
Identification of Parameters of the Basic Hydrophysical

Characteristics of Soil

Elena S. Zasukhina
Dorodnicyn Computing Centre, FRC CSC RAS

Vavilov st. 40,
119333 Moscow, Russia.
elenazet2017@yandex.ru

Sergey V. Zasukhin
Moscow Institute of Physics and Technology

9 Institutskiy per.,
141701, Dolgoprudny, Moscow Region, Russia

s.zasukhin@yandex.ru

Abstract

The problem of determining parameters of the basic hydrophysical
characteristics is studied. These parameters are defined by the type
of the soil. To determine these parameters, a model of unsaturated
water flow in porous media is considered. The modeled values of soil
moisture at various depths are obtained as a result of solution of the
initial boundary values problem for Richards equation. The parame-
ters identification problem is stated as an optimal control problem. The
objective function is mean-square deviation of simulated values of soil
moisture at various points from some prescribed values. Discretized
problem is proposed to solve by Marquardt-Levenberg method.

1 Introduction

Models of water transfer in soils play an important role in modeling runoff in the catchment area.The hy-
drophysical characteristics of soil included in these models are calculated, as a rule, by van Genuchten formulas
[van Genuchten, 1980]. These formulas contain some parameters (VG-parameters). Their determination is not
an easy task. The specification of the exact values of these parameters is of critical importance in modeling
and predicting water flow and transfer of dissolved substances in the aeration zone. This problem has been
studied by many authors. Various optimization methods were applied to obtain values of these parameters.
Computer programs have been developed to determine these parameters. Here it should be noted the computer
program RETC [van Genuchten et al., 1991], allowing among other things to determine them from the mea-
sured function of water retention, as well as the program Rosetta [Scaap et al., 2001] which allows in particular
to determine hydrological parameters with the help of pedotransfer functions obtained by neural networks. In
[Pan & Wu, 1998], a hybrid algorithm based on simulated annealing was used in searching values of hydraulic
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parameters. In [Takeshita, 1999], [Vrugt et al., 2001] the parameters were obtained by genetic algorithm. Over
the past decades, to determine the parameters, many authors have applied the methods imitating the behavior
of biological populations in conditions of lack of vital resources and migrating in order to find a place with
favorable living conditions, algorithms imitating social behavior, see, for example, [Abbaspourt et al., 2001],
[Yang & You, 2013].

In the present paper the parameter identification problem is stated as an optimal control problem in which the
control is unknown parameters, and the objective function is mean-square deviation of calculated values of soil
moisture at various depths from some prescribed values. Calculation of soil moisture is performed in according
to the model of water transfer in soil. As a result of finite difference approximation, the problem is reduced to
nonlinear programming problem. Numerical solution is obtained by Marquardt-Levenberg method. Jacobian of
the moisture function is calculated by formulas of fast automatic differentiation [Aida-Zade & Evtushenko, 1989],
[Griewank & Corliss, 1999], [Evtushenko, 1991], [Evtushenko, 1998].

2 Problem Formulation

Consider an one-dimensional model of vertical water transfer in soil. Suppose that soil is homogeneous isothermal
non-deformable porous media. Under these assumptions vertical water transfer in soil is well described by one-
dimensional nonlinear second order parabolic partial differential equation. Consider following initial boundary
value problem:
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= R(t)− E(t), t ∈ (0, T ),

θmin ≤ θ(0, t) ≤ θmax, t ∈ (0, T ),

(1)

where z is space variable; t is time; θ(z, t) is soil moisture at the point (z, t); Q = (0, L) × (0, T ); φ(z) and
ψ(t) are given functions; D(θ) and K(θ) are diffusion coefficient and hydraulic conductivity – the hydrophysical
characteristics of the soil; θmin = θr + ε and θmax = θs − ε, where θr and θs are, respectively, the residual
moisture and the saturation moisture depending on the soil type, and ε is a constant such that 0 < ε≪ θr; R(t)
is precipitation; E(t) is evaporation, 0 ≤ E(t) ≤M , t ∈ (0, T ), M is a constant such that M > 0.

The diffusion coefficient D(θ) and the hydraulic conductivity K(θ) appearing in this equation are found by
the widely used van Genuchten formulas [van Genuchten, 1980]

K(θ) = K0S
0.5[1− (1− S1/m)m]2,

D(θ) = K0
1−m

αm(θs − θr)
S0.5−1/m × [(1− S1/m)−m + (1− S1/m)m − 2],

(2)

where S =
θ − θr
θs − θr

; and K0, α, m are some parameters. Described problem (1)-(2) will be called the direct

problem.
Formulate the parameters identification problem. Let a function θ̂(z, t) be defined on some set Q0 ⊆ Q. Call

this function θ̂(z, t) ”experimental data”. Introduce a set U = {u : u ∈ R3; 0 ≤ a[i] ≤ u[i] ≤ b[i], i = 1, 3}. Denote
[K0, α,m]T by u. The problem is to pick up the parameters K0, α and m in such a way that corresponding

solution of the direct problem (1)-(2) is as close as possible to the function θ̂(z, t) on the set Q0. More precisely,
the problem is to find uopt, uopt ∈ U , and corresponding solution θopt(z, t) of the direct problem (1)-(2) which
minimize functional

J =
1

2

∫
Q0

(θ − θ̂)2dzdt.

3 Discretization of the Direct Problem

To approximate the direct problem (1)-(2 by finite differences we divide the intervals (0, T ) and (0, L) into N
and I equal subintervals with the endpoints tn = τn, 0 ≤ n ≤ N , and zi = hi, 0 ≤ i ≤ I, correspondingly, where
τ = T/N h = L/I. Approximate the direct problem (1)-(2 by following finite differences scheme:
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1 ≤ i < I; 0 ≤ n < N,

θ0i = φi, 0 ≤ i ≤ I, θnI = ψn, 1 ≤ n ≤ N.

Here θni , D
n
i+1/2, K

n
i−1/2 are values of the functions θ(z, t), D(θ(z, t)), K(θ(z, t)) at the points (ih, nτ),

((i+ 1/2)h, nτ), ((i− 1/2)h, nτ), correspondingly.
Approximate the left boundary condition in the form
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where Rn+1, En+1 are values of functions R(t) and E(t) at the points t = (n+ 1)τ .
Thus, the discrete analog of the direct problem (1)-(2 has a form

Φn
0 = −

(
1

τ
+

2

h
Dn

1/2

)
θn0 +

2

h
Dn

1/2θ
n
1 +

1

τ
θn−1
0 +

2

h

(
−Kn

1/2 +Rn − En
)
= 0,

θmin ≤ θn0 ≤ θmax, 1 ≤ n ≤ N,

Φn
i =

1

h2
Dn

i−1/2θ
n
i−1 +

1

h2
Dn

i+1/2θ
n
i+1 −

{
1

τ
+

1

h2

(
Dn

i+1/2 +Dn
i−1/2

)}
θni +

+

{
θn−1
i

τ
+

1

h

(
Kn

i−1/2 −Kn
i+1/2

)}
= 0, 1 ≤ i ≤ I − 1, 1 ≤ n ≤ N,

Φn
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(3)

The diffusion coefficient and the hydraulic conductivity at the intermediate points appearing in formulas (3)
are calculated by the formulas

Dn
i+1/2 =

Dn−1
i +Dn−1

i+1

2
, Kn

i+1/2 =
Kn−1

i +Kn−1
i+1

2
, 1 ≤ n ≤ N, 0 ≤ i < I. (4)

4 Discrete Optimal Control Problem

Introduce a set Q0 = {(z, t) : z = ih, t = lτ, (i, l) ∈ A}, where A = {(i, l) : i = 0, 1, . . . , I, l = 1, . . . , d},
where 0 < d ≤ N , d is some natural number. Denote vector of desirable parameters by u, u ∈ U , where
U = {u : u ∈ R3, 0 < a[i] ≤ u[i] ≤ b[i], i = 1, 3}. Define the objective in the form

W (θ, u) =
1

2

∑
(j,n)∈A

(
θnj − θ̂nj

)2
τh. (5)

The optimal control problem is to find optimal control uopt ∈ U and corresponding optimal solution θopt(z, t)
of the direct problem (3)-(4) that minimize the objective function W (θ, u) (5).

Earlier in ([Zasukhina & Zasukhin, 2017]), the problem of the identification of two parameters α and m was
investigated. The problem was considered in the same formulation. In particular, the optimal control problem
with the objective function (5) with various d was studied. Numerical solution of the problem was curried
out using steepest descent method. Exact gradient of the objective function was calculated by formulas of fast
automatic differentiation (FAD). As calculation experiments showed, for the values of d from 8 to 10, the obtained
parameters α and m differ from their true values by 0.4% and 0.1% respectively.

Here we tried to determine three parameters using steepest descent method. But these attempts have encoun-
tered difficulties. The obtained parameters differed from the true ones very significantly. For this reason another
algorithm of numerical optimization was applied.
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Due to the form of the objective function, Levenberg–Marquardt algorithm [Levenberg, 1944],
[Marquardt, 1963] of numerical optimization can be applied to the solution of the considered optimal control
problem. This method is a combination of the Gauss-Newton algorithm with gradient descent method. And in
this case, the exact values of the Jacobian of the soil moisture function [θ10, θ

1
1, . . . , θ

1
I , . . . , θ

N
0 , θ

N
1 , . . . , θ

N
I ]T is

proposed also to be calculated using FAD method.

4.1 Optimization by Levenberg-Marquardt Algorithm

We rewrite the objective function in the form

W (θ, u) =
∑

(j,n)∈A

(
θnj − θ̂nj

)2
, (6)

where A = {(i, l) : i = 0, 1, . . . , I, l = 1, . . . , d}, d is some natural number, d ≤ N . Denote

[θ10, θ
1
1, . . . , θ

1
I , . . . , θ

N
0 , θ

N
1 , . . . , θ

N
I ]T and [θ̂10, θ̂

1
1, . . . , θ̂

1
I , . . . , θ̂

N
0 , θ̂

N
1 , . . . , θ̂

N
I ]T by Θ and Θ̂ respectively. According

to the Levenberg–Marquardt optimization algorithm at each iteration step k, the displacement vector ∆(uk) is
determined from following system of equations:

(J(uk)
TJ(uk) + λdiag(JT (uk)J(uk))∆uk = −JT (uk)(Θ− Θ̂),

where J(uk) is the Jacobian of the function Θ(uk):

J =


∂θ10
∂u1

. . .
∂θ1I
∂u1

. . .
∂θN0
∂u1

. . .
∂θNI
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. . . . . . . . . . . . . . . . . . . . .
∂θ10
∂u3

. . .
∂θ1I
∂u3

. . .
∂θN0
∂u3

. . .
∂θNI
∂u3


T

. (7)

The parameter λ is positive and may be adjusted at the each iteration. The Jacobian of Θ(u) is proposed to be
calculated using FAD formulas.

5 Fast Automatic Differentiation Method

Fast automatic differentiation method allows to compute derivatives of complex functions whose variables are
related by functional relationships. Briefly describe the essence of this method.

Let for vectors z ∈ Rn and u ∈ Rr continuously differentiable functions F (z, u) and G(z, u) define mappings
F : Rn ×Rr −→ R1 and G : Rn ×Rr −→ Rn. Let z and u satisfy the system of n scalar algebraic equations

G(z, u) = 0n, (8)

where 0n is zero n-dimensional vector. Suppose that the matrix GT
z (z, u) is not singular. We denote the matrix

transposed to the matrix Gz(z, u) by GT
z (z, u). Then according to the implicit function theorem, the relations

(8) define continuously differentiable function z = z(u). And according to FAD method, the gradient of the
function F (z(u), u) is calculated by following formula:

dF (z(u), u)/du = Fu(z(u), u) +GT
u (z(u), u)p. (9)

The vector p ∈ Rn from this formula is Lagrange multiplier which is determined as a result of the solution of
following linear system of equations :

Fz(z(u), u) +GT
z (z(u), u)p = 0n. (10)

The system (10) is linear with respect to p and adjoint to the initial system (8).
Thus, in accordance with the formulas (8)-(10), we obtain the relations for computing gradient of V = θni ,

i = 0, I, n = 1, N

dV (θ(u), u)/du = Vu(θ(u), u) + ΦT
u (θ(u), u)p, (11)

Vθ(θ(u), u) + ΦT
θ (θ(u), u)p = 0L, (12)

where ΦT = [Φ1
0,Φ

1
1, . . . ,Φ

1
I ,Φ

2
0,Φ

2
1, . . . ,Φ

2
I , . . . ,Φ

N
0 ,Φ

N
1 , . . . ,Φ

N
I ], p ∈ RL is Lagrange multiplier, u ∈ U ⊂ R3,

θT = [θ10, θ
1
1, . . . , θ

1
I , θ

2
0, θ

2
1, . . . , θ

2
I , . . . , θ

N
0 , θ

N
1 , . . . , θ

N
I ], L = (I + 1)N .
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6 Numerical Results

Described approach was applied to finding the numerical solution of the discrete optimal control problem. The
problem was solved with following values of input parameters:

L = 100(cm), T = 1(d), θmin = 0.05(cm3/cm3), θmax = 0.5(cm3/cm3),
φ(z) = 0.3, z ∈ (0, L), ψ(t) = 0.3, t ∈ (0, T ), a = [0, 0.005, 0.01]T , b = [300, 0.1, 0.5]T .

The grid with I = 100 and N = 96 was used. The calculations were curried out in three stages.

6.1 The First Stage of Calculations

At this stage, the direct problem (3)-(4) with the parameters Ktrue
0 = 100(cm/d), αtrue = 0.01 and mtrue = 0.2

was solved. It is clear from the form of the system (3) and formulas for diffusion coefficient and hydraulic
conductivity at intermediate points (4) that the system (3) can be split into N subsystems which of them
corresponds to certain time layer. Each subsystem can be solved independently from others subsystems. For
each such subsystem, the basic matrix is tridiagonal. Therefore, each subsystem was solved by tridiagonal matrix
algorithm. Obtained solution was taken as a prescribed function θ̂(z, t).

6.2 The Second Stage of Calculations

At the second stage the numerical solution of the optimal control problem was searched by steepest descent
method. Exact gradient of the objective function (5) was calculated by formulas of FAD. Step value along the
chosen direction was determined as a result of procedure of one-dimensional optimization along this direction of
the function interpolating the objective function by means of splines constructed on 40 points. We considered
the optimal control problems with the objective function (5), where d varied from 1 to 10. For all problems
numerical optimization was curried out with various initial approximations. Each initial approximation differed
one from another by value of the first component, namely initial approximations for α and m were equal to 0.03
and 0.13 correspondingly and Kinit

0 was equal to 102, 105, 110, 120, 150, 180, 200.
Numerical calculations showed that for each initial approximation, the results improve slightly with increasing

d from 1 to 10. At the same time, the deviation of the obtained values of the parameters αopt and mopt from
the true values αtrue and mtrue depends on the initial approximation. So, with the change of Kinit

0 from 102 to
200, this deviation varies from 1.1% to 44.7% for α and – from 0.25% to 8.2% for m.

As to the parameter K0, its value does not practically change during the optimization process and remains
very close to the initial value. And, the further the initial approximation of the parameter K0 from its true
value, the smaller the difference between the initial value and the obtained value of the parameter K0. This
difference does not exceed 1.44·10−5. Presumably, this inability of K0 to be optimized is due to the fact that the
corresponding component of the gradient of the objective function differs from other components by 3-4 orders
of magnitude.

The values of the parameters Kopt
0 , αopt and mopt obtained for various initial approximations are presented in

Figure 1. Under various initial approximations, we mean that the value of Kinit
0 changes, while the values of αinit

and minit remain unchanged. The graphs, following from left to right in Figure 1, refer to Kopt
0 , αopt and mopt

correspondingly. These graphs are designated by solid line. Dashed line shows true values of the parameters.
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Figure 1: Dependencies of Obtained Parameters on Initial Approximation
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Thus, these numerical calculations showed that the application of the steepest descent method to solving K0,
α, m identification problem does not lead to satisfactory results.

6.3 The Third Stage of Calculations

As the numerical experiments at the second stage showed, to identify parameters K0, α and m with good
accuracy, another (not the steepest descent method) algorithm should be applied. Therefore, in order to solve
the discrete optimal control problem, the Levenberg-Marquardt algorithm was applied. The objective function
was defined by formula (6), where A = {(j, n) : j = 0, I, n = 1, . . . , d}. The cases of d = 2, 3, 4, 5, 6, 7, 8, 9, 10 were
considered. At each iteration in determining the direction of the search, the exact derivatives of θnj , n = 1, N ,

j = 0, I, were calculated using FAD formulas (11)-(12). The process of the numerical optimization started with
initial approximation Kinit

0 = 200, αinit = 0.03 and minit = 0.13. The parameter λ changed during the process
of numerical optimization. At the beginning it was equal, as a rule, to 10−4 and then it was adjusted at each
iteration. The process of the numerical optimization continued until the Chebyshev norm of the gradient of the
objective function became less than 1.1·10−18 and value of the objective function became less than 2·10−24. The
results of the calculations are presented in following table:

Table 1: Obtained Values of Parameters K0, α and m

d Kopt
0 Error αopt Error mopt Error gradient function

2 100.21 0.21% 1.0011 ·10−2 0.11% 1.9995 ·10−1 0.03% 9.16·10−20 1.92·10−24

3 100.09 0.09% 1.0005 ·10−2 0.05% 1.9998 ·10−1 0.01% 1.08 ·10−18 1.02 ·10−25

4 100.09 0.09% 1.0005 ·10−2 0.05% 1.9998 ·10−1 0.01% 8.22 ·10−21 3.71 ·10−26

5 100.19 0.19% 1.0010 ·10−2 0.10% 1.9995 ·10−1 0.03% 6.41 ·10−21 6.78 ·10−26

6 100.06 0.06% 1.0003 ·10−2 0.03% 1.9998 ·10−1 0.01% 2.34 ·10−19 3.40 ·10−27

7 100.001 0.001% 1.00001 ·10−2 0.001% 1.999997 ·10−1 0.0002% 5.22 ·10−20 7.30 ·10−31

8 100.03 0.03% 1.0002 ·10−2 0.02% 1.99992 ·10−1 0.004% 2.33 ·10−19 2.21 ·10−28

9 100.008 0.008% 1.00004 ·10−2 0.004% 1.99998 ·10−1 0.001% 2.46 ·10−19 1.05 ·10−29

10 100.002 0.002% 1.000008 ·10−2 0.0008% 1.999996 ·10−1 0.0002% 1.38 ·10−19 2.25 ·10−31

It can be seen from Table 1 that optimal values of the parameters K0, α and m are getting closer to their
true values as d increases from 2 to 10. So, while d increases from 2 to 10, the deviation of Kopt

0 from Ktrue
0

decreases from 0.21% to 0.002%, the deviation of αopt from αtrue decreases from 0.11% to 0.0008%, and the
deviation of mopt from mtrue decreases from 0.03% to 0.0002%. The time required to find the solution turned
out to be approximately the same for all problems considered.

The value of d defines the set where measured and calculated values of soil moisture are compared. Therefore,
the choice of d defines initial data required for determining the parameters. Thus, analyzing results of the
numerical calculation, we can estimate how choice of one or another set of initial data will influence on the
accuracy of the solution obtained.

Conclusion

Analysis of the results of the numerical calculations leads us to following conclusion.

• The application of the Levenberg-Marquardt method to solving parameters identification problem allows to
determine these parameters with good accuracy. So, we can determine the parameter K0 with accuracy up
to 0.002%, the parameter α – up to 0.0008% and the parameter mopt – up to 0.0002%.

• The gradient method turned out to be ineffective in determining three parameters K0, α and m. In partic-
ular, the difficulties in solving this problem are due to the fact that one component of the gradient of the
objective function differs from the other components by 3-4 orders of magnitude.

It should be noted the disadvantage of the proposed approach: the Levenberg-Maquardt algorithm used in
the process of numerical optimization is one of the local methods. And therefore, there is the question of the
possibility of applying in this situation a method of global optimization, for example, of the well-known uneven
coating method [Evtushenko & Posypkin, 2013].
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