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Abstract

In the age of globalization, great emphasis has been placed on integra-
tion throughout the supply chain and consequently, building alliances
appears to be a successful way to improve logistics efficiency. In this
paper, we consider a distribution system where a set of retailers or-
der a single product from a unique supplier. In such an environment,
we identify the cooperative game theory approach as a feasible tool-
box to deal with the profit allocation problem. In order to provide
a guide for collaboration companies, we design effective and efficient
cost allocation methods to ensure the continuity of the collaboration.
We propose a method and subsequently this core allocation is com-
pared to well-known methods. We discuss the main advantages and
drawbacks of the proposed solution. We observe that our proposed
method is computationally efficient and can be implemented to solve
real-life sized problems. A numerical example is presented to show the
usefulness of this approach.

1 Introduction

In today’s marketplace, logistics collaboration is increasingly emerging as a new opportunity for cost saving
through internal chain coordination. Logistics collaborations are categorized as vertical, horizontal, or lat-
eral [Simatupang and Sridharan, 2002]. This research paper focuses on one form of coordination in logistics,
namely horizontal logistics collaboration, which is considered to be an effective way of reducing logistics costs
[Lozano et al., 2013]. Horizontal cooperation is defined as “bundling the transport requirements of companies
operating at the same level of the supply chain, which have similar or complementary transportation needs”
[Vanovermeire et al., 2014]. [Cruijssen et al., 2007] expressed a more explicit definition as “an active collabora-
tion between two or more firms that operate at the same level of the supply chain and perform a comparable
logistics function on the landside”.

A major problem of collaboration is to decide how to share costs, profits or resources
[Guajardo and Rönnqvist, 2016]. Cooperative game theories are widely used in logistics as a sharing mechanism,
this includes the problems of transportation planning [Frisk et al., 2010], traveling salesmen [Sun et al., 2015], ve-
hicle routing [Krajewska et al., 2008], joint distribution [Dai and Chen, 2012] and inventory [Özener et al., 2013].
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In an attempt to find a solution to these problems, game theory is presented in this paper as a feasible tool to
deal with profit allocation.

A Joint Replenishment Problem (JRP) is defined as the coordination of multiple items that are jointly ordered
and shipped by using a single truck [Goyal, 1974]. Since it became significant in practice, the JRP has grown in
importance over the past decade and is of interest to researchers [Arkin et al., 1989, Porras and Dekker, 2008,
Qu et al., 2015].

This paper examines the subject of cooperation in a JRP for one-supplier multi-retailer systems under the
same cost structure. JRP is a model of the supply chain formed by one supplier and n retailers to deal with
optimizing the shipment of goods through shared warehouses. In this situation, the strategic decision is how
to allocate the profits (costs) among partners is an important factor in the design of the coalition. The cost
allocation problem may be modelled naturally as a cooperative game. Hence, in this research, we used game
theory solution concepts to divide the cost among the members of the coalition. More specifically, to examine
the question of cost distribution, first we focus on some of the most central solution concepts in cooperative
game theory e.g. equal allocation, Shapley value. Furthermore, by integrating cooperative game theory with
the joint replenishment problem we propose a new method of cost allocation. The method is based on different
distribution keys e.g. volume, capacity. The proposed method is accurate, fair and realistic as compared with
conventional methods.

The rest of the paper is organized as follows. Section 2 presents the standard definitions from cooperative
game theory, that are applied in the proposed approach for cost allocation in JRP. Section 3 presents the
solution methodology. Section 4 illustrates numerical examples and also presents the comparisons between
solution methods. Finally, Section 5 concludes this paper and proposes perspectives for further research.

2 Cooperative Game Theory Background

A cooperative game is a pair G = (N, ν), characterized by a given set of players N = {1, 2, ..., |N |} and the
characteristic function ν. N is called the grand coalition. The characteristic function ν : 2N → R assigns to
every nonempty coalition S ⊆ N a value ν(S), with ν(∅) = 0. The characteristic function may be interpreted as
profits or costs. When coalition S cooperates, the total cost C(S) is generated

ν(S) =
∑
i∈S

C(i)− C(S), for all S ⊆ N.

Some important properties of cooperative games are listed below in order to derive insights concerning the
application of solution concepts.

Definition 1. A coalition S is profitable if and only if ν(S) ≥ 0.

Definition 2. The game G = (N, ν) is superadditive if the value ν satisfies the following equation

ν(S ∪ T ) ≥ ν(S) + ν(T ) for all coalitions S, T ⊂ N and S ∩ T = ∅. (1)

Equation (1) indicates whether two players have an incentive to cooperate and is focused in most appli-
cations of cooperative game theory on logistics collaborations e.g. [Krajewska et al., 2008, Frisk et al., 2010,
Lozano et al., 2013].
φi is the cost(profits) allocated to player i, i ∈ N. This vector φ = (φ1, φ2, ..., φ|N |) is an element of the |N |−

dimensional linear space RN .. In a budget balanced cost allocation, the total cost allocated to the players is equal

to the total cost incurred by the grand coalition (
∑
i∈N

φi(ν) = ν(N)). In a stable cost allocation, the total cost

allocated to a subset of players should be less than or equal to the total cost incurred by that subset ν(S). The
set of cost allocations that are budget balanced and stable is called the core of a collaborative game.

Definition 3. The core of coalitional game G = (N, ν) is defined as

Core(N, ν) =
{
x :

∑
i∈N

φi(ν) = ν(N) ∧
∑
i∈S

φi(ν) ≥ ν(S), for all S ⊆ N
}
.

The core is the most attractive solution concept in cooperative game theory. It is a set of valid, efficient
allocations that cannot be improved upon by a coalition. For a collaborative game, the core may be empty, that
is, a balanced budget with stable cost allocations may not be achievable.
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The major problem in cooperative game theory is how to allocate the costs of the grand coalition among the
players. The allocation vector satisfies a variety of properties, some of them are listed below. Coalitional game
G = (N, ν) is

efficient if
∑

i∈N φi(ν) = ν(N), this property ensures that the total value of the grand coalition is distributed
among the players,

individual rationality if ∀i∈Nφi(ν) ≥ ν({i}), it guarantees that each player should at least get what the player
would get individually,

collective rationality if ∀i∈Sφi(ν) ≥ ν(S), ∅ ⊂ S ⊂ N. If this property is not satisfied, then the players have
an incentive to drop out of the grand coalition in order to gain a higher payoff allocation.

The payoffs that secures efficiency and individual rationality are called the imputation. No partner would
accept an allocation that has no imputation, therefore most of the solution concepts are a set of imputations.
Now we present the definition of different fairness properties represented by well-known allocation rules such
as equal allocation, the Shapley value [Shapley, 1953], the Nucleolus [Schmeidler, 1969] and the Gately point
[Gately, 1974].

2.1 Equal Allocation

Firstly, we introduce the equal allocation rule which awards an equal portion to each player and is defined by
the equation

φi(ν) =
ν(N)

n
.

In general the proportional method is easy to implement due to the fact that it does not take into account the
effect of synergies among the players.

2.2 Shapley Value

One of the earliest and most important solution concepts in coalitional game theory is the Shapley value
[Shapley, 1953], that is defined based on marginal contribution.

Definition 4. The marginal contribution of player i to a coalition S is

ν(S ∪ {i})− ν(S).

Definition 5. The Shapley value is defined by the formula

φi(ν) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(ν(S ∪ {i})− ν(S)), for all i ∈ S.

The Shapley value can be explained as the average marginal contribution in which each individual would make
it to the grand coalition if it were to form an individual a time. Shapley value allocations may not lie in the core
of the game, in cases where the core is non-empty.

2.3 Nucleolus

In addition to the Shapley value another solution concept that is studied in cooperative game theory is the
Nucleolus [Schmeidler, 1969]. When we compute the Nucleolus of a game, we lexicographically maximize the
minimal gain, the difference between the stand alone cost of a subset and the total cost allocated to that subset,
over all the subsets of the collaboration.

Consider x ∈ G(N, ν). For each such x and for each S ∈ 2N \ {N, ∅}, define the excess of coalition S at x as

eS(x) = x(S)− ν(S),

that measures the “degree of happiness” of each coalition S. Define the vector e(x) = (e(x))S∈sN\{N,∅}. This is
the vector of all excesses of the different coalitions at x.
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Definition 6. Let r(x) be a vector arranged in order of decreasing magnitude. Then, for any pair of payoff
vectors x and y, for the first entry z in which they differ, x is smaller than y in the lexicographical order. Let
the lexicographical order be denoted by �lxm .

Definition 7. The Nucleolus of the game (N, ν) is

nc(N, ν) = {x ∈ X(N, ν) : there does not exists y ∈ X(N, ν)), e(y) �lxm e(x)}.

The Nucleolus is the imputation that maximizes the minimal excess and determines such an allocation that
the smallest satisfaction is maximized. And hence, it is ensured that the least satisfied coalition is as satisfied
as possible.

2.4 Gately Point

In addition to the Shapley value and the Nucleolus, an interesting solution concept for coalitional games is the
Gately point [Gately, 1974].

Definition 8. The Gately point is defined by the formula

Gi(ν) =
ν(N)− ν(N \ {i})∑

j∈N (ν(N)− ν(N \ {j}))
ν(N).

This concept attempts to ensure that the most valuable coalition members retain the most importance.

3 Model Description

Let us consider the example of a group of retailers who decide to cooperate by ordering jointly via a single large
order. The mathematical model is developed based on the following assumptions

• the group of retailers can only make orders for full truckload delivery,

• the demand of each retailer is deterministic, and there is no shortage,

• the transportation cost is not relevant to the transportation quantity.

The notions and parameters of the model are summarized in Table 1.

Table 1: Notion

N = {1, 2, ...n} set of retailers Capi vehicle capacity
Disti travel distance Fi ordering frequency of retailer i
βi cost per kilometer CO(S) ordering cost of coalition S
Hi holding cost CH(S) holding cost of coalition S
Di demand of retailer i CT (S) travel cost of coalition S
A fixed ordering cost C(S) total cost of coalition S
Vi volume of i retailer’ product CS(S) cost saving of coalition S
Qi order size of i retailer

In the optimal replenishment strategy under full truckload (FTL) shipments (Vi · Qi = CAPi), the carri-
ers have a similar cost structure. Various cost functions in FTL have been proposed in the literature (e.g.
[Qu et al., 2015]). In [El Omri, 2009], the proposed cost function is based on the combination of two different
types of costs: ordering costs CO(S) and holding costs CH(S) as follows

CO(S) = A ·
∑
i∈S

Fi, CH(S) =

∑
i∈S Hi∑
i∈S Fi

∅ ⊂ S ⊆ N, i ∈ {1, 2, ..., n},

where

FS =
∑
i∈S

Di · Vi
Capi

=
∑
i∈S

Fi, ∅ ⊂ S ⊆ N, i ∈ {1, 2, ..., n}.
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However, from the retailers point of view, the function used in the above scheme does not provide player
satisfaction in terms of all of the costs incurred. As a result a more advanced cost function is needed in order to
evaluate the impact of transportation costs, defined by (2), with the collaboration mechanism

CT (S) =
∑
i∈S

βiDisti, ∅ ⊂ S ⊆ N, i ∈ {1, 2, ..., n}. (2)

Consequently, the total average cost of the coalition ∅ ⊂ S ⊆ N is the sum of the ordering cost, holding cost
and transportation cost, as follows

C(S) = A ·
∑
i∈S

Fi︸ ︷︷ ︸
ordering cost

+

∑
i∈S Hi∑
i∈S Fi︸ ︷︷ ︸

holding cost

+
∑
i∈S

βiDisti︸ ︷︷ ︸
transportation cost

= CO(S) + CH(S) + CT (S), i ∈ {1, 2, ..., n}. (3)

Lemma 1. The cost savings function C(S) is a profitable supperadditive function.

Proof. The cost saving function is profitable if for every S ⊆ N we have C(S) ≤
∑

i∈S C(i).
Let S 6= ∅ then from (3) we have the following

C(S) = A
∑

i∈S Fi +
∑

i∈S Hi∑
i∈S Fi

+
∑

i∈S βiDisti

≤ A
∑

i∈S Fi +
∑

i∈S
Hi

Fi
+
∑

i∈S βiDisti
=

∑
i∈S C(i).

Let S and T be two disjointed and non-empty coalitions, then

C(S) + C(T ) = A(
∑

i∈S Fi +
∑

i∈T Fi) +

∑
i∈S Hi∑
i∈S Fi

+

∑
i∈T Hi∑
i∈T Fi

+
∑

i∈S βiDisti +
∑

i∈T βiDisti

≥ A(
∑

i∈S Fi +
∑

i∈T Fi) +

∑
i∈S Hi +

∑
i∈T Hi∑

i∈S Fi +
∑

i∈T Fi
+

∑
i∈S βiDisti +

∑
i∈T βiDisti

= A
∑

i∈S∪T Fi +

∑
i∈S∪T Hi∑
i∈S∪T Fi

+
∑

i∈S∪T βiDisti

= C(S ∪ T ).

Corollary 1. Since C(S) ≤
∑

i∈S C(i) then ν(S) ≥ 0. This implies that every coalition S is profitable.

The idea is defined, based on the cost defined by (3), a profit allocation, namely the Ordering Holding
Transportation solution (OHT-solution). The total holding and transportation cost is reduced for each retailer
i when they order jointly.

Definition 9. The OHT-solution φi(ν), that assigns to each retailer i in coalition S, ∅ ⊂ S ⊆ N, their cost
savings allocation is defined by the formula

φi(ν) = βi(1− γ)Disti +
Hi

Fi
− Hi∑

j∈S Fj
, i, j ∈ {1, 2, ..., n}, γ ∈ (0, 1).

Theorem 1. The OHT-solution φi(ν) lies in the core, φi(ν) ∈ Core(N, ν).

Proof. For every φi(ν) = βi(1− γ)Disti + Hi

Fi
− Hi∑

j∈N Fj
and i ∈ S we have

Efficiency ∑
i∈N

φi(ν) =
∑

i∈N (βi(1− γ)Disti + Hi

Fi
− Hi∑

j∈S Fj
)

=
∑

i∈N (βi(1− γ)Disti + Hi

Fi
− Hi

FN
)

= (1− γ)
∑

i∈N βiDisti +
∑

i∈N
Hi

Fi
−

∑
i∈N Hi

FN

= ν(N), for all i ∈ N.
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Individual rationality

φi(ν) = βi(1− γ)Disti +
Hi

Fi
− Hi

FN
≥ 0 = ν(i), for all i ∈ N, FN ≥ Fi, 0 < γ < 1.

Collective rationality∑
i∈S

φi(ν) =
∑

i∈S(βi(1− γ)Disti + Hi

Fi
− Hi∑

j∈S Fj
)

=
∑

i∈S(βi(1− γ)Disti + Hi

Fi
− Hi

FN
)

= (1− γ)
∑

i∈S βiDisti +
∑

i∈S
Hi

Fi
−

∑
i∈S Hi

FN

≥ (1− γ)
∑

i∈S βiDisti +
∑

i∈S
Hi

Fi
−

∑
i∈S Hi

FS
= ν(S), for all i ∈ S.

4 Simulation Result and Analysis

In this section, an illustrative example of four retailers (label A,B,C,D) supplied by the same manufacturer
is presented and analyzed. The travel distance, holding and ordering cost, product volume, vehicle capacity,
demand of each retailer, and ordering frequency are shown in Table 2. Notice that retailer D offers the lowest
total cost. In addition, it has the lowest transportation cost. However, retailer D also offers one of the highest
ordering costs. This prevents the existence of a dominant position in the process of grand coalition formation.
The total cost for each possible coalition S and their savings ratio are shown in Table 3. The grand coalition
{A,B,C,D} is stable, which means that no sub-coalition has an incentive to leave the grand coalition. In
addition, for the CS function the monotonicity and superadditivity properties hold.

Table 2: Retailers’ costs

Retailer Disti Hi A Vi Capi Di Fi CO(S) CH(S) CT (S) C(S)
{A} 150 300 20 1 50 600 12 240 25 600 865
{B} 170 100 20 1 50 100 2 40 50 680 770
{C} 150 100 20 1 50 50 1 20 100 600 720
{D} 130 200 20 1 50 150 5 100 45 500 645

Table 3: Coalitions costs and savings

Coalition C(S) CS(S) Contribution to the
grand coalition

{A} 865.0 0.0 896.3
{B} 770.0 0.0 2 318.4
{C} 720.0 0.0 2 433.3
{D} 645.0 0.0 1 893.2
{A,B} 1 204.6 430.4
{A,C} 1 130.8 454.2
{A,D} 1 153.4 356.6
{B,C} 1 022.7 467.3
{B,D} 1 022.9 393.1
{C,D} 954.0 411.0
{A,B,C} 1 649.3 705.7
{A,B,D} 1 671.6 608.4
{A,C,D} 1 597.3 632.7
{B,C,D} 1 470.0 665.0
{A,B,C,D} 2 115.0 885.0
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In section 3 a new method of allocating of profits was introduced, the so-called ordering-holding-transportation
solution (OHT-solution). This solution belongs to the core of the game, which implies that the solution is stable in
the sense that no player is motivated to break off and form their own coalition. Table 4 indicates the comparison
of costs allocated to each of the retailers A,B,C,D based on each method. The results in this study were
obtained from equal allocation, Shapley value, Nucleolus, Gately point and OHT-solution. For each allocation
concept, the Cost Saving is calculated according to the definition and formula presented in section 2. Net Cost
equals the Stand-alone Cost minus Cost Savings. The total cost saving is 885. The Savings Ratio equals the
Cost Savings divided by the Net Cost.

Table 4: Results for test instances

Carriers in coalitions A B C D
Stand-alone cost 865 770 720 645

Equal allocation
Cost saving 221.3 221.3 221.3 221.3

Net cost 643.8 548.8 498.8 423.8
Savings ratio 25.6 % 28.7 % 30.7 % 34.3 %

Shapley value
Cost saving 214.8 233.7 248.9 187.7

Net cost 650.2 536.3 471.1 457.3
Savings ratio 24.8 % 30.3 % 34.6 % 29.1 %

Nucleolus
Cost saving 209.2 241.5 265.8 168.5

Net cost 655.8 528.5 454.2 476.5
Savings ratio 24.2 % 31.4 % 36.9 % 26.1 %

Gately point
Cost saving 209.8 240.6 263.7 171.0

Net cost 655.2 529.4 456.3 474.0
Savings ratio 24.2 % 31.2 % 36.6 % 26.5 %

OHT-solution
Cost saving 190.0 249.0 275.0 171.0

Net cost 675.0 521.0 445.0 474.0
Savings ratio 22.0 % 32.3 % 38.2 % 26.5 %

These results show clearly that it is worthwhile cooperating in a single-supplier multi-retailer problem with
full truckload shipments in order to save costs. The cost savings range from 22% to 38.2%. We can see that
individual C gets the maximum profit according to the OHT-solution while retailer C has also makes the largest
contribution to the grand coalition (equal 2 433.32). Hence, it is easy to conclude that retailer C should prefer
the OHT-solution. In contrast, an equal allocation would probably cause the coalition to be disbanded since
retailer C gains smaller savings than retailer D but it still contributes to the grand coalition. The Shapley value
and Nucleolus, which is less practical and may be more costly, may be rejected by any of them. However, it
must be stressed that all of the concepts (except for equal allocation) are fair in the sense that the retailers who
contribute more are paid more.

5 Conclusion and Further Research

This paper examines a set of cost allocation methods which depends on the situation whereby there are multiple
decision makers who obtain benefits by full truckload shipments cooperation. Motivated by this problem, the
primary focus of the paper is to make use of well-known game theoretical concepts and introduce new allocation
rules that arise from the practical situation (OHT - solution). In this paper the equal allocation, Shapley value,
Nucleolus, and Gately point have been used to investigate their effectiveness in a fair cost sharing between
companies. We find that under the methods proposed, companies have an incentive to collaborate since this
results in reduced costs. In addition, we also explored the issues concerning the detailed comparison of the
proposed allocation methods. The results indicated that the methods proposed can lead to a fair cost allocation,
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since a method such as OHT-solution may establish an adequate incentive for collaboration. Further, the OHT-
solution is a suitable allocation since it is designed especially for this kind of cooperation.

Further research may take a number of different directions. First of all, it is worth to discuss the applicability
of the proposed approach to dynamic distribution systems. Second direction is to consider multiple suppliers.
Another possible direction is to extend the model by considering multiple objectives, such as the supply chain
risk. Finally, an assumption of the approach discussed in the paper is that all the trips are full-truck-load. The
long-term goal is to elaborate the paper to consider less-than-truck load scenarios. However, this approach may
increase the model’s computational complexity.
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