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Abstract

The dual simplex method for solving linear semidefinite programming
problem is considered. For finding the starting point in this method,
which must be an extreme point of the feasible set, two approaches
are proposed. The first approach is based on application of reduced
gradient technique. The second one is borrowed from the dual affine
scaling method for semidefinite optimization.

Introduction

To date the most popular numerical methods for solving linear semidefinite programming problems are interior
point techniques. Nevertheless there are some methods which are generalization of primal simplex method for
linear programming [Lasserre, 1996], [Pataki, 1996], [Kosolap, 2009], [Zhadan, 2015]. In [Zhadan, 2016a] the
dual simplex method had been proposed. The starting point at this dual method must be an extreme point
of the feasible set, and all subsequent points are extreme points too. The aim of this paper is to describe two
approaches for finding such extreme point in the case where only the feasible point is known. First of all we
formulate the primal and dual linear semidefinite programs. In Section 1, we briefly describe the main iteration
of dual simplex method. Two approaches for finding starting extreme points are considered in Sections 2 and
3. The first approach is generalization of the procedure, which is well known in linear programming and can
be treated as reduced gradient technique. The second approach is based on movement in faces of the feasible
set with step-by-step decreasing dimension of these faces. The similar way had been used in dual affine scaling
method with steepest descent [Zhadan, 2016b].

Let S™ denote the space of real symmetric matrices of order n, and let Si denote the cone of positive
semidefinite matrices from S”. The following inequality M > 0 means also that M & Si. The dimension of S"
is equal to so-called n-th triangular number nn = n(n+1)/2. The zero n-dimensional vector and the zero m xn
matrix are denoted by 0, and 0,,,, respectively.

Linear semidefinite programming refers to the optimization problem that can be expressed in the form

min C e X (1)
Aje X =0V, 1<i<m, X0,
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where C' € S" and A; € Sn, 1 <1i < m, are given. The matrix X € S™ is a variable. The notation C' e X stands
for the inner product of symmetric matrices:

i=1 j=1
The dual problem to (1) has the form
max b u,
ST WAV =C, V0, )
where b = [b,....0™]T, V € S™. Tt is assumed that matrices A;, 1 < i < m, are linear independent, and both

problems (1) and (2) have solutions. We denote by Fp the feasible set at problem (2) and by Fp,, the set

fD,u:{ueRm: C’—ZuiAii-O}.

=1

The set Fp, is a projection of Fp at the space of the variable u.
The optimality conditions for problems (1) and (2) are as follows

XeV =0, Aje X =V, 1<i<m, V=C-=->" u4, X>=0, V=0 (3)

Below we will use the equivalent form of optimality conditions (3) based on vector representation of matrices.

Let vecX denote the direct sum of columns X. Let also svecX denote the direct sum of parts of columns
of X € S" beginning with the diagonal entry. Moreover, off-diagonal entries of X are multiplied by v/2 before
placing in svecX. The dimension of vecX is equal to n%. Respectfully, the dimension of svecX is equal to na.
With the help of these notations optimality conditions (3) can be rewritten in vector form as

(svecX,svecV) =0, AspecsvecX = b, svecV + AL u = svecC, (4)

where angle brackets indicate the Euclidean inner product in finite-dimensional vector space, and Ag,.. denotes
the m X na matrix with svecA; as its rows, 1 <14 < m. Matrices X and V must be positively semidefinite.

1 Dual Simplex Method

The dual simplex method can be treated as a special way of solving system (4). Assume that the starting point
ugp, which is an extreme point of the set Fp ,, is given. Assume also that after some iterations we obtain the point
u = uy, which is an extreme point of Fp ,, too. We define the dual slack V' = V (u), where V(u) = C =" | u’A,.
Also, we make the following decomposition

V =HD(@O)HT,

where H is an orthogonal matrix, § = [91, . ,9"]T is a vector of eigenvalues, and D(6) is a diagonal matrix
with the vector 0 at its diagonal.

Let a rank of the matrix V be equal s < n. The point v is an extreme point of Fp ,, if and only if sp < na—m.
We call the extreme point u regular, if s = na —m. Otherwise, we call it irregular. In what follows, we will use
the matrices A7 = HT A;H instead of A;, 1 <i < m, and we will use the matrix C instead of C. We denote
also by AZ_ the m x na matrix with rows svecA? 1 <i < m.

Suppose that 6 = [93 0N ], where 8% = 0,,_, and Y > 0,. Here and in what follows we use punctuation
mark [ ; | in concatenation of vectors for adjoining them in a column. According to decomposition of the vector
6 the matrix A can be decomposed into two submatrices: A% . = [Aﬁ)eCB , Afww] , where the second matrix
Ag,ecN has the dimension m x (na — sa). We partition also the vector svecX | where X = HT X H, on two
parts: svecX = [svecg X H; svecNXH]T with svecg X € R"*7°# . The same partition will be used for other
na-dimensional vectors.

If we put svecy X = 0, , then the second equality from (4) is reduced to

SA

H
AsvecB

svecg X = 1. (5)
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In the case, where the point u is regular and nondegenerate (see [Alizadeh, 1997]), the matrix of system (5) is
nonsingular. Therefore, solving this system of linear equations, we obtain

svee X = { (Ag)eCB)ilb } .
EUN

The point [u, V] is the solution of dual problem (2), when the corresponding matrix X = HXHH7T is positive
semidefinite.

Suppose that X is not a positive semidefinite matrix and decompose X = QD(n)Q”. Here Q is an orthogonal
matrix, and 7 is a vector of eigenvalues of X. Since X is not positive semidefinite matrix, there exists the
negative eigenvalue n* with the corresponding eigenvector ¢;, . Then we update the point u by setting

Up41 = up — agAug, (6)
where o, > 0 is a step-size. The vector Auy is satisfied to the following system of linear equations

('ASI{)ECB

T
) Ay = svecp QZ, fi ZHTQikqikaL (7)
The value of objective function at the dual problem (2) increases according to the following formula

bl w1 = b ug, — apn™ > bl uy,. (8)

The dual slack variable V1 = HTV H changes in correspondence with (6):
Vi = Vit T AV AV = ZA“;cAf{
i=1

The step-size ay, is chosen as large as possible under condition that the matrix VkI_{_l is positive semidefinite. The
rank of matrix Vkﬁl does not exceed the rank of VkH . Therefore, the point w4 is an extreme point of Fp ,, too.
In the case where uy is an irregular extreme point of Fp ,, the system (5) is underdetermined, and we take

(AfL.)"]

as its solution. On the contrary, system (7) is overdetermined. In order to overcome this difficulty we pass from
the direction Auy, in R™ to the direction AV}, in the space S”, for which the following expression is used

H _ (,H
svecg X}, = (AsvecB

[

svecp

Mi=lm ]| o Ay || ] )

Here Hp is a submatrix of the matrix H, composed from the last s columns of H, and w = Wy, where columns
w; of the matrix W are such that q;"; Hywj = 0. Using relation between Auy and AV, from (9), it is possible to
find Aug, for which formula (8) is preserved.

Theorem 1 Let solutions X. and V., = V(us) of problems (1) and (2) be strictly complementary, i.e. for
eigenvalues 0t and 0° of X, and V, respectively the following inequalities nt + 0. > 0, 1 <4 < n, hold. Then the
sequence {uy}, generated by method (6), converges to w..

2 Initial Stage of the Method. The First Approach

Consider the problem of finding a starting extreme point in the dual simplex method. In order to obtain such
point we apply generalization of the approach using in linear programming. First of all we examine the case,
where the feasible point u € Fp ,, can be easily obtained.
Assume that among all equality-type constraints in problem (1) there is the equality A;, ¢ X = bt with the
positive definite matrix A;,. Then the following point
uo = [0,...,0,uf,0,...,0]"
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belongs to the feasible set Fp , and can be taken as starting point. Indeed, if uél is negative and sufficiently
large by absolute value, then the following inequality

C—> uhd; =C—ujfA;, =0
i=1

is fulfilled, i.e. the point ug is feasible. Our aim now is to pass from g to another extreme point of Fp ,,, using
the reduced gradient technique.
Let now ug be a feasible point from Fp ,. We take the corresponding dual slack Vy =V (ug) = C— Y7 | Auf
and decompose it
Vo = HoD(60)Hg ,

where Hj is an orthogonal matrix, and 6y is a vector of eigenvalues.

Let also V be the matrix of rank s, and the following representation 6y = [0F;05'] be valid for the vector
of eigenvalues, in which 05 = 0,,_, )Y > 0,. As in the previous section, we pass from Vjy to the matrix
Vi = HI'VoHy. The matrix Vi is a representation of V; at the basis defined by columns of the orthogonal
matrix Hy. We have

Ho __ 0 0 Ho _ Ona—sa
Vot = [ 0 DY) } svecly = [ svec D(6) }

Denote C*o = HI'C'Yy. Denote also | = na — s, and split vectors svec VOH0 and svec CHo onto two parts
svec VOHD = [SvecBVOHO; svecNVOHO} . svecCfo = [svecBC’Ho; svecNCHo} ,

where svecgVy™ = 0y, svecy Vi® = svecD(6)).
Suppose that ug is not an extreme point of the set Fp,, i.e. the rank s does not satisfy to the inequality:
sa <na —m. Then I < m. In this case the system of linear equations

(Ao )Tu = svecgCHo, (10)

svecp
where the matrix Aﬁ{,ﬂecB consists of the first [ columns of AH¢ _ is undetermined. The point ug is satisfied to
this system.

Let a rank of system (10) be equal [. We partition the vector uy onto two subvectors: ug = [u’; uZ], where

u} is a l-dimensional vector, and uf is a (m — [)-dimensional vector. According to partition of ug the matrix

Ag‘ch can be also to decomposed into two submatrices
Hy,P
AHO — 'Asvec
svecp .AHO’

Hy,P

We assume that the first quadratic matrix A3%;

as

of order [ is nonsingular. Then system (10) can be rewritten

(Ag;oéc];)T uf = svecgCHo — (AgjoécZB)T u?.

Solving this system with respect to u, we obtain

svecp svecn

u” = u” (u?) = {(AHO’P )T}A [sve(:BC’H0 — (A2 )Tuz} . (11)

In particular, for u = uy we derive that ul = u? (u?).
Furthermore, splitting the vector b = [b";b%] and substituting the partition of the vector u onto two sub-
vectors at the goal function of problem (2), we come to conclusion, that values of this function depends on only

the second variable u#, namely:
(byu) = (07, u”) + (b7, u?) = (b7, u” (u?)) + (b7, u”) = f(u”).

We rewrite this function as B
fw?) = (7 uw?) +é (12)
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where

svecp svecp svecp

_ _ -1
b? = p? — AHoZ (.AH"’P) le, c= [(AHO’P )T} svecgC'To.

The function (12) is linear by uZ.
Let us pass to the updated point B
u? = u?(a) = uf + ab?.

Here o > 0. Then, taking u(e) = [u”(a);u?(a)], where u”(a) = u”(u?(a)), and using (11), we come to
conclusion that u(«) can be written in the form

AHo. P T - AHoz T |
u(a) = ug + aAu, Au = [ N [( S”ecB) } ( svecB) ] 7.
Im—l

Therefore the dual slack V0 (u(a)) changes by the following manner

A 10 0
VH (u(a))f [ 0 D(@év)—OéQNN :| .

Here Qny = > in, AEID\,Aui, and Aflj‘{, is the lower right block of A of order s.

The matrix D(6y) — aQyy is positive definite, if o = 0. It remains positive definite, when « is positive and
small enough. The maximal possible step length «, is determined by the case, when among all eigenvalues of
D(6y) —aQnn the null eigenvalue appears at the first time. Then the rank of the matrix V0 (u(a,)) becomes less
with respect to the rank of V0. At the same time the value of the goal function increases: (b, u(a.)) > (b, ug).
If u(c) is not an extreme point, then we must proceed calculations. Theoretically there exists possibility that
the matrix D(fy) — afyn stays positive definite at any o > 0. If b% # 0, it means that problem (2) has not
solution.

In the case, where not a matrix A; is positive definite, but it is known by some reasons, that the solution
X, of problem (1) is restricted, for example trX, < b™*! for some sufficiently large ¥™*! > 0, then additional
inequality type constraint can be introduced in problem (1)

min C e X, 13
Aje X =V, 1<i<m, I,eX<b", X »o0. (13)
Solving (13), we obtain the same solution as in problem (1).
The dual problem to (13) has the form
_ ,ym+1lrm+1
max (b, u) — u™ T (14)

C—Y" uA; +umt, =0, um™tt>0.
Now we can take 4y = [ug; u6”+1] as the starting point. The number v,
that the matrix inequality C' + u™*1I, >= 0 holds.

Further calculations for finding a feasible extreme point are the same as in the previous case. Moreover, the
inequality u™*! > 0 must be taken into account, when we choose the step length a. When we obtain, that
u™*t = 0, then the additional inequality in (14) is deleted, and we pass to solve the initial dual problem (2). As
a starting point we take the first component from two-component point [u; u™ "], in which «™*! = 0.

6’”‘1 > 0 must be sufficiently large in order

3 Initial Stage of the Method. The Second Approach

Consider the other approach for finding a starting extreme point. Suppose that we have the feasible point w,
which is not an extreme point of Fp,. If the corresponding matrix V' = V(u) has the rank s < n, then u
is a boundary point. Thus, it belongs to some face of Fp, with non-zero dimension. Suppose additionally,
that the decomposition V' = HD(0)HT is valid, where H is an orthogonal matrix, and § = [0p;60y] is the
vector of eigenvalues with 0 = 0,_s, 85 > 0,. The matrix H can also be decomposed into two submatrices
H =[Hgp,Hy].

According to this decomposition of H, we partition the space S™ into two linear subspaces Sz and SnN, where
Sg consists of matrices M € S" with the zero lower right block of order s. On the contrary, the subspace SX,
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consists of matrices M € S™ in which only the lower right block of order s can contain nonzero elements. These
two subspaces are mutually orthogonal, and any matrix M € S” can be represented as the sum of two matrices,
one of which is in S;; and other — in SK,. For example, V = Vp + Vi, where

_ VBB VBN _ Orr Ors o
VB_|:VNB Oss :|’ VB_|:OST‘ VNN:|7 ren 5

In what follows we are interested more in matrices V¥ = H'VH, X# = HTXH and A® = HT A;H, rather
then V, X and A;, 1 <i<m.
The first two equalities from optimality conditions (3) can be rewritten in the form

XHeviH + xlHevii=o, (15)
Al e XH + Ay e X[ =V, 1<i<m. (16)

Moreover, if we require X = 0 and X = 0 and take into account, that Vi = 0, then equality (15) splits into
two equalities
XHevil=0 XxHlevVil=o. (17)

Since VA is zero matrix the first equality from (17) holds true for any matrix X Z.

Denote by X oV the symmetrized product of two symmetric matrices X and V, i.e. XoV = (XV +VX) /2.
Under X = 0 and V¥ = 0 the equality X e VI = 0 takes place iff X o Vi = 0,,,. Therefore, the second
equality from optimality conditions (17) can be replaced by the latter matrix equality. We rewrite it in vector
form as

(Vi ®svecX = 0,,,. (18)

Here (Vi)® = L, (VH)®D,, and (Vi) = (I, @ V¥ + Vi ® I,) /2 is the Kronecker sum of matrix V. The
matrix En is the elimination matriz, which performs the transformation f,nvecM = svecM for any matrix
M e S" (see [Magnus, 1980]). Similarly, D,, is the duplication matriz. For each matrix M € S" it performs the
inverse transformation ﬁnsvecM = vecM.

We denote by &) ~ the lower right submatrix of order sp of the matrix (‘N/NH )®. The matrix e) N is diagonal
with nonzero diagonal entries. In addition, we partition vectors svecX and svecX % onto two parts, namely:

svecXH = [svecBXg; svecNXg} , svecXi = [svecBX]f,I; SvecNXﬁ,I] ,

where svecy X g e R** and svecy X ]I\L,I € R*4. This partition we will use for other na-dimensial vectors. Then
equality (18) is reduced to
Oy svecy X =0,,. (19)

We denote also by AZ . the m X (na — sa) matrix with rows svecg A, 1 <i < m. Similarly, let A% .~

denote the m x sa matrix formed by the vectors svecy AZ. With the help of these matrices the equality (16)
can be written as

Ag,ecB svecg XH + AH  sveey X =b. (20)

svecn

Multiplying equality (20) by matrices (AX_. )T and (AH . )7 respectively and summing them with equality

svecp sSvecn
19), we obtain the system of linear equations with respect svecg X and svecy X%,
B N

P [svecBXg; svecNXﬁ] = [(Ag,ecB)Tb; (.Ag,eCN)Tb] , (21)
where the matrix ® has the form
@ — (A%SCB );A%GCB ISAg)E%B ),ZI;Ag)ECN - .
(AsvecN) ‘AsvecB (AsvecN) AsvecN +®N

H

svecp are linear inde-

We say that the point u € Fp ,, is strongly nondegenerate, if columns of the matrix 4
pendent. In [Zhadan, 2016b] the following result had been proved.

Proposition 1 Let the point u € Fp,, be strongly nondegenerate. Then the matriz ® is nonsingular.
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Below we assume that any point u € Fp , is strongly nondegenerate. Introduce notations

Gy =AL O3 (AL )T, Wy =, +GCn)",
Gp = (AL, ) " WnAL..., We=AL . G5 (AL ...

Then solving the system (21), we obtain

svecg X1 = G5! (AfLECB)T Wb, svecy X = (Z);Vl(Aﬁ,ecN)T Wy — WyWpWh]b.
After substitution these expressions at the left hand side of (20) we get that (20) can be written as
Wy — WNWeWx]b = 0. (22)

This is a system of m nonlinear equations with respect of m unknowns, which are components of the vector u.
Let Au = [Wy — WyWgWy]b. It can be shown that (b, Au) > 0. The direction Au in the u-space determines
the direction AVH = — 3" (Au)?AH in the V-space. Moreover, considering the point %(a) = u + aAu, which
depends on a > 0, we have the corresponding point V(o) =V + aAVH. Since (AX,. )TAu=0,,_s,, the
following formula
— 1 0 0
VI =10 Doy) - a0y

S'UecN)T Au.

The matrix V() remains positive semidefinite if « is sufficiently small. The maximal possible step a.. can
be found from the condition that some eigenvalue of the matrix D(0y) — a.Qn becomes zero. In this case the
point @(a.) € Fp.y is such that the rank of the matrix V (@(a.)) is less than the rank of V(u). If the point @(aw)
is not extreme, it is necessary to repeat the procedure.

holds, where Qy is a symmetric matrix having the vector representation svec Qy = (A%
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