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Abstract

We consider continuous dynamic model of gas fields with interacting
wells. The minimum prime cost of gas extraction is the main criterion
for the construction project of the gas field. We analyze dependence
of the minimum prime cost on the planning horizon. In our model at
some turning point of time one gas field is selected for further develop-
ment out of two gas fields on the basis of the available projects. The
only selection criterion is the minimum prime cost of gas extraction.
When the selection is done, any further revision of the choice is impos-
sible. We set two problems about correctness of the made choice under
various condition. We completely solve the first problem. We find the
conditions when the choice of the gas field remains correct, although
the planning horizon changes.

1 Introduction

Department of Methods for Designing Developing Systems explores the problem of oil, gas and condensate fields
dynamic planning (individually and as a group) for many years. Based on the modern foundations of gas fields
exploitation [Vyakhirev, 1998] a number of original mathematical models was developed and a large number of
optimal control problems was solved [Margulov, 1992], [Skiba, 2009], [Skiba, 2012], [Khachaturov, 2015]. One
of them is a problem of optimal economic growth [Skiba, 1978], whose solution is based on the propositions of
K. Arrow [Arrow, 1974].

The Department pays special attention to the computational methods in the sphere of dynamic planning.
Thus, a simulation model of the Gas Production Planning System (SPDG) was created and implemented on the
computer. This system does dynamic calculation of indicators for any given horizon T > 0.

The economic indicators of gas production are the main subjects to investigation. Profit, income and other
indicators related to the market price are usually taken as the main subjects to investigation. However, in the
recent years it has become quite clear that the market price is a poorly predictable economic indicator, even
given a small time horizon. That is why in this paper we consider prime cost is taken as a target economic
indicator.

In recent years, several researches of the prime cost optimization have been made in the adjacent fields of
study. For example, shale gas development was investigated in [Li, 2017] and optimal planning and infrastructure
development for shale gas production was discussed in [Arredondo-Ramirez, 2016].
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In [Elsholkami, 2017] they consider the general optimization model for the energy planning of industries
including renewable energy and prime cost optimization of biofuel production was elaborated in [Jong, 2017].

Increased interest in this issue confirms the importance of the topic under the study in this paper.

2 Prime Cost Analysis of the Gas Field

In the paper we consider a dynamic model of gas field with interacting wells [Margulov, 1992]. The following
notations are used:

T is the planning horizon;
N is operating fund of producing wells;
N̄ is general fund of producing wells;
q is average flow rate of producing wells;
V is the extracted gas reserve;
c is the natural gas market price.
All the variables are strictly positive. The relationship among them can be written in the form of differential

equations:

V̇ = −Nq, q̇ = −α Nq, α =
q0
V0

(1)

with initial conditions V0 > 0, qo > 0. The following constraint is imposed on the fund of producing wells

0 ≤ N ≤ N̄ . (2)

Capital expenditures are described as a linear function z+ kN̄, where z and k are constant coefficients. Next,
we write out two formulas that determine the prime cost of gas extraction and the profit obtained from its sale.
The prime cost is defined as the ratio of capital expenditures during the construction of the field to the extracted
volume of natural gas produced for the entire planning period.

Cost =
z + kN̄
T∫
0

qNdt

. (3)

Profit is the difference between the market cost of the products and all existing expenses.

Prib = c

T∫
0

qNdt− z − kN̄. (4)

Expenses consist only of capital expenditures made in the pre-planned period. Total current expenses are
small compared to all capital expenditures. Therefore total current expenses are not taken into account. We
make the following change of variables:

N ′ = αN, N̄ ′ = αN̄, V ′ = αV = q, z′ = α
z

k
, c′ =

c

k
. (5)

We omit the strokes in the notation of these variables.
Double inequality (2) will be understood in the new variables. We rewrite the formula (1), (3) and (4) in a

more convenient for further analysis:

q̇ = −Nq; (6)

Cost = k
z + N̄
T∫
0

qNdt

; (7)

Prib =
k

α
(c

T∫
0

qNdt− z − N̄). (8)
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We set two optimal control problems: the first problem is to minimize the prime cost of natural gas extraction,
the second problem is to maximize the profit from its sale.

Problem 1. Minimize the functional (7) at differential connection (6), the initial condition q0 > 0 and a
constraint on control (2).

Problem 2. Maximize the functional (8) at differential connection (6) the initial condition q0 > 0 and a
constraint on control (2).

It is easy to show that the minimum of (7) and the maximum of (8) are achieved under the following control:
N(t) = N̄ throughout the whole planning period. Thus, solutions of these problems are to minimize the value
of q(T ):

q(T ) = q0e
−

T∫
0

N(t)dt
≥ q0e

−
T∫
0

N̄dt
= q0e−N̄T .

By transforming (7) and (8), we obtain two functions that depend on N̄ and T :

Cost(N̄ , T ) = k
z + N̄

q0(1− e−N̄T )
; (9)

Prib(N̄ , T ) =
k

α

(
cq0(1− e−N̄T )− z − N̄

)
. (10)

Next we find the minimum of (9) given a fixed T . So, we take the partial derivative of (9) with respect to
N̄ , that should be equaled to zero. After the transformations, we obtain the following equation:

eN̄T − 1− N̄T − zT = 0. (11)

We denote the left-hand side of the equation (11) by Φ(T, N̄), where T and N̄ are positive variables. In this
case, the parameter z is assumed to be positive and fixed. The function Φ(T, N̄) is defined and continuous for
T > 0 and for N̄ > 0, and this function has continuous partial derivatives ∂Φ/∂T and ∂Φ/∂N̄ for positive values
of T and N̄ . Moreover, ∂Φ/∂N̄ = T (eN̄T − 1) > 0. It is easy to show that for any T0 > 0 there exists a unique
N̄0 > 0 such that Φ(T0, N̄0) = 0. Hence, by the implicit functional theorem for T > 0 there exists a unique
positive-definite function N̄ = N̄∗(T ) satisfying the equation (11).

We substitute the function N̄∗(T ) into the equation (11). As a result, we arrive at the identity

eN̄
∗(T )T − 1− N̄∗(T )T − zT = 0. (12)

Using the last identity, we simplify the function (9)

Cost(N̄∗(T ), T ) =
k

q0T
eN̄

∗(T )T . (13)

It is interesting to study the behavior of the functions N̄∗(T )T , N̄∗(T ) and Cost(N̄∗(T ), T ) depending on
parameter T > 0. The study of the behavior of these functions will be useful to us in the future. The following
three statements are given with proof.

Statement 1. The function N̄∗(T )T is defined and continuous for T > 0 and it is strictly increasing from 0
to ∞.

We expand the exponent into the identity (12) in the Maclaurin series. After the transformations, we obtain
the following double inequality:

0 < N̄∗(T )T <
√
2zT . (14)

In the double inequality (14), we pass to the limit, directing the parameter T go to zero. As a result, we
obtain limT→0(N̄

∗(T )T ) = 0. We differentiate both sides of the identity (12) with respect to T and after the
transformations we obtain

(N̄∗(T )T )′ =
z

eN̄∗(T )T − 1
> 0. (15)

Then the function N̄∗(T )T is strictly increasing. The following result follows from the identity (12):
limT→∞(N̄∗(T ), T ) = ∞. The statement 1 is proved.

Statement 2.The function N̄∗(T ) is defined and continuous at T > 0 and is strictly decreasing from ∞ to 0.

526



Dividing both sides of the identity (12) by T , we differentiate it with respect to the parameter T . After the
transformations, we obtain

(N̄∗(T ))′ =
eN̄

∗(T )T − 1− N̄∗(T )TeN̄
∗(T )T

T 2(eN̄∗(T )T − 1)
. (16)

The denominator of (16) is positive for T > 0. The numerator of (16) is zero for T = 0. To show that the
numerator of this fraction is negative for T > 0 we differentiate it by T . Taking into account statement 1 for
T > 0, we obtain

−N̄∗(T )TeN̄
∗(T )T (N̄∗(T )T )′ < 0.

So, the numerator is negative for T > 0. The function N̄∗(T ) is strictly decreasing. We divide all the parts of
the double inequality (14) by T

0 < N̄∗(T ) <

√
2z

T
. (17)

Passing to the limit as T → ∞, we arrive at the following result: limT→∞ N̄∗(T ) = 0. We expand the function
eN̄

∗(T )T using the Maclaurin formula of the second order with the remainder term in the Peano form and
substitute the resulting expansion into the identity (12). As a result, we obtain

(N̄∗(T )T )2

2
+ o(N̄∗(T )T )2 − zT = 0. (18)

We divide both sides of the identity (18) into (N̄∗(T )T )2

2 and taking into account
limT→0(N̄

∗(T )T ) = 0, we pass to the limit as T → 0

1− lim
T→0

(
2z

(N̄∗(T ))2T

)
= 0. (19)

The result is limT→0 N̄
∗(T ) = ∞. The statement 2 is proved.

Statement 3. The function Cost(N̄∗(T ), T ) that describes the prime cost of gas extraction, defined and
continuous for T > 0 and it is strictly decreasing from ∞ to kz

q0 .

We substitute the function N̄∗(T ) into the function (9). Next, we differentiate the function Cost(N̄∗(T ), T )
with respect to the parameter T and, using the relation (11), we obtain

(Cost(N̄∗(T ), T ))′ = −kN̄∗(T )e−N̄∗(T )T z + N̄∗(T )

q0(1− e−N̄∗(T )T )2
< 0. (20)

Hence the function Cost(N̄∗(T ), T ) strictly decreases for T > 0. Using statement 1 and 2, we calculate the
limits:

lim
T→0

Cost(N̄∗(T ), T ) = k
z + N̄∗(T )

q0(1− e−N̄∗(T )T )
= ∞;

.

lim
T→∞

Cost(N̄∗(T ), T ) = k
z + N̄∗(T )

q0(1− e−N̄∗(T )T )
= k

z

q0
.

The statement 3 is proved.
Let us now turn to the main part of the present paper.

3 Comparative Analysis of Two Gas Fields Prime Costs

Suppose one of two gas fields must be selected for further production during the planning period T0. The main
criterion for selection is the minimum prime cost of gas extraction. The choice is made on the basis of the
submitted projects of field construction. The choice of only one field could be done due to various reasons, for
example, the possibility to connect the gas pipeline with the only one out of the two fields.

Obviously, in this situation, every owner of the field wants to win the tender. Therefore, each field is projected
taking into account the planning horizon T0 and the minimum prime cost of gas extraction. Thus, the producing
wells fund N̄∗(T0) and minimum prime cost Cost(N̄∗(T0), T0) are determined. The winner of the tender is
determined without any possibility of further change.
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Let the planning horizon changes from T0 to another value T . There is a natural question of the correctness
of the choice made. This section of the paper is devoted to the answer to this question.

When choosing one out of two fields for further gas extraction, two cases are considered.
In the first case when there is no possibility to reorganize the field construction, the fund of producing

wells N̄∗(T0) and the capital costs k(z + N̄∗(T0)) remain the same. However, the accumulated gas extraction
q0(1− e−N̄∗(T0)T ) and the prime cost of gas extraction Cost(N̄∗(T0), T ) are changed.

In the second case, the field construction reorganization is possible. Another field construction project is being
created with the new planning horizon T . Thus, we get a new value of the fund of producing wells N̄∗(T ) and
the minimum prime cost of gas extraction Cost(N̄∗(T ), T )

Statement 4. The following inequality holds:

Cost(N̄∗(T ), T ) ≤ Cost(N̄∗(T0), T ),

moreover, the equality holds only when T = T0. For any positive quantity N0 there exists a unique value T0 > 0
such that N̄∗(T0) = N0. For any positive N ̸= N̄∗(T0), a strict inequality holds:

Cost(N̄∗(T0), T0) < Cost(N,T0).

Problem 3. We have a set of five positive numbers: N̄∗
1 (T0), Cost1(N̄

∗
1 (T0), T0), N̄

∗
2 (T0), Cost2(N̄

∗
2 (T0), T0)

and T0. The first two numbers of the set refer to the first field. The next two numbers of the set refer to the
second field. The last number is the horizon of gas production planning. It is assumed that inequality

Cost1(N̄
∗
1 (T0), T0) < Cost2(N̄

∗
2 (T0), T0) (21)

It is necessary to find values of T such that the inequality

Cost1(N̄
∗
1 (T0), T ) < Cost2(N̄

∗
2 (T0), T ) (22)

holds and such values of T for which it does not hold.

A set of five numbers is formed from field construction projects. This set is enough to calculate the prime
costs of gas extraction for any planning horizon. We show how this is done.

According to (9), the prime costs of gas extraction are calculated by the formulas:

Costi(N̄
∗
i (T0), T ) = ki

zi + N̄∗
i (T0)

q0i (1− e−N̄∗
i (T0)T )

, i = 1, 2. (23)

Based on the initial data, we determine the concrete values of two numbers:

ai = Costi(N̄
∗
i (T0), T0)(1− e−N̄∗

i (T0)T0), i = 1, 2. (24)

Then the prime costs of gas extraction are calculated by the formulas:

Costi(N̄
∗
i (T0), T ) =

ai

1− e−N̄∗
i (T0)T

, i = 1, 2. (25)

The ratio of the prime costs of gas extraction of R(T )

R(T ) =
Cost2(N̄

∗
2 (T0), T )

Cost1(N̄∗
1 (T0), T )

=
a2(1− e−N̄∗

1 (T0)T )

a1(1− e−N̄∗
2 (T0)T )

.

Using the new notation, from the inequality ( ref eq21) we obtain a restriction on the value of the function
R(T ) at the point T0:

1 < R(T0) =
Cost2(N̄

∗
2 (T0), T0)

Cost1(N̄∗
1 (T0), T0)

=
a2(1− e−N̄∗

1 (T0)T0)

a1(1− e−N̄∗
2 (T0)T0)

. (26)

Statement 5. The function R(T ) is defined and continuous for T > 0 and it monotonically changes from
a2N̄

∗
1 (T0)

a1N̄∗
2 (T0)

to a2

a1
. The function R(T ) is strictly increasing when N̄∗

1 (T0) < N̄∗
2 (T0) and is strictly decreasing when

N̄∗
1 (T0) > N̄∗

2 (T0).
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Next, we explore the function

f(T ) =
1− e−N̄∗

1 (T0)T

1− e−N̄∗
2 (T0)T

, (27)

which is different from R(T ) by a constant value. It is easy to show that:

lim
T→0

f(T ) =
N̄∗

1 (T0)

N̄∗
2 (T0)

; lim
T→∞

f(T ) = 1. (28)

Next we differentiate f(T ) with respect to T :

f ′(T ) =
N̄∗

1 (T0)e
−N̄∗

1 (T0)T (1− e−N̄∗
2 (T0)T )− N̄∗

2 (T0)e
−N̄∗

2 (T0)T (1− e−N̄∗
1 (T0)T )

(1− e−N̄∗
2 (T0)T )2

=
N̄∗

2 (T0)e
−(N̄∗

1 (T0)+N̄∗
2 (T0))T

(1− e−N̄∗
2 (T0)T )2

[
N̄∗

1 (T0)

N̄∗
2 (T0)

(eN̄
∗
2 (T0)T − 1)− (eN̄

∗
1 (T0)T − 1)

]
. (29)

At T = 0 the expression in square brackets is zero. Differentiate with respect to T the expression in square
brackets in the ratio (29). The result is N̄∗

1 (T0)(e
N̄∗

2 (T0)T − eN̄
∗
1 (T0)T ). It follows that f ′(T ) > 0 for N̄∗

1 (T0) <
N̄∗

2 (T0) and f ′(T ) < 0 for N̄∗
1 (T0) > N̄∗

2 (T0). In both cases, T > 0. The statement 5 is proved.
Let us restate the problem 3 in terms of the functions R(T ).

Problem 3′. Under the assumption (27) it is necessary to find the values of T when the function R(T ) is greater
than 1, and when it is less than 1.

The following theorem (the solution of problem 3) follows from the inequality (27) and the statement 5.
Theorem 1. Case 1. Let N̄∗

1 (T0) < N̄∗
2 (T0). In this case, a2

a1
> 1, then:

a) the function R(T ) is strictly increasing on the interval (0,∞) from
a2N̄

∗
1 (T0)

a1N̄∗
2 (T0)

to a2

a1
;

b) if
a2N̄

∗
1 (T0)

a1N̄∗
2 (T0)

< 1, then there exists a unique positive number T ∗
1 less T0 such that R(T ∗

1 ) = 1, and when T > T ∗
1

inequality R(T ) > 1, and when 0 < T ≤ T ∗
1 , it is not executed.

c) if
a2N̄

∗
1 (T0)

a1N̄∗
2 (T0)

≥ 1, then the inequality R(T ) > 1 occurs for all positive values of T .

Case 2. Let N̄∗
1 (T0) > N̄∗

2 (T0). In this case,
a2N̄

∗
1 (T0)

a1N̄∗
2 (T0)

> 1, then:

a) the function R(T ) is strictly decreasing on the interval (0,∞) from
a2N̄

∗
1 (T0)

a1N̄∗
2 (T0)

to a2

a1
;

b) if a2

a1
< 1, then there exists a unique positive number T ∗

1 greater T0 such that R(T ∗
1 ) = 1, and when 0 < T < T ∗

1

inequality R(T ) > 1, and if T ≥ T ∗
1 , it is not executed.

c) if a2

a1
≥ 1, then the inequality R(T ) > 1 occurs for all positive values of T .

Case 3. Let N̄∗
1 (T0) = N̄∗

2 (T0). In this case, a2

a1
> 1, then:

a) the function R(T ) on the interval (0,∞) takes a constant value, equal to a2

a1
;

b) inequality R(T ) > 1 for all positive values of T .
Problem 4. The conditions of the problem 4 such as in problem 3 with the exception of its goals. The goal

of the problem consists in finding such values of T for which the inequality

Cost1(N̄
∗
1 (T ), T ) < Cost2(N̄

∗
2 (T ), T ) (30)

is performed and, accordingly, in which it fails.

4 Conclusion

In this paper, we considered a continuous dynamic model of a gas field. Within the framework of the model,
formulas for calculating profit and prime cost of gas extraction were written out. Profit is considered as the most
important economic indicator. Only profit is fully able to reflect the level of efficiency of any enterprise. However,
unlike the prime cost of gas extraction , the market price of gas (which is included in the profit calculations) is
a poorly predicted dynamic value. This fact greatly complicates the prediction of total profit. The prime cost
is defined as the ratio of capital costs during the construction of the field to the volume of natural gas extracted
during the planned period.

Capital costs are described as a linear function of one variable with a constant part and a variable part. The
variable part depends on the fund of producing wells. For each planning horizon, we find the minimum prime
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cost of gas extraction. It is proved that the minimum exists. Thus, for each planning horizon, we unambiguously
determine the value of the producing wells fund. It is proved that the optimal value of the fund of producing
wells is strictly decreasing from infinity to zero with a change in the planning horizon. The minimum value of
the prime cost of gas extraction strictly decreases from infinity to a certain positive value. These properties of
the fund of producing wells and prime costs of gas extraction do not contradict the basic property of the model.
Over infinite time, the entire natural gas reserve can be completely extracted by a single well.

The following situation is considered. Two fields participate in the tender. One field is selected with the
lowest prime cost of gas extraction. Revision of the choice is impossible. The planning horizon is changing. Two
cases are considered. In one case, producing wells remain unchanged. In another case, the prime cost of gas
extraction for each field is minimized with a new planning horizon. For each case, the problem is posed with the
following question. Is the right choice made? Both problems are solved.

However, the paper gives a complete description of the solution of only the first problem. The solution of the
second problem is limited only to its formulation. The solutions of the two problems are structurally similar
to each other. The existence of no more than two areas is proved. If the area is one, then the choice is made
correctly. If there are two areas, then in one area the choice is made correctly, and in another it is wrong.The
sequence of areas can be any.

In practice, a conflict situation may arise with the organizers of the tender in the event of the negative answer
to the question posed in the problems. Sometimes a protracted conflict can be resolved only through the courts.

References

[Vyakhirev, 1998] Vyakhirev, R.I.,Korotaev, Yu.P.,& Kabanov, N.I. (1998) The Theory and Experience of Gas
Recovery. Moscow: Nedra

[Margulov, 1992] Margulov, R. D.,Khachaturov, V. R.,& Fedoseev, A.V.. (1992) System Analysis in Long-term
Planning of Gas Production. Moscow: Nedra

[Skiba, 2009] Skiba, A. K. (2009). Maximum Principle in a Problem of Maximization of the Income for Model of
a Gas Deposit. Bulletin of Peoples Friendship University of Russia. Series Mathematics. Information
Sciences. Physics, 1, 14-22

[Skiba, 2012] Skiba, A. K. (2012). An Optimal Control Applied Problem with a Mixed Constraint.Bulletin of
Peoples Friendship University of Russia. Series Mathematics. Information Sciences. Physics, 4, 31-43

[Khachaturov, 2015] Khachaturov, V. R., Solomatin, A. N., Zlotov, A. V., Bobylev, V.N., Veselovsky, V. E.,
Kovalenko, A.G., Kosachev, Yu. V., Krylov, I. A, Livanov, Yu. V., Skiba, A. K., & Cherepanov,
V. V. (2015) Planning and Design of Development of Oil and Gas Producing Regions and Deposits:
Mathematical Models, Methods, Application. Moscow: URSS: LENAND

[Skiba, 1978] Skiba, A. K. (1978). Optimal growth with a convex-concave production function. Econometrica,
3(46), 527-539

[Arrow, 1974] Arrow, K. (1974). The Application of Control Theory to Economic Growth. Mathematical Eco-
nomics, 7-45, Moscow: Mir

[Arredondo-Ramirez, 2016] Arredondo-Ramirez K., Ponce-Ortega J. M.,& El-Halwagi M. M.(2016). Optimal
planning and infrastructure development for shale gas production. Energy Conversion and Management.
119, 91-100

[Li, 2017] Li H., & et al.(2017). A theoretical cost optimization model of reused flowback distribution network
of regional shale gas development. Energy Policy. 100, 359-364.

[Elsholkami, 2017] Elsholkami M., & Elkamel A. (2017). General optimization model for the energy planning of
industries including renewable energy: A case study on oil sands. AIChE Journal. 2(63), 610-638.

[Jong, 2017] Jong S., & et al. (2017) Cost optimization of biofuel productionThe impact of scale, integration,
transport and supply chain configurations. Applied Energy. 195, 1055-1070

530


