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Abstract

The dual simplex method for solving linear semidefinite programming
problem is considered. For finding the starting point in this method,
which must be an extreme point of the feasible set, two approaches
are proposed. The first approach is based on application of reduced
gradient technique. The second one is borrowed from the dual affine
scaling method for semidefinite optimization.

Introduction

To date the most popular numerical methods for solving linear semidefinite programming problems are interior
point techniques. Nevertheless there are some methods which are generalization of primal simplex method for
linear programming [Lasserre, 1996], [Pataki, 1996], [Kosolap, 2009], [Zhadan, 2015]. In [Zhadan, 2016a] the
dual simplex method had been proposed. The starting point at this dual method must be an extreme point
of the feasible set, and all subsequent points are extreme points too. The aim of this paper is to describe two
approaches for finding such extreme point in the case where only the feasible point is known. First of all we
formulate the primal and dual linear semidefinite programs. In Section 1, we briefly describe the main iteration
of dual simplex method. Two approaches for finding starting extreme points are considered in Sections 2 and
3. The first approach is generalization of the procedure, which is well known in linear programming and can
be treated as reduced gradient technique. The second approach is based on movement in faces of the feasible
set with step-by-step decreasing dimension of these faces. The similar way had been used in dual affine scaling
method with steepest descent [Zhadan, 2016b].

Let Sn
denote the space of real symmetric matrices of order n, and let Sn

+ denote the cone of positive

semidefinite matrices from Sn
. The following inequality M ≽ 0 means also that M ∈ Sn

+. The dimension of Sn

is equal to so-called n-th triangular number n△ = n(n+1)/2. The zero n-dimensional vector and the zero m×n
matrix are denoted by 0n and 0nm, respectively.

Linear semidefinite programming refers to the optimization problem that can be expressed in the form

min C •X,
Ai •X = bi, 1 ≤ i ≤ m, X ≽ 0,

(1)
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where C ∈ Sn
and Ai ∈ Sn

, 1 ≤ i ≤ m, are given. The matrix X ∈ Sn
is a variable. The notation C •X stands

for the inner product of symmetric matrices:

C •X = trCX =

n∑
i=1

n∑
j=1

CijXij .

The dual problem to (1) has the form

max bTu,∑m
i=1 u

iAi + V = C, V ≽ 0,
(2)

where b = [b1, . . . , bm]T , V ∈ Sn
. It is assumed that matrices Ai, 1 ≤ i ≤ m, are linear independent, and both

problems (1) and (2) have solutions. We denote by FD the feasible set at problem (2) and by FD,u the set

FD,u =

{
u ∈ Rm

: C −
m∑
i=1

uiAi ≽ 0

}
.

The set FD,u is a projection of FD at the space of the variable u.
The optimality conditions for problems (1) and (2) are as follows

X • V = 0, Ai •X = bi, 1 ≤ i ≤ m, V = C −
∑m

i=1 u
iAi, X ≽ 0, V ≽ 0. (3)

Below we will use the equivalent form of optimality conditions (3) based on vector representation of matrices.
Let vecX denote the direct sum of columns X. Let also svecX denote the direct sum of parts of columns

of X ∈ Sn
beginning with the diagonal entry. Moreover, off-diagonal entries of X are multiplied by

√
2 before

placing in svecX. The dimension of vecX is equal to n2. Respectfully, the dimension of svecX is equal to n△.
With the help of these notations optimality conditions (3) can be rewritten in vector form as

⟨svecX, svecV ⟩ = 0, AsvecsvecX = b, svecV +AT
svecu = svecC, (4)

where angle brackets indicate the Euclidean inner product in finite-dimensional vector space, and Asvec denotes
the m× n△ matrix with svecAi as its rows, 1 ≤ i ≤ m. Matrices X and V must be positively semidefinite.

1 Dual Simplex Method

The dual simplex method can be treated as a special way of solving system (4). Assume that the starting point
u0, which is an extreme point of the set FD,u, is given. Assume also that after some iterations we obtain the point
u = uk, which is an extreme point of FD,u too. We define the dual slack V = V (u), where V (u) = C−

∑m
i=1 u

iAi.
Also, we make the following decomposition

V = HD(θ)HT ,

where H is an orthogonal matrix, θ =
[
θ1, . . . , θn

]T
is a vector of eigenvalues, and D(θ) is a diagonal matrix

with the vector θ at its diagonal.
Let a rank of the matrix V be equal s < n. The point u is an extreme point of FD,u if and only if s△ ≤ n△−m.

We call the extreme point u regular, if s△ = n△−m. Otherwise, we call it irregular. In what follows, we will use
the matrices AH

i = HTAiH instead of Ai, 1 ≤ i ≤ m, and we will use the matrix CH instead of C. We denote
also by AH

svec the m× n△ matrix with rows svecAH
i , 1 ≤ i ≤ m.

Suppose that θ =
[
θB ; θN

]
, where θB = 0n−s and θN > 0s. Here and in what follows we use punctuation

mark [ ; ] in concatenation of vectors for adjoining them in a column. According to decomposition of the vector
θ the matrix AH

svec can be decomposed into two submatrices: AH
svec =

[
AH

svecB ,A
H
svecN

]
, where the second matrix

AH
svecN has the dimension m× (n△ − s△). We partition also the vector svecXH , where XH = HTXH, on two

parts: svecXH =
[
svecBX

H ; svecNXH
]T

with svecBX
H ∈ Rn△−s△ . The same partition will be used for other

n△-dimensional vectors.
If we put svecNXH = 0s△ , then the second equality from (4) is reduced to

AH
svecB svecBX

H = b. (5)
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In the case, where the point u is regular and nondegenerate (see [Alizadeh, 1997]), the matrix of system (5) is
nonsingular. Therefore, solving this system of linear equations, we obtain

svecXH =

[ (
AH

svecB

)−1
b

0s△

]
.

The point [u, V ] is the solution of dual problem (2), when the corresponding matrix X = HXHHT is positive
semidefinite.

Suppose that X is not a positive semidefinite matrix and decompose X = QD(η)QT . Here Q is an orthogonal
matrix, and η is a vector of eigenvalues of X. Since X is not positive semidefinite matrix, there exists the
negative eigenvalue ηik with the corresponding eigenvector qik . Then we update the point u by setting

uk+1 = uk − αk∆uk, (6)

where αk > 0 is a step-size. The vector ∆uk is satisfied to the following system of linear equations(
AH

svecB

)T
∆u = svecB QH

ik
, QH

ik
= HT qikq

T
ik
H. (7)

The value of objective function at the dual problem (2) increases according to the following formula

bTuk+1 = bTuk − αkη
ik > bTuk. (8)

The dual slack variable V H = HTV H changes in correspondence with (6):

V H
k+1 = V H

k + αk∆V H
k , ∆V H

k =
m∑
i=1

∆ui
kA

H
i .

The step-size αk is chosen as large as possible under condition that the matrix V H
k+1 is positive semidefinite. The

rank of matrix V H
k+1 does not exceed the rank of V H

k . Therefore, the point uk+1 is an extreme point of FD,u too.
In the case where uk is an irregular extreme point of FD,u, the system (5) is underdetermined, and we take

svecBX
H
k =

(
AH

svecB

)T [
AH

svecB

(
AH

svecB

)T ]−1

b

as its solution. On the contrary, system (7) is overdetermined. In order to overcome this difficulty we pass from
the direction ∆uk in Rm

to the direction ∆Vk in the space Sn
, for which the following expression is used

∆Vk = [qik HN ]

[
1 wT

w ∆Z

] [
qTik
HT

N

]
. (9)

Here HN is a submatrix of the matrix H, composed from the last s columns of H, and w = Wy, where columns
wj of the matrix W are such that qTikHNwj = 0. Using relation between ∆uk and ∆Vk from (9), it is possible to
find ∆uk, for which formula (8) is preserved.

Theorem 1 Let solutions X∗ and V∗ = V (u∗) of problems (1) and (2) be strictly complementary, i.e. for
eigenvalues ηi∗ and θi∗ of X∗ and V∗ respectively the following inequalities ηi∗ + θi∗ > 0, 1 ≤ i ≤ n, hold. Then the
sequence {uk}, generated by method (6), converges to u∗.

2 Initial Stage of the Method. The First Approach

Consider the problem of finding a starting extreme point in the dual simplex method. In order to obtain such
point we apply generalization of the approach using in linear programming. First of all we examine the case,
where the feasible point u ∈ FD,u can be easily obtained.

Assume that among all equality-type constraints in problem (1) there is the equality Ai1 •X = bi1 with the
positive definite matrix Ai1 . Then the following point

u0 =
[
0, . . . , 0, ui1

0 , 0, . . . , 0
]T

593



belongs to the feasible set FD,u and can be taken as starting point. Indeed, if ui1
0 is negative and sufficiently

large by absolute value, then the following inequality

C −
m∑
i=1

ui
0Ai = C − ui1

0 Ai1 ≽ 0

is fulfilled, i.e. the point u0 is feasible. Our aim now is to pass from u0 to another extreme point of FD,u, using
the reduced gradient technique.

Let now u0 be a feasible point from FD,u. We take the corresponding dual slack V0 = V (u0) = C−
∑m

i=1 Aiu
i
0

and decompose it
V0 = H0D(θ0)H

T
0 ,

where H0 is an orthogonal matrix, and θ0 is a vector of eigenvalues.
Let also V0 be the matrix of rank s, and the following representation θ0 = [θB0 ; θN0 ] be valid for the vector

of eigenvalues, in which θB0 = 0n−s, θN0 > 0s. As in the previous section, we pass from V0 to the matrix
V H0
0 = HT

0 V0H0. The matrix V H0
0 is a representation of V0 at the basis defined by columns of the orthogonal

matrix H0. We have

V H0
0 =

[
0 0
0 D(θN0 )

]
, svecV H0

0 =

[
0n△−s△

svecD(θN0 )

]
.

Denote CH0 = HT
0 CY0. Denote also l = n△ − s△, and split vectors svecV H0

0 and svecCH0 onto two parts

svecV H0
0 =

[
svecBV

H0
0 ; svecNV H0

0

]
, svecCH0 =

[
svecBC

H0 ; svecNCH0
]
,

where svecBV
H0
0 = 0l, svecNV H0

0 = svecD(θN0 ).
Suppose that u0 is not an extreme point of the set FD,u, i.e. the rank s does not satisfy to the inequality:

s△ ≤ n△ −m. Then l < m. In this case the system of linear equations(
AH0

svecB

)T
u = svecBC

H0 , (10)

where the matrix AH0
svecB consists of the first l columns of AH0

svec, is undetermined. The point u0 is satisfied to
this system.

Let a rank of system (10) be equal l. We partition the vector u0 onto two subvectors: u0 = [uP
0 ;u

Z
0 ], where

uP
0 is a l-dimensional vector, and uZ

0 is a (m − l)-dimensional vector. According to partition of u0 the matrix
AH0

svecB can be also to decomposed into two submatrices

AH0
svecB =

[
AH0,P

svecB
AH0,Z

svecB

]
.

We assume that the first quadratic matrix AH0,P
svecB of order l is nonsingular. Then system (10) can be rewritten

as (
AH0,P

svecB

)T
uP = svecBC

H0 −
(
AH0,Z

svecB

)T
uZ .

Solving this system with respect to uP , we obtain

uP = uP (uZ) =
[(
AH0,P

svecB

)T ]−1 [
svecBC

H0 −
(
AH0,Z

svecB

)T
uZ

]
. (11)

In particular, for u = u0 we derive that uP
0 = uP (uZ

0 ).
Furthermore, splitting the vector b = [bP ; bZ ] and substituting the partition of the vector u onto two sub-

vectors at the goal function of problem (2), we come to conclusion, that values of this function depends on only
the second variable uZ , namely:

⟨b, u⟩ = ⟨bP , uP ⟩+ ⟨bZ , uZ⟩ = ⟨bP , uP (uZ)⟩+ ⟨bZ , uZ⟩ = f(uZ).

We rewrite this function as
f(uZ) = ⟨b̄Z , uZ⟩+ c̄, (12)

594



where

b̄Z = bZ −AH0,Z
svecB

(
AH0,P

svecB

)−1
bP , c̄ =

[(
AH0,P

svecB

)T ]−1

svecBC
H0 .

The function (12) is linear by uZ .
Let us pass to the updated point

uZ = uZ(α) = uZ
0 + αb̄Z .

Here α > 0. Then, taking u(α) =
[
uP (α);uZ(α)

]
, where uP (α) = uP (uZ(α)), and using (11), we come to

conclusion that u(α) can be written in the form

u(α) = u0 + α∆u, ∆u =

[
−
[(
AH0,P

svecB

)T ]−1 (
AH0,Z

svecB

)T
Im−l

]
b̄Z .

Therefore the dual slack V H0(u(α)) changes by the following manner

V H0(u(α)) =

[
0 0
0 D(θN0 )− αΩ̄NN

]
.

Here Ω̄NN =
∑m

i=1 A
H0

i,N∆ui, and AH0

i,N is the lower right block of AH0
i of order s.

The matrix D(θ0) − αΩ̄NN is positive definite, if α = 0. It remains positive definite, when α is positive and
small enough. The maximal possible step length α∗ is determined by the case, when among all eigenvalues of
D(θ0)−αΩ̄NN the null eigenvalue appears at the first time. Then the rank of the matrix V H0(u(α∗)) becomes less
with respect to the rank of V H0 . At the same time the value of the goal function increases: ⟨b, u(α∗)⟩ > ⟨b, u0⟩.
If u(α∗) is not an extreme point, then we must proceed calculations. Theoretically there exists possibility that
the matrix D(θ0) − αΩ̄NN stays positive definite at any α > 0. If b̄Z ̸= 0, it means that problem (2) has not
solution.

In the case, where not a matrix Ai is positive definite, but it is known by some reasons, that the solution
X∗ of problem (1) is restricted, for example trX∗ < bm+1 for some sufficiently large bm+1 > 0, then additional
inequality type constraint can be introduced in problem (1)

min C •X,
Ai •X = bi, 1 ≤ i ≤ m, In •X ≤ bm+1, X ≽ 0.

(13)

Solving (13), we obtain the same solution as in problem (1).
The dual problem to (13) has the form

max ⟨b, u⟩ − um+1bm+1,
C −

∑m
i=1 u

iAi + um+1In ≽ 0, um+1 ≥ 0.
(14)

Now we can take ū0 = [u0;u
m+1
0 ] as the starting point. The number um+1

0 > 0 must be sufficiently large in order
that the matrix inequality C + um+1In ≽ 0 holds.

Further calculations for finding a feasible extreme point are the same as in the previous case. Moreover, the
inequality um+1 ≥ 0 must be taken into account, when we choose the step length α. When we obtain, that
um+1 = 0, then the additional inequality in (14) is deleted, and we pass to solve the initial dual problem (2). As
a starting point we take the first component from two-component point [u;um+1], in which um+1 = 0.

3 Initial Stage of the Method. The Second Approach

Consider the other approach for finding a starting extreme point. Suppose that we have the feasible point u,
which is not an extreme point of FD,u. If the corresponding matrix V = V (u) has the rank s < n, then u
is a boundary point. Thus, it belongs to some face of FD,u with non-zero dimension. Suppose additionally,
that the decomposition V = HD(θ)HT is valid, where H is an orthogonal matrix, and θ = [θB; θN ] is the
vector of eigenvalues with θB = 0n−s, θN > 0s. The matrix H can also be decomposed into two submatrices
H = [HB ,HN ].

According to this decomposition of H, we partition the space Sn
into two linear subspaces Sn

B and Sn
N , where

Sn
B consists of matrices M ∈ Sn

with the zero lower right block of order s. On the contrary, the subspace Sn
N
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consists of matrices M ∈ Sn
in which only the lower right block of order s can contain nonzero elements. These

two subspaces are mutually orthogonal, and any matrix M ∈ Sn
can be represented as the sum of two matrices,

one of which is in Sn
B and other — in Sn

N . For example, V = VB + VN , where

VB =

[
VBB VBN

VNB 0ss

]
, VB =

[
0rr 0rs
0sr VNN

]
, r = n− s.

In what follows we are interested more in matrices V H = HTV H, XH = HTXH and AH
i = HTAiH, rather

then V , X and Ai, 1 ≤ i ≤ m.
The first two equalities from optimality conditions (3) can be rewritten in the form

XH
B • V H

B +XH
N • V H

N = 0, (15)

AH
i,B •XH

B +AH
i,N •XH

N = bi, 1 ≤ i ≤ m. (16)

Moreover, if we require XH
B ≽ 0 and XH

N ≽ 0 and take into account, that V H
N ≽ 0, then equality (15) splits into

two equalities

XH
B • V H

B = 0, XH
N • V H

N = 0. (17)

Since V H
B is zero matrix the first equality from (17) holds true for any matrix XH

B .
Denote by X ◦V the symmetrized product of two symmetric matrices X and V , i.e. X ◦V = (XV + V X) /2.

Under XH
N ≽ 0 and V H

N ≽ 0 the equality XH
N • V H

N = 0 takes place iff XH
N ◦ V H

N = 0nn. Therefore, the second
equality from optimality conditions (17) can be replaced by the latter matrix equality. We rewrite it in vector
form as

(Ṽ H
N )⊗svecX = 0n△ . (18)

Here (Ṽ H
N )⊗ = L̃n(V

H
N )⊗D̃n, and (V H

N )⊗ =
(
In ⊗ V H

N + V H
N ⊗ In

)
/2 is the Kronecker sum of matrix V H

N . The

matrix L̃n is the elimination matrix, which performs the transformation L̃nvecM = svecM for any matrix
M ∈ Sn

(see [Magnus, 1980]). Similarly, D̃n is the duplication matrix. For each matrix M ∈ Sn
it performs the

inverse transformation D̃nsvecM = vecM .
We denote by Θ̃N the lower right submatrix of order s△ of the matrix (Ṽ H

N )⊗. The matrix Θ̃N is diagonal
with nonzero diagonal entries. In addition, we partition vectors svecXH

B and svecXH
N onto two parts, namely:

svecXH
B =

[
svecBX

H
B ; svecNXH

B

]
, svecXH

N =
[
svecBX

H
N ; svecNXH

N

]
,

where svecNXH
B ∈ Rs△ and svecNXH

N ∈ Rs△ . This partition we will use for other n△-dimensial vectors. Then
equality (18) is reduced to

Θ̃N svecNXH
N = 0s△ . (19)

We denote also by AH
svecB the m × (n△ − s△) matrix with rows svecBA

H
i , 1 ≤ i ≤ m. Similarly, let AH

svecN
denote the m × s△ matrix formed by the vectors svecNAH

i . With the help of these matrices the equality (16)
can be written as

AH
svecB svecBX

H
B +AH

svecN svecNXH
N = b. (20)

Multiplying equality (20) by matrices (AH
svecB )

T and (AH
svecN )T respectively and summing them with equality

(19), we obtain the system of linear equations with respect svecBX
H
B and svecNXH

N ,

Φ
[
svecBX

H
B ; svecNXH

N

]
=

[
(AH

svecB )
T b; (AH

svecN )T b
]
, (21)

where the matrix Φ has the form

Φ =

[
(AH

svecB )
TAH

svecB (AH
svecB )

TAH
svecN

(AH
svecN )TAH

svecB (AH
svecN )TAH

svecN + Θ̃N

]
.

We say that the point u ∈ FD,u is strongly nondegenerate, if columns of the matrix AH
svecB are linear inde-

pendent. In [Zhadan, 2016b] the following result had been proved.

Proposition 1 Let the point u ∈ FD,u be strongly nondegenerate. Then the matrix Φ is nonsingular.
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Below we assume that any point u ∈ FD,u is strongly nondegenerate. Introduce notations

GN = AH
svecN Θ̃−1

N (AH
svecN )T , WN = (Im +GN )

−1
,

GB = (AH
svecB )

TWNAH
svecB , WB = AH

svecBG
−1
B (AH

svecB )
T .

Then solving the system (21), we obtain

svecBX
H
B = G−1

B

(
AH

svecB

)T
WNb, svecNXH

N = Θ̃−1
N (AH

svecN )T [WN −WNWBWN ] b.

After substitution these expressions at the left hand side of (20) we get that (20) can be written as

[WN −WNWBWN ] b = 0m. (22)

This is a system of m nonlinear equations with respect of m unknowns, which are components of the vector u.
Let ∆u = [WN −WNWBWN ] b. It can be shown that ⟨b,∆u⟩ ≥ 0. The direction ∆u in the u-space determines

the direction ∆V H = −
∑m

i=1(∆u)iAH
i in the V -space. Moreover, considering the point ū(α) = u+ α∆u, which

depends on α > 0, we have the corresponding point V̄ H(α) = V + α∆V H . Since (AH
svecB )

T∆u = 0n△−s△ , the
following formula

V̄ H(α) =

[
0 0
0 D(θN )− αΩN

]
holds, where ΩN is a symmetric matrix having the vector representation svecΩN =

(
AH

svecN

)T
∆u.

The matrix V̄ H(α) remains positive semidefinite if α is sufficiently small. The maximal possible step α∗ can
be found from the condition that some eigenvalue of the matrix D(θN ) − α∗ΩN becomes zero. In this case the
point ū(α∗) ∈ FD,u is such that the rank of the matrix V (ū(α∗)) is less than the rank of V (u). If the point ū(α∗)
is not extreme, it is necessary to repeat the procedure.
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