertainty. In respect to parameter-
ized model we obtain entropy optimized probability density
functions of parameters. In machine learning procedures the
randomized model is a generator of stochastic ensemble of
possible solutions. The problems of classification and dy-
namic regression are considered.

1 Introduction

Training a computer program to solve problems which are difficult or uninteresting for the human
becomes a popular area of scientific and applied research [Bishop, 2006,Vorontsov, 2006]. There
exists a number of problems in this area which differ in their mathematical models and solving
methods. But, despite their difference, they have common mathematical basis — optimization
and statistics [Merkov, 2014]. Its significant part is classical concepts of these disciplines. Prob-
lems which are often arise in Machine Learning lead to the need of new approaches, methods
and information technologies. A fundamental feature of machine learning is the uncertainty of
the environment in which corresponding procedures are implemented. In order to somehow esti-
mate the uncertainty different models are used. The most common model is the stochastic one,
which allows to give results of machine learning in probabilistic meaning based on data. The
concept of Empirical-probabilistic machine learning (EP-ML) gives the answer with empirically
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computed probability, which is computed during the learning process [Hastie et al., 2001]. This
result can be achieved by setting of prior probabilistic characteristics of undefined parameterized
model followed by their estimation using arrays of real retrospective data. The most common
approach of EP-ML is based on Bayes formula. It is known a fact that the method has high
sensitivity to prior probabilistic characteristics which are set by experts. This feature can not
be treated as positive characteristics of EP-ML, but there exists more important circumstance,
which makes EP-ML methodologically flawed under uncertainty: its probabilistic characteristics
are “set” and (often the only one) solutions that fit these conditions are generated [Zolotikh,
2013].
In general, the phenomena of the uncertainty in terms of its stochastic representation is

much larger. It is a stochastic environment filled with random objects: vectors, trajectories,
whose probabilistic characteristics are unknown. So it seems adequate to represent it as a
special randomized model. Such a randomization is considered to be optimal under maximum
uncertainty. Procedures in which the information entropy is used as the measure of uncertainty
we will refer to procedures of Entropy-Randomized Machine Learning (ER-ML) [Popkov &
Popkov, 2014].

2 Statement and Solution of the ER-ML Problems

Key blocks of ER-ML-procedure are the model (ERM-ML) whose parameters are randomized,
and the algorithm (ERA-ML), which is a composition of mathematical formulation of the prob-
lem of estimation of probabilistic characteristics of the model.
Mathematical model is described by a nonrandom vector functional Ω̂(X̃

(j)
ϱ | a, P (a)) with

random parameters a. For each observation j, the input array (a matrix X̃
(j)
ϱ ) consists of ϱ

column vectors x(j−ϱ),x(j−ϱ+1), . . . ,x(j). The model with the above-mentioned properties
will be called the randomized parameterized model (RPM). Consequently, the model output at
observation j represents an ensemble Ŷ(j |P (a)) of the random vectors ŷ(j |P (a)) relating to

the input data and random parameters through the vector functional Ω̂(X̃
(j)
ϱ | a, P (a)), i.e.,

Ŷ(j |P (a)) = Ω̂(X̃(j)
ϱ | a, P (a)), j = 1, s. (1)

The errors in the output data are modeled by an ensemble E(j |Qj(ξ
(j))) of the random vectors

ξ(j) with the PDF Qj(ξ
(j)), which is added to the ensemble of the RPM output:

V(j |P (a), Qj(ξ
(j))) = Ŷ(j |P (a)) + E(j |Qj(ξ

(j))), j = 1, s. (2)

Thus the model is the generator of random vectors with given density.
ERA-ML is formulated as the functional entropy programming problem contained k-balances

with real data:

H[P (a), Q(ξ)] = −
∫
A
P (a) ln

P (a)

P 0(a)
da−

s∑
j=1

∫
Ξj

Qj(ξ
(j)) ln

Qj(ξ
(j))

Q0
j(ξ

(j))
dξ(j) ⇒ max, (3)

under conditions normalized∫
A
P (a)da = 1,

∫
Ξj

Qj(ξ(j)) dξ
(j) = 1, j = 1, s. (4)
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and empirical balances

m(k)(j |P (a), Qj(ξ
(j))) = y(j), j = 1, s. (5)

Here the vector m(k) contains the components, that are k-roots of k-moments; P 0(a), Q0
j(ξ

(j))
denote the prior PDFs of the parameters and noises, respectively..
For k = 1 this problem has an analytical solution parameterized by Lagrange multipliers:

P ∗(a) =
P 0(a) exp

[
−
∑s

j=1⟨θ(j),v(j)(a)⟩
]

P(θ)
,

Q∗
j(ξ

(j)) =
Q0

j(ξ
(j)) exp

[
−
∑s

j=1⟨θ(j), ξ(j)⟩
]

Qj(θ)
, j = 1, s. (6)

In these equalities,

P(θ) =

∫
A
P 0(a) exp

[
−

s∑
j=1

⟨θ(j),v(j)(a)⟩

]
da,

Qj(θ) =

∫
Ξj

Q0
j(ξ

(j)) exp

[
−

s∑
j=1

⟨θ(j), ξ(j)⟩

]
dξ(j), j = 1, s. (7)

Here θ = {θ(1), . . . , θ(s)} are Lagrange multipliers. They provide considerably specific system of
nonlinear equations consist of so-called integral components: multidimensional definite integrals
of the parameters and noises. Nonlinearity of the equations and the availability of integral
components lead to the need of exploit numerical methods based on Monte Carlo Method
(MMC). We have developed the GFS: generation, filtration, selection algorithm targeted to
solving such problems [Popkov et al., 2015].
The problem of applying MMC to solving of global optimization problems with analytically

defined functions is studied in many publications, for instance, [Strongin & Sergeyev, 2000,Zhigli-
avsky, 2006,Sergeyev & Kvasov, 2008,Polyak & Gryasina, 2008]. GFS -algorithm is oriented to
the problems with algorithmically defined functions.

3 Applications

ER-ML procedure is applied to the problem of the soft-binary classification. The randomized
model (decision rule) bases on a single-layer neural network with random parameters a is used
to solve this problem:

ŷ(i)(a) = sigm
(
⟨e(i), a⟩

)
, i = 1,m, (8)

where sigm is

sigm(x) =
1

1 + exp[−α(x−∆)]
, (9)

with fixed parameters α, ∆. This function has a random argument, as the parameters a of the
randomized model are random. The values of sigm(x) from the interval [1/2, 1] correspond to
class 1, while the values from the open interval [0, 1/2) to class 2.
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Table 1

i e
(i)
1 e

(i)
2 e

(i)
3 e

(i)
4

1 0.11 0.75 0.08 0.21
2 0.91 0.65 0.11 0.81
3 0.57 0.17 0.31 0.91

Thus, the “soft-binary” classification problem in terms of ER-ML is stated as

H[P (a)] = −
∫
A
P (a) lnP (a)da ⇒ max, (10)

subject to the conditions ∫
A
P (a)da = 1, (11)∫

A
P (a)sigm

(
⟨e(i), a⟩

)
da = y(i), i = 1,m. (12)

The solution of this problem has the form

P ∗(a) =
W ∗(a)

P(θ)
, (13)

where
W ∗(a) = exp (−⟨θ, ŷ(a)⟩) , (14)

P(θ) =

∫
A
exp [−⟨θ, ŷ(a)⟩] da. (15)

Consider classification procedure for an arbitrary document t(j).
Step 1-i. Generate an ensemble Ŷ(i) of the randomized model output (decision rules) (8) with

the function P ∗(a) (13). The ensemble contains N random values from the interval [0, 1].
Step 2-i. If a random value from this ensemble exceeds 1/2, then document t(i) is assigned

class 1; otherwise, class 2.
Step 3-i Suppose that N1 values are assigned class 1 and N2 values class 2. Since the number

of trials N is sufficiently large, the quantities p
(i)
1 = N1/N and p

(i)
2 = N2/N yield the empirical

probabilities of assigning appropriate classes to document t(i).
By repeating steps 2-i, 3-i for the whole collection T, we obtain the probability distribution

of assigning class 1 or 2 to the document.
Example 1. Let us consider a problem of “soft-binary” classification of 3 documents, each

of which is characterized by 4 weights.
The dimension of RML-algorithm is 4, the learning collection consists of three documents

each described by four weights, see Table 1.
The randomized model (8) has the parameters α = 1.0 and ∆ = 0. The “learner” responses

are y = {0.18; 0.81; 0.43} (yi < 0.5 corresponds to class 2, yi ≥ 0.5 to class 1). The parameters
belong to the ranges ai ∈ [−10, 10], i = 1, 4. For this learning collection, the entropy-optimal
function W ∗(a) (14) takes the form

W ∗(a) = exp

(
−

3∑
i=1

θiyi(a)

)
,
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Figure 1: Two-dimensional section of the joint PDF for Example 1.

yi(a) =

(
1 + exp(−

4∑
k=1

e(i)k, ak)

)(−1)

.

Figure 1 shows the two-dimensional section of the function (14) under a3 = 0.5; a4 = 0.5.
For classification we use a collection of 500 documents represented by an array of the four-

dimensional random vectors t(i), i = 1, 500 with independent components obeying the uniform
distribution on the interval [0,1]. For each element of this sample, generate the random param-
eters of the model (9) according to the PDF W (a) (N = 1000).

Figures 2a–2b demonstrates the empirical probabilities p
(i)
1 , p

(i)
2 of assigning class 1 and 2 to

document ti. For different documents their assigning probabilities vary from 15 to 85 percent.
Consider the dynamic regression problem in respect to the World population forecasting.

We use the simple discrete-form exponential randomized model of population dynamics with
measurement errors

v[ih] = Ei(b,m|E0) + ξ[ih], i ∈ [0, I], (16)

with the function
Ei(r, ur |E0) = E0 exp[(r + uri)ih], i ∈ [0, I]. (17)

where r means reproduction rate, ur is the velocity of its changing.
The measurement errors are modeled by a random vector ξ = {ξ[0], . . . , ξ[Ih]} with indepen-

dent interval-type components and a PDF Q(ξ) defined on the set

Ξ =
I∪

j=0

Ξj, Ξj = [ξ−j , ξ
+
j ], (18)

The ER-ML algorithm yields the following entropy-optimal PDFs:
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Figure 2: Empirical probabilities of assigning class 1 and 2 for Example 1.

• model parameters

P ∗(r, ur) =
1

R(θ|E0)

I∏
i=0

p∗i (r, ur|θi),

p∗i (r, ur|θi) = exp (−θiEi(r, ur|E0)) ; (19)

• noise

Q∗(ξ) =
1

Q(θ)

I∏
j=0

q∗j (ξ[jh]|θj),

q∗j (ξ[jh]|θj) = exp (−θjξ[jh]) . (20)

where

R(θ|E0) =

∫
I

I∏
i=0

exp (−θiEi(r, ur|E0)) drdur (21)

and

Q(θ) =
I∏

j=0

∫ ξ+j

ξ−j

exp(−θjξ[jh])dξ[jh] =

=
I∏

j=0

1

θj

(
exp(−θjξ

−
j )− exp(−θjξ

+
j )
)
. (22)

Here θ are Lagrange multipliers.

Example 2. Find the entropy-optimal PDFs of the model parameters and noises for the
retrospective data corresponding to the period from 1960 to 1995 with step h = 5 years (see
Table 2). Using E0 = Eml

real[0] in (19-22) we obtain required PDFs (see Fig. 3–4).
The RPM is used for comparison of UN- and RPM- prognoses for interval 1995–2015 on

the base UN-prognosis made at 1985. The relative mean-square deviation between the real
trajectory and the ensemble-average one is 0.3%. The relative mean-square deviation for the
UN prognosis is 0.8%.
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Table 2: World population in billion people

i 0 1 2 3 4 5 6 7
1960 1965 1970 1975 1980 1985 1990 1995

Eml
real[i] 3.026 3.358 3.691 4.070 4.449 4.884 5.320 5.724

0
1

2000

4000

6000

0 0.06

8000

P (r, ur)

ur

×10-3

10000

0.04

r

12000

-1 0.02
0
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Figure 3: Joint PDF of r ur in interval Ir

∪
Iur .

0

0.5

0.5

7
6

1

Qi(ξi)

ξi

50

i

4

1.5

3
2

1
-0.5 0

Figure 4: Ensemble of PDFs of noise ξi, i ∈ [0, 7].
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