
An Efficient Implementation of the Transitive
Closure Problem on Intel KNL Architecture

Ilya Afanasyev

Lomonosov Moscow State University, Moscow, Russia
afanasiev ilya@icloud.com

Abstract. An important trend in modern supercomputing is a frequent
usage of co-processors, such as GPUs and Intel Xeon PHIs. The recent
generation of Intel Knights Landing processors provide high performance
computational power with a large amount of high-bandwidth memory,
what makes them a perfect platform for graph-processing. The presented
study describes implementation approaches to large-scale graph process-
ing on Intel KNL processors; as a sample problem, the transitive closure
computation is discussed. Based on the joint analysis of algorithm prop-
erties and architecture features, the performance tuning has been per-
formed, including graph storage format optimizations, efficient usage of
memory hierarchy and vectorization. As a result, an optimized algorithm
implementation for the transitive closure problem solution has been de-
veloped. The proposed implementation has been studied using different
approaches, aimed at demonstrating advantages and disadvantages of
Intel KNL architecture in solving graph-processing problems.

Keywords: transitive closure · Intel Knights Landing · graph processing

1 Introduction

An interest to large-scale graph processing is recently growing rapidly, since
graph data structure perfectly emulate real-world objects and connections be-
tween them. Some examples of such objects are social and infrastructural (energy
and transport) networks, micro-biology, databases and social models, etc. The
mentioned problems have an important common property – the corresponding
graphs have very large size (up to millions vertices and billions edges); as a re-
sult, a parallel approach is required to process those data-structures in a reason-
able amount of time. Transitive closure computation is one of the fundamental
graph-processing problems, which can be used to evaluate vertex connectivity.
The transitive closure computation problem can be applied in several already
mentioned application fields, for example, in database systems modeling [1], [2].

2 The Mathematical Description of the Problem

A directed graph G = (V,E) with vertices V and edges E is given. The path
P (u, v) between vertices u and v is defined as a sequence of edges e1 = (u,w1), e2 =

Implementation of the Transitive Closure Problem 11

(w1, w2), . . . , ek = (wk−1, wk), starting in vertex u and ending in vertex v, where
edges are following each other. Vertex v is reachable from vertex u, if at least a
single path P (u, v) between vertices u and v exists (every vertex is considered
reachable from itself).

Computing the transitive closure of graph G means obtaining graph G+ =
(V,E+), where an edge (v, w) from G belongs to E+ if and only if vertex w is
reachable form vertex v in graph G. As a result, the transitive closure problem
solution requires |V |2 storage space, so it can’t be calculated using modern com-
puters computational node’s memory even for medium-sized graphs (starting
with around 220 vertices). For this reason the generalization of the transitive
closure problem is used in current paper: only the specified pairs of vertices
(u1, v1), (u2, v2), . . . , (un, vn) are checked to belong to the transitive closure. The
amount of the pairs required to check n becomes an additional flexible algorithm
parameter: varying it may greatly affect the overall algorithm performance.

3 State of the Art: Algorithms and Implementations

Current section uses the following notations to evaluate the complexity of re-
viewed algorithms: |V | corresponds to the count of vertices in input graph G, |E|
- to the count of edges. The transitive closure computation problem in directed
graph G can be solved using three different traditional approaches, described
below.

1. The transitive closure computation can be reduced to the shortest paths
computation in a corresponding graph with identical weights. Consequently,
it can be solved with Floyd-Warshall algorithm, introduced in [3] and [4].
This algorithm has O(|V |3) computational complexity, and historically is
the the first developed algorithm for the transitive closure problem solution
[5]. An important property of Floyd-Warshall algorithm is O(|V |2) memory
requirement for computations, what immediately reduces its applicability
only to small-scale graphs.

2. The transitive closure can be obtained using several multiple breadth-first
searches (BFS), executed from each vertex of the graph. BFS algorithm has
been first described in [6]; the proposed algorithm allows checking reach-
ability between the selected source vertex and other vertices of the graph
with only O(|E|+ |V |) operations required (using a queue-based implemen-
tation approach). As a result, the full transitive closure computation requires
O(|V | ∗ (|V |+ |E|)) operations.

3. Among the reviewed approaches, the most optimal computational complex-
ity has Purdom’s algorithm, introduced in [7]. Purdom’s algorithm is based
on the following idea: the transitive closure computation for graph G can be
reduced to the transitive closure computation for graph G−, obtained from
graph G by collapsing G’s strongly connected components into G− vertices.
The described approach provides O(|E| + u|V |) computational complexity,
where u is the count of edges in graph G−. The provided estimate is based on

12 Ilya Afanasyev

the assumption, that asymptotically optimal Tartan’s algorithm (O(|E|)) is
used for strongly connected components computation; if another algorithm,
such as DCSC1 is used, computational complexity can be different.

There are already many efficient implementations of mentioned algorithms
for different parallel architectures, including multicore central processors, co-
processors and graphic accelerators (GPUs). The brief review of these imple-
mentations is following.

Breadth-first searche can be considered as one of the most well-studied graph-
processing algorithms. Not only BFS algorithm allows solving the transitive
closure problem with repeated calls from each vertex of the input graph, but it is
also a very important building-block of Purdom’s algorithm. The first approach
to parallel BFS implementation on co-processors (GPU) was discussed in [8],
where quadratic complicity parallelization strategy (in the worst case) was used.
The proposed method was completely revised in [9], where it was shown to
be not very efficient for non-RMAT graphs; to solve this problem, this paper
proposes O(|V |+ |E|) complexity parallel GPU-algorithm, which achieves much
better performance for various types of graphs. Parallel BFS implementations on
multi-core central processes are usually based on the parallel queues approach,
and can be found, for example, in [17]. Moreover, for Intel Xeon PHI processors
a few implementation attempts were made, such as [19] or [20].

Some efficient approaches to parallel implementation of Floyd-Warshall algo-
rithm for GPUs are discussed in [15], [16]. These papers also highlight the main
GPU flaw for this algorithm - the lack of device memory, required to store all
necessary computational data.

Purdom’s algorithm implementations on parallel architectures are less well-
studied; an approach to implementation for central processors is described in
[18]. Also, Purdom’s algorithm is based on strongly connected components search
operation, which can be solved by several parallel algorithms, which are currently
well-investigated both for CPUs and GPUs in [10], [11].

4 Purdom’s Algorithm Parallel Properties Research

Based on computational complexity estimates, the most suitable approach to
solve the transitive closure problem is Purdom’s algorithm. However, during the
selection of the most suitable algorithm for particular parallel architecture, it
parallel algorithm’s properties have to be studied. For this purpose, information
graphs, introduced in [14], can be used.

Figure 1 (left) demonstrates information graph of Purdom’s algorithm. The
presented graph is rather complicated and therefore includes two subgraphs,
each one corresponding to an important algorithm building-block: breadth-first

1 Divide and Conquer Strong Components (DCSC, also known as Forward-Bakward
or Forward-Backward-Trim algorithms), a family of algorithms based on recursive
partitioning of graph into disjoint sets, which on the lowest level of the recursion
contain a single strongly connected component in the each set.

Implementation of the Transitive Closure Problem 13

search (BFS) and strongly connected components (SCC) computation. Infor-
mational graph of parallel queue-based breadth-first search is demonstrated on
figure 1 (right), while figure 2 showes information graph of Forward-Backward-
Trim algorithm, used as the main algorithm for parallel SCC computation in
current paper.

Fig. 1. Purdom’s algorithm information graph (left), Breadth-first search informational
graph (right)

Fig. 2. Forward-Backward-Trim information graph: top level (left), bottom-level
(right)

The reviewed information graphs vividly demonstrate that Purdom’s algo-
rithm has a significant parallelism potential (O(|E|) or O(|V |) operations) on
each level. Since O(|E|) and O(|V |) values are extremely huge for large-scale
graphs, this algorithm can be reliably chosen for Intel KNL architecture.

14 Ilya Afanasyev

5 The Main Features of KNL Architecture

Intel Knights Landing (KNL) is one of the newest architectures of Intel Xeon Phi
coprocessors. These processors are equipped with up to 72 cores, each one with a
relatively low clock signal rate of 1.3-1.5 GHs and an ability to efficiently execute
up to 4 threads (hyperthreading technology). As a result, Intel KNL processor is
able to achieve up to 6 TFLOPs performance on single precision computations
and 2.6 TFLOPs on double precision. Target processor’s memory architecture is
even more important than peak performance for graph-processing, since graph
problems are usually memory-bound. Intel KNL has two memory levels: high-
bandwidth MCDRAM memory with 16 GB capacity and 400 GB/s bandwidth,
and DDR4 memory with 384 GB capacity (in the best available configuration)
and 90 GB/s bandwidth. Processor’s cores are grouped by pairs into tiles; each
tile shares common 1 MB L2 cache, while each core has its own 64 KB L1 cache.

AVX-512 vector instructions support is an another important new feature
of Intel KNL generation processors. These instructions allow simultaneous pro-
cessing of 16 single precision variables, and, what is more important, introduce
gather and scatter operations support, which is crucial during indirect memory
accesses vectorization.

6 Implementation Approach

Current section describes Purdom’s algorithm implementation approach for Intel
KNL architecture. The developed algorithm can be divided into 4 separate stages
(steps):

1. strongly connected detection in input graph G,
2. creation of intermediate representation graph G−,
3. computing an answer for all vertex pairs, related to the same strongly con-

nected component,
4. computing an answer for the rest pairs, using parallel BFS in the interme-

diate representation graph G−.

If required, intermediate representation graph can be saved to hard drive after
stage 1, so later the transitive closure can be found more efficiently (no repeated
SCC computation). In current section, some implementation approaches for each
algorithm stage will be described together with optimizations for each step.

Parallel Forward-backward-Trim algorithm is implemented according to the
approach described in [10], [11] with a few differences. First, in order to avoid
building reverse (transposed) graph, what is necessary for efficient backward
search implementation, graph is converted to edges list storage format. To fur-
ther increase the performance, the input edges list can be pre-sorted: the basic
idea of this sort is reordering graph edges the way, that edges stored in adjacent
memory cells start pointing to adjacent cells in reachability array. The described
approach allows to greatly improve data locality and L2 cache usage. Moreover,
this optimization also significantly improves trim step efficiency, since it has

Implementation of the Transitive Closure Problem 15

similar memory access pattern. The described sorting is not required for inter-
mediate representation graph G−, since usually these graphs have significantly
smaller count of vertices compared to original input graphs. As a result, cor-
responding reachability arrays of intermediate representation graphs usually fit
into L2 cache. Table 1 demonstrates comparison between sizes of original input
graphs and graphs of corresponding intermediate representations.

Table 1. The comparison of sizes between original input graphs and corresponding
intermediate representation graphs

Count of
vertices in the
original graph

Distances
array size in
the original

graph

Count of vertices in
the intermediate

representation graph

Distances array size
in the intermediate

representation graph

Graph type

1m 1 MB 14k 13 KB RMAT[12]
8m 4 MB 659k 0.6 MB RMAT
33m 35 MB 3.4m 3.2MB RMAT
1m 1 MB 46k 44KB SSCA2[13]
8m 4 MB 366k 357KB SSCA2
33m 35 MB 1.45m 1.3MB SSCA2

The second stage includes the intermediate representation graph generation.
This stage has the following structure: first, the count of strongly connected
components is calculated; after that, non-dublicate edges (connecting different
SCCs) are added to the intermediate representation graph, which has the num-
ber of vertices equal to SCC count. In the simplest case, both these operations
are executed sequentially, since they require processing map-like data structures.
But it is also possible to perform these operations in parallel, providing a sep-
arate data structure to each process, followed by a sequential merge of these
data structures on the root processor (the latter approach is used in current
paper). Another alternative is tree-like structure of inter-processes merges, but
our tests demonstrated worse performance of this approach compared to sequen-
tial merges. It is also important to select an optimal graph storage format for
intermediate representation graph. This format is not necessary has to be the
same as the input graph format, since SCC and BFS operations require different
supported operations during the computation process. The edges list format al-
lows only the quadratic BFS parallelization (since it doesn’t support traversal of
adjacent vertices from the selected one), while adjacency list format allows queue
parallelization approach. These two approaches may result in the very different
performance values of BFS for intermediate representation graphs, what will be
demonstrated in the next section.

The third stage contains verification of input pairs of vertices for the property,
if these vertices belong to the same strongly connected component. This stage
has a relatively small computational complexity O(n) and, moreover, can be
efficiently parallelised (verification for each pair is independent). The last step

16 Ilya Afanasyev

includes obtaining an answer for the rest pairs of vertices, which appear to
belong to different components. This step is based on BFS searches, performed
from each source-vertex in intermediate representation graph. It is important to
notice, that edges list format is also used for intermediate representation graph
storage, since those graphs usually have low diameter compared to original input
graphs.

To investigate the implementation bottlenecks, it is necessary to measure
execution times for each stage, while comparing the values between each other.
For different graph types and different numbers of input pairs, these values may
differ a lot; in the next table, RMAT, SSCA-2 and random uniform graphs with
223 vertices and average vertex-degree 32 are used, among with 10k pairs of
vertices to be checked. Table 2 demonstrates the percentage of time, spent on
each execution stage for the most optimized algorithm version.

Table 2. Percentage of time, required for each algorithm step

Graph type SCC computation
(step 1)

Creating Intermediate
Representation (step 2)

BFS and checks
(step 3,4)

RMAT 41, 2% 8, 9% 49, 5%
SSCA-2 98, 6% 0, 497% 0, 857%

Random uniform 88.1% 10.2% 1.7%

For the whole algorithm it is very important to use high-performance MC-
DRAM memory, what can be achieved by two different approaches: for small and
medium scaled graphs, the program can be executed only in MCDRAM memory
space. For the graphs which size exceeds 16 GB, only the important arrays (like
distances arrays on stage 1 or intermediate representation graph data) can be
stored in MCDRAM memory. In the next section a performance comparison for
MCDRAM and usual DDR4 memory modes is demonstrated.

7 Performance Analysis

Current section includes the performance analysis for Purdom’s algorithm. The
first important efficiency metric is the algorithm’s performance dependance from
the size of the input graph G. The performance is defined with TEPS (traversed
edges per seconds) metric, which demonstrates the graph-processing efficiency
with the increase of graph size. Usually, the performance decreases because of the
less and less efficient usage of the cache hierarchy with the growing graph size.
An edge is called “traversed” during algorithm execution when it’s correspond-
ing data is loaded from memory. The described dependency is demonstrated on
figure 3 for several versions of the developed algorithm: the basic non-optimized
version(where all graphs are stored in edges list format), version with the inter-
mediate representation graph optimization (when it is stored in the adjacency
list format), version with input graph edges reordering, and version with MC-
DRAM memory and vectorization usage.

Implementation of the Transitive Closure Problem 17

Fig. 3. Purdom’s algorithm implementations performance for different optimizations
included. RMAT graphs with 218 - 227 vertices (left), SSCA2 graphs(right)

Since Intel KNL provides hyperthreading technology support, it is necessary
to check on practice if the usage of 4x threads provides a significant performance
increase. In current paper, launching 272 threads on 68 cores provides the best
achieved performance. An another important metric is an acceleration of the
most optimized developed parallel algorithm, compared to the sequential ver-
sions (for KNL and usual multi-core CPUs). On this figure multi-core Intel(R)
Xeon(R) CPU E5-2697 v3 CPUs have been used for testing. The comparison
demonstrated on figure 4 allows evaluating how efficiently the parallel algorithm
utilizes parallel resources of the target architecture.

In the conclusion, it is important to research the sources of possible bottle-
necks in the developed algorithm, since it allows to prove that the algorithm is
implemented efficiently, and, moreover, to highlight Intel KNL architecture ad-
vantages and disadvantages for graph-processing. Since transitive closure com-
putation belongs to memory-bound problem category, it is necessary to study
the achieved memory throughput during the program execution. During SCC
and BFS stages, the memory throughput achieved is approximately 200 GB/s,
which is half of the maximum MCDRAM bandwidth. Generating the interme-
diate representation step has much lower memory throughput used, since on
this step the program operates with complex map and vector data structures
scattered in the memory, and, as a result, has poor data locality.

8 Conclusion

In current paper, a parallel implementation of the transitive closure computation
problem for Intel KNL processors has been proposed and discussed in details. To

18 Ilya Afanasyev

Fig. 4. An acceleration of the optimized parallel Purdom’s algorithm compared to
sequential version. RMAT graphs (left), SSCA2 graphs (right)

solve the problem, Purdom’s algorithm has been selected, since it has an opti-
mal computational complexity and non-demanding memory requirements among
the reviewed algorithms. Moreover, presented information graphs demonstrate
that the selected algorithm have significant parallelism resources, which can be
efficiently utilised on a highly-parallel architecture, such Intel KNL.

Based on the algorithm selection, its basic version for Intel KNL architecture
has been implemented. After that, a lot of optimizations, including graph edges
sorting, reducing the amount of data loaded from processor memory, usage of
MCDRAM memory and vectorization has been applied to tune the performance
of the proposed implementation. As a result, a high-performance and scalable
parallel implementation of Purdom’s algorithm has been developed. This im-
plementation demonstrates almost a 50x acceleration compared to sequential
implementation on Intel KNL, and a 5x acceleration compared to sequential
implementation on Intel(R) Xeon(R) CPU E5-2697 v3.

Moreover, it was shown that Intel KNL is capable of processing very large
graphs with a size up to 134 million vertices and 42 billion edges, what signifi-
cantly exceeds other coprocessors results.

Acknowledgments. The results were obtained in the Lomonosov Moscow State
University with the financial support of the Russian Science Foundation (agree-
ment № 17-71-20114).

References

[1] S. Dar. Augmenting databases with generalized transitive closure. PhD thesis,
Department of Computer Science, University of Wisconsin, Madison, 1994.

Implementation of the Transitive Closure Problem 19

[2] M. Yannakakis. Graph-theoretic methods in database theory. In Proc. of the 9th
ACM SIGACT-SIGMOND-SIGART Symposium on Principles of Database Sys-
tems, pages 230-242. ACM, 1990.

[3] Floyd, Robert W. Algorithm 97: Shortest Path. Communications of the ACM 5,
no. 6 (June 1, 1962): 345. doi:10.1145/367766.368168.

[4] Warshall, Stephen. A Theorem on Boolean Matrices. Journal of the ACM 9, no. 1
(January 1, 1962): 11-12. doi:10.1145/321105.321107.

[5] Roy, Bernard. Transitivit Et Connexit. Comptes Rendus De l’Acadmie Des Sci-
ences 249 (1959): 216-218p.

[6] Lee, C Y. An Algorithm for Path Connections and Its Applications. IEEE
Transactions on Electronic Computers 10, no. 3 (September 1961): 346-65.
doi:10.1109/TEC.1961.5219222.

[7] Purdom, Paul, Jr. A Transitive Closure Algorithm. Bit 10, no. 1 (March 1970):
76-94. doi:10.1007/BF01940892.

[8] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the
GPU using CUDA. Center for Visual Information Technology, International Insti-
tute of Information Technology Hyderabad, INDIA.

[9] Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos, and Arturo Gonzalez-
Escribano. A New GPU-based Approach to the Shortest Path Problem. Dept.
Informatica, Universidad de Valladolid, Spain.

[10] Fleischer, Lisa K, Bruce Hendrickson, and Ali Pinar. On Identifying Strongly
Connected Components in Parallel. In Lecture Notes in Computer Science, Volume
1800, Springer, 2000, pp. 505-511.

[11] J. Barnat, P. Bauch. Computing Strongly Connected Components in Parallel on
CUDA. Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno,
Czech Republic.

[12] Chakrabarti, Deepayan, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive
model for graph mining. Proceedings of the 2004 SIAM International Conference
on Data Mining. Society for Industrial and Applied Mathematics, 2004.?

[13] Bader, David A., et al. Hpcs scalable synthetic compact applications 2 graph
analysis. SSCA 2 (2006): v2.

[14] Voevodin, V.V. Parallel Computing. 608p. BHV, St. Petersburg (2002). (in Rus-
sian)

[15] Katz, G. J., Kider Jr, J. T. (2008, June). All-pairs shortest-paths for large graphs
on the GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware (pp. 47-55). Eurographics Association.

[16] Buluc, Aydin, John R. Gilbert, and Ceren Budak. Solving path problems on the
GPU. Parallel Computing 36.5 (2010): 241-253.

[17] Hong, S., Oguntebi, T., Olukotun, K. Efficient parallel graph exploration on
multi-core CPU and GPU. In Parallel Architectures and Compilation Techniques
(PACT), 2011 International Conference on (pp. 78-88). IEEE.

[18] Bloemen, Vincent. On-The-Fly parallel decomposition of strongly connected com-
ponents. MS thesis. University of Twente, 2015.

[19] A.Frolov, E. Golovina, A. Semenov. Performance Evaluation of Breadth-First
Search on Intel Xeon Phi. OAO “NICEVT”, 2016.

[20] M. Paredes, G. Riley, M. Lujan. Breadth First Search Vectorization on the Intel
Xeon Phi. 2016.

