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Abstract

The article deals with the problem of constructing an optimal con-
troller of an active vibration protection system under the action of
low-frequency disturbances from the moving base. The relative move-
ment of the object and the base, the accelerations of the object and
the base are used as feedbacks. The problem is solved in a discrete do-
main, the controller is synthesized as multiply connected.The feedback
coefficients of the stabilizing controller are obtained on the basis of the
solution of the discrete Riccati equation. As a criterion of quality, the
integral of the quadratic forms of control variables and control action
is used. The possibility of using the observer of the system state to
obtain an estimate of the absolute velocity of the object is considered.
The observer works on a closed basis. The results of simulation mod-
eling under the action of harmonic oscillations and “white noise” are
presented. The results of the observer’s work are presented.

1 Introduction

The problem of protection from vibration is very relevant at the present time. Medical research shows that ele-
vated levels of vibration have an extremely unfavorable effect on operators of transport-technological equipment,
expressed in changing the functional state of the body, efficiency reducing and morbidity increasing. Areas of fre-
quencies are known in which vibration levels can affect the performance of production operations. The intensity
of the vibration that causes the marked phenomena depends on the structure of the object, its mass, duration of
exposure. The action of any vibration-proof device can be reduced to the formation of additional dynamic effects
that provide the necessary change in the vibrational field. In this sense, the task of vibration protection can
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be considered as a task of controlling the movement of a protected mechanical system, and dynamic influences
that cause the corresponding change in parameters - as control actions. This interpretation of the role of the
vibration protection device is convenient for setting and solving various tasks of vibration protection; It allows
the use of the theory of automatic control for the analysis and synthesis of vibration protection systems.

2 Synthesis of the Optimal Regulator

Consider the scheme of the active system of vibration isolation, shown in Fig. 1.

Figure 1: An active vibration isolation system of the kinematic principle of action: 1 - the object of vibration
protection; 2 - base; 3, 4 - accelerometers; 5 - a sensor of the relative displacement; 6 - a regulator; 7 - a drive
mechanism.

The system contains sensors, control amplifiers and actuators. As sensitive elements, sensors are used that
record the kinematic parameters of the object - displacement, velocity, acceleration. The signals from the sensors
characterize the quality of the vibration protection and are used to generate the control signals carried out by
the elements of the feedback loop. After amplification, the signals are fed to the actuator creating the control
action. Let us consider the problem of synthesis of optimal control using the example of a system with an
electromechanical actuator with a “screw-nut” pair. To describe this entire system, including the actuator, in
state space using the models obtained in [Rybak et al., 2014]. Given that z = x− y, add in another equation in
the variable z, while also are conducting three state variables: x1 = ẋ, x2 = z, x3 = IA.We obtain the following
system of equations:


ẋ1 = kem·r1

Jr+m·r1·r2 · x3 + ÿ,

ẋ2 = x1 − ẏ,

ẋ3 = − kem

r1·L · x1 − R
L · x3 +

1
L · u+ kem

r1·L · ẏ
(1)

Or in vector-matrix form

Ẋ = AX+Bu+GY (2)

The system of equations (2) fully describes the behavior of the system with an electromechanical actuator
with the transmission of a “screw-nut” under the influence of perturbing and control actions. Each particular
model of the electric motor corresponds to the matrix of the coefficients A, B input and the disturbance influence
coefficient G. The problem of synthesis of an optimal regulator will be solved in a discrete domain, for which
the system of equations (2) is transformed into a discrete form. As a result, we obtain a system of equations.

X
[
i+ 1

]
= A∆X

[
i
]
+B∆u

[
i
]
+G∆Y

[
i
]
, (3)

where A∆ = exp(AT ) = I+
∑∞

i=1(
AiT i

i! ), B∆ = (
T∫
0

(exp(AT )dt)B = (IT +
∑∞

i=1(
AiT i+1

(i+1)! ))B. In matrix equation

(3) the symbols A∆, B∆ and G∆ are analogs of matrices A, B and G for a discrete system, and the symbol
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T is entered to designate the sampling period. Because of the high complexity of mathematical calculations is
not appropriate to display the general form of matrices A∆ and B∆. Preferred to calculate the matrix A∆ B∆

in numerical form for each specific pair of matrices A and B. Next, to simplify the entries, we return to the
notation without indices:A = A∆;B = B∆. We define the structure of the optimal discrete regulator in the form
of a matrix relation

u
[
i
]
= −FX

[
i
]
, (4)

where F =
[
f1 f2 f3

]
is the matrix of coefficients of feedbacks on state variables. In fact, the optimal controller

acts as a feedback on the state of the system[Rybak et al., 2016]. In order to solve the optimal control problem
of synthesis will form a vector Z of controlled variables

Z =

[
z1
z2

]
=

[
x1

x2

]
= DX, (5)

where D =

[
1 0 0
0 1 0

]
is the matrix of communications coordinates state and controlled variables. As a criterion

of quality will take the integral of quadratic forms of controlled variables and manipulated species:

J =

∞∫
0

(q1 · z21(t) + q2 · z22(t) + r · u2(t))dt → min (6)

where q1,q2,r are the weighting coefficients of the squares of the two controlled variables and manipulated
respectively, that characterize the contribution of each term in the criterion function. The weights should be
chosen empirically, based on the results of mathematical modeling. For discrete systems criterion function (6)
in the form:

J =

∞∑
i=0

(XT
[
i
]
DT ·Q ·D ·X

[
i
]
+ r · u

[
i
]
) → min (7)

where Q =

[
q1 0
0 q2

]
is the matrix of weighting factors under controlled variables. Thus, we have formulated

the task of management is to minimize the amplitude of the movement speed of the object (and hence the
amplitude of its acceleration) and to limit the level of movement of the object relative to the base, thus limiting
the available-resource management. Feedback gain matrix is given by

F = (r +BT
∆ ·P ·B∆)

−1 ·BT
∆ ·P ·A∆, (8)

where P is a positive definite square auxiliary matrix with dimension 3× 3. The matrix P satisfies the discrete
Riccati equation

P = DT ·Q ·D+AT
∆ ·P ·A∆ −AT

∆ ·P ·B∆(r +BT
∆ ·P ·B∆)

−1 ·BT
∆ ·P ·A∆ (9)

This equation has a solution if the pair (A, B) is completely controllable. Let us investigate the controllability
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of the system for the continuous case (2). To do this, we form the matrix of control W

W = (B|AB|A2B) =

0 kem·r1
(Jr+m·r1·r2)L − kem·r1R

(Jr+m·r1·r2)L2

0 0 kem·r1
(Jr+m·r1·r2)L

1
L − R

L2 − kem·r1R
(Jr+m·r1·r2)L2 + R2

L3

 (10)

According to the Kalman theorem on controllability, the system is completely controllable if rank(W) = n,
where n is the order of the system. In our case rank(W) = 3 , Hence the system is completely controllable.
Equation (9) has a unique positive definite solution in the form of a symmetric matrix P, and such optimal closed-
loop system is certainly stable, since all eigenvalues (A − BF) modulo less than one. In order not to depend
on factors influencing the convergence of the solution, we will use a method that is based on the definition of
eigenvalues and matrix vectors and is performed in the following sequence: 1. First we find the Hamiltonian of
dimension 2n × 2n. In the particular case of regular matrix A (with a continuous sampling of the system it is
guaranteed that this matrix is nonsingular) form the Hamiltonian matrix H by the expression

H =

[
A+Br−1BT (AT )−1DTQD −Br−1BT (AT )−1

−(AT )−1DTQD (AT )−1

]
(11)

Next, we find all the eigenvalues of the matrix H, satisfying the equation

H

[
ηi
ξi

]
= µi

[
ηi
ξi

]
, (12)

where µi is the one of the eigenvalues of the matrix H,

[
ηi
ξi

]
is the eigenvector corresponding to a given eigenvalue.

2. Among the obtained eigenvalues {µ1, µ2, ..., µ2n}, obviously, there are those whose absolute values are less
than one, and the corresponding eigenvectors (assuming their independence) can be written as

{[
η1
ξ1

]
,

[
η2
ξ2

]
, ...,

[
ηn
ξn

]}
, (13)

where ηi, ξi is the column vectors dimension n × 1. Guaranteed there are n eigenvalues with absolute value

less than one, because if µi is own a number, and

[
1
µi

]
is also an eigenvalue. 3. P values found from the

expression P = [ξ1|ξ2|...|ξn] [η1|η2|...|ηn]−1
. Hence it is not difficult to calculate the optimal feedback coefficients

in expression (4). Thus, we obtain the control law of the optimal regulator in the form of feedback on the state
of the system

u [i] = −f1ẋ [i]− f2z [i]− f3I [i] (14)

It should be noted that the current value of the armature of the motor IA hardly accessible measurement,
so it is advisable to coordinate the state expressed in terms of other quantities. From the first equation of the
system (1) we express the armature current through the accelerations at the object and the base

IA =
Jr +m · r1 · r2

kem · r1
· ẍ− Jr +m · r1 · r2

kem · r1
· ÿ (15)

Then the control law of the optimal regulator (14) takes the form

u [i] = −f1ẋ [i]− f2zẋ [i]− f3
′ẍ [i] + f3

′ÿ [i] , (16)
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where f3
′ = f3(Jr+m·r1·r2)

kem·r1 . In addition, the control signal must be limited from above and from below in
accordance with expression (17)

u′ [i] =

{
u [i] , |u [i]| ≤ Umax

sgn(u [i])Umax, |u [i]| > Umax

(17)

where Umax is maximum allowable applied voltage of the DC motor. Fig. 2 is a block diagram of a vibration
protection system with an optimal regulator, taking into account the control law (16), as well as constraints on
the control action, in which the absolute value of the voltage at the motor armature can not exceed the maximum
permissible value.

Figure 2: Structural diagram of AVZS with electromechanical actuator and optimal regulator: DPT - DC motor;
PVG is the screw-nut transmission

For modeling we use a DC electric motor 2PN-90MU4 and synthesize the optimal regulator for a system with
this engine model and the “screw-nut” transmission. The mass of the object of stabilization is assumed m=100
Kg. Going to the discrete task, taking the sampling period T=0.01s, to obtain the following matrix A∆ and B∆

of equation (3):

A∆ =

 0.967 0 1.271× 10−3

9.879× 10−3 1 7.489× 10−6

−27.498 0 0.334

 ,B∆ =

6.241× 10−3

2.252× 10−6

0.513

 . (18)

We set the following weighting factors:

Q =

[
1 0
0 1

]
, r = 10−6. (19)

After the procedure for finding the feedback coefficients of the optimal controller described by equations (8),
(11) - (13), a matrix of feedback coefficients is obtained F =

[
560.960 603.156 0.927

]
, for which mathematical

modeling is performed. As a disturbing action from the base, a signal having the spectral characteristic shown
in Fig. 3 and characteristic peaks at frequencies of 1.5; 3; 5; 8 Hz and a muffled noise background at other
frequencies.

As a result of the simulation, the spectral characteristic of the resulting acceleration at the object is obtained,
Fig. 4. Comparing the two characteristics, it can be seen that the characteristic peaks at 1.5 and 3 Hz were
almost completely damped. The peaks at frequencies of 5 and 8 Hz also significantly decreased. This result
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Figure 3: The spectral characteristic of the
test disturbance signal

Figure 4: The spectral characteristic of ac-
celeration at the site

clearly demonstrates the effectiveness of the system with an electromechanical actuator and an optimal regulator
in suppressing perturbations of a complex species.

3 Synthesis of the Observer of States

Let us consider the possibility of using the observer of the state coordinates to obtain the magnitude of the
absolute velocity of the object ẋ. This option has some advantages over direct integration of acceleration at the
site ẍ, the main of which is higher noise immunity [Fedosov et al., 2000]. Consider the principle of constructing
an observing device. Let the controlled system be described by a vector equation

Ẋ = AX+Bu. (20)

To estimate the vector of state variables X, construct observing apparatus according to the equation

ˆ̇
X = AX̂+Bu. (21)

In this case, setting the manipulated variable u on the system and the monitored device, the output of the
observer will have an accurate estimate X̂ system state variables X (20). The proposed calculator works by an
open loop, and in real conditions, in the presence of unaccounted perturbations and an inaccurate specification
of the initial condition X̂(0) the values of the estimate and the vector of the state variables will diverge with
time[Trofimov et al., 1997].To compensate for this discrepancy construct observing device according to the prin-
ciple of a closed, using the measurement results Y part coordinates state vector X from the sensors according to
the equation Image The difference between the measuring vector estimate Y and measurement Ŷ = CX̂ we use
to improve the observer. For this purpose, monitored devices (21) introduce the feedback matrix K. We obtain

a closed observing device, described by equation
ˆ̇
X = AX̂+Bu+K(Y−CX̂), called the Lewinberger observer.

Matrix K can be assigned arbitrarily, for example so as to provide stability and the observer damping transients
in the observing device for the desired time. Closed observer typically has two inputs: u - Effects on the control
and Y - from the measurements obtained from the sensors. Note that in our problem, it makes no sense to build
a complete observer of all state coordinates. Instead, a simplified system of differential equations


ẋ1 = ẍ,

ẋ2 = x1 − x3,

ẋ3 = ÿ,

(22)

where 3 coordinates of state x1 = ẋ, x2 = z, x3 = ẏ. In vector-matrix form the system (22) takes the form

ˆ̇
X = ÂX̂+HM, (23)
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where X̂ is the vector coordinate the state observer; Â is the matrix of observer coefficients; M is the vector
of the values measured by the sensors; H is the matrix of the coefficients of the measured quantities. We will
compose the observer’s equation (24).

ˆ̇
X = ÂX̂+HM+K(z − ĈX̂), (24)

where Ĉ =
[
0 1 0

]
is the matrix of the choice of the corrected value; K̂ =

[
k1 k2 k3

]T
is a correction

matrix. The estimation of the absolute velocity of the object is given by the equation of the observer’s exit:
ˆ̇x = CoX̂, where Co =

[
1 0 0

]
is the matrix of the observer’s output. It should be noted that in such a

system, no control action is given to the observer[Mita et al., 1994]. The block diagram of the observing device
constructed according to the expression (24) is shown in Fig. 5. Symbols ηx and ηÿ is the noise in the acceleration
measurement channels on the object and the base, respectively.

Figure 5: Block diagram of the observing device

We estimate the work of the observer. For modeling we use the system considered earlier without the introduc-
tion of a control action. The root-mean-square deviations in the acceleration measurement channels are accepted
σ(ηẍ) = σ(ηÿ) = 0.5. To find the coefficients of the correction matrix K using coordinate descent procedure.
During this procedure, a disturbing effect was applied to the system f = 2 Hz. As a result, a correction matrix

K =
[
99.3 73.0 71.3

]T
. (25)

The results of the simulation of the system with the observer (24), obtained by the correction matrix and the
disturbing effect of the frequency are shown in Fig. 6.

Figure 6: The results of simulation of the operation of the observing device at the frequency of the disturbing
effect f = 2 Hz: 1 is the true value of the absolute speed of the object 2 is the estimate of the absolute velocity
of the object
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