
Parallel Interpolation in FSI Problems Using
Radial Basis Functions and Problem Size

Reduction?

Sergey Kopysov, Igor Kuzmin, Alexander Novikov, Nikita Nedozhogin, and
Leonid Tonkov

Institute of Mechanics, Ural Branch of the Russian Academy of Sciences, Izhevsk,
Russia

{s.kopysov,i.m.kuzmin}@gmail.com, sc work@mail.ru, nedozhogin@inbox.ru,

tnk@udman.ru

Abstract. In strongly coupled fluid-structure interaction simulations,
the fluid dynamics and solid dynamics problems are solved independently
on their own meshes. Therefore, it becomes necessary to interpolate phys-
ical properties (pressure, displacement) across two meshes. In this work,
we propose to accelerate the interpolation process by the method of ra-
dial basis functions using the matrix-free solution of the equation system
on a GPU.

Keywords: parallel computing · hybrid HPC platforms · fluid-structure
interaction · radial basis functions · layer-by-layer partitioning

1 Introduction

Main interpolation methods on non-matching meshes for fluid-structure inter-
action (FSI) simulations are overviewed in [1, 4]. We consider the one based on
radial basis functions (RBF) [2], where, the coefficients of the interpolant are
found from the system of linear equations with the matrix formed by means of
a radial basis function.

The choice of the function determines the conditioning and density of the
matrix, and, as a result, the computational complexity of solving the system of
equations. The advantages of the RBF interpolation are the following:

– it does not require mesh-connectivity information;
– it requires solving a small system of equations, especially with the compact

basis functions;
– it can be efficiently parallelized.

This paper is structured as follows. Section 2 briefly describes the RBF inter-
polation scheme for the FSI problem. The next section presents a new approach

? This work is supported by the Russian Foundation for Basic Research (projects:
16-37-00060-mol a, 16-01-00129-a, 17-01-00402-a).

Using Radial Basis Functions to Parallel Interpolation in FSI Problems 73

based on layer-by-layer mesh partitioning for reducing the problem size. The
fourth section describes a matrix-free solution of the interpolation problem on a
GPU.

2 RBF Interpolation for FSI Problems

Consider the problem of interpolation by the method of radial basis functions,
in the context of pressure interpolation in the FSI problem. Let Ω be the mesh
approximation of the domain with the boundary ΓΩ = ∂Ω and the given pressure
pΓΩ

. The mesh approximation of the domain with the interpolated pressure is
denoted by Φ with the boundary ΓΦ = ∂Φ. The domains Ω and Φ have a common
part of boundary (interface part), i.e. ΓΩ ∩ΓΦ 6= {∅}. The pressure interpolation
between these meshes can be expressed in the matrix form as follows:[

WΓΩΓΩ
PΓΩ

PTΓΩ
0

] [
α
β

]
=

[
pΓΩ

0

]
or Aγ = b , (1)

and the target pressure vector pΓΦ
is obtained by the matrix-vector product

pΓΦ
= [WΓΦΓΩ

PΓΦ
]

[
α
β

]
, (2)

where WΓΩΓΩ
, WΓΦΓΩ

are the nΓΩ
× nΓΩ

and nΓΦ
× nΓΩ

matrices, consisting
of the elements with values equal φ(‖xiΓΩ

− xjΓΩ
‖2) and φ(‖xiΓΦ

− xjΓΩ
‖2) re-

spectively; nΓΩ
and nΓΦ

are the numbers of interpolation points on the interface
boundary of the domains; α, β are the coefficients of the interpolant; xi — the
vector of coordinates of the interpolation points.

The function φ(‖x‖2) reduce to a scalar function of the Euclidean norm
‖x‖2 of their vector argument x, i.e.: they are radial in the sense φ(‖x‖2) =
φ(r), x ∈ IR3 for the “radius” r = ‖x‖2 with a scalar function φ : IR→ IR. This
makes their use for highdimensional reconstruction problems very efficient, and
it induces invariance under orthogonal transformations.

There are two types of radial basis functions: basis functions with global and
compact support. The basis functions with global support are Gaussian (φ(r) =

e−c r
2

, r ≥ 0, c > 0), inverse multiquadric (φ(r) = (r2 + c2)−1/2, r ≥ 0, c > 0),
thin plate spline (φ(r) = r2 log r, r ≥ 0), cubic (φ(r) = r3, r ≥ 0). The basis
functions with compact support have the form: φ(r) = (c − r)2, r ≥ 0, c > 0,
φ(r) = (c− r)4 (4r + 1), r ≥ 0, c > 0, etc. Further, the constant c is considered
from the point of view of the influence on the error and the rate of convergence
of the solution of the system (1) on the example of the global basis function

φ(r) = e−c r
2

.
Solving the system of equations (1) is the most computationally expensive

part of the interpolation. In [3], it was shown that the choice of basis functions
affected both the quality of the interpolation and the solution time. The functions
providing more accurate interpolation may require a large amount of time for the
solution. The computational cost can be optimized by (i) reducing the system;
(ii) choosing constant c and (iii) parallelizing the steps of the preconditioning
and solution of sparse/dense systems of equations.

74 Sergey Kopysov et al.

(a) (b) (c)

Fig. 1. (a) The initial pressure distribution, (b) the result of interpolation when parti-
tioned into 15 layers parallel to the directrix and (c) partitioned into 15 layers parallel
to the generatrix

3 Reducing the Size of the System of Equations

In this section, we demonstrate reducing the size of the system of equations for
the fluid-structure interaction of a supersonic flow with a nozzle wall that has a
high geometric expansion ratio [7]. The boundary along which the computational
data are interpolated is quite long and the pressure is irregularly distributed
along the boundary Ω (the nozzle wall). The solution of the above problems is
considered within the framework of the layer-by-layer mesh partitioning method
proposed in our previous work [6]. The method provides a conflict-free data
access during the parallel summation of the components of the finite element
vectors in the shared memory of the multi-core computing systems.

Let us divide the interface part ΓΩ of the mesh Ω into layers. To do this, we
use the neighborhood criterion where any two mesh cells are considered adjacent
if they have at least one common node.

The mesh ΓΩ is the discrete approximation of the rotation surface with the
closed directrix. To form layers in parallel to the directrix ΓΩ (see Fig. 1 (b)) or
along the surface generatrix (see Fig. 1 (c)), we use the algorithm proposed in
[6], choosing the first layer of partitioning in the appropriate directions. Further,
to reduce the number of interpolation points, we choose only a few layers of the
fliud-structure interface surface.

The quality of interpolation is compared for the global φ(r) = e−c r
2

, using
different partitions, numbers of layers and constant c. The quality of the pressure
interpolation can be estimated as the relative error computed by the ratio of the
norms of the resultant forces of the pressure on the interface boundary.

Table 1 shows the results for the pressure interpolation in parallel to the
directrix (Radial partitioning) and along the surface generatrix (Longitudinal
partitioning). In the last column, the evaluation of the interpolation quality is
given for all possible interpolation points (28800) of ΓΩ . Therefore, the results
shown in this column do not depend on the partitioning.

The quality of the interpolation with the data reduction depends not only on
the number of interpolation points but also on the choice of the points (Fig. 1).

Using Radial Basis Functions to Parallel Interpolation in FSI Problems 75

Table 1. Relative error of the pressure interpolation for e−c r
2

, %

nΓΩ 1800 5700 9600 28800

Radial partitioning

c 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10
iter 46 33 10 95 81 24 153 121 43 540 421 121
error 1.05 1.59 24.3 0.38 0.38 1.48 0.17 0.16 0.41 0.005 0.58 0.038

Longitudinal partitioning

c 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10 0.1 1.0 10
iter 205 156 49 318 231 69 403 285 85 540 421 121
error 4.14 2.36 37.1 0.26 0.15 3.18 0.07 0.04 0.69 0.005 0.58 0.038

In addition, the table 1 the convergence of the solution of the system (1) depends
on the choice of interpolation points. So, when choosing points based on longi-
tudinal partitioning, the number of iterations for solving the resulting system of
equations is twice as large as for a radial partition, regardless of the number of
equations. With an increase in the constant c, the number of iterations decreases,
but the interpolation error increases. A similar situation is typical for local basis
functions. The best interpolation is achieved for the radial partitioning of the
domain with c = 0.1. It allows to reduce the number of equations in system (1)
by a factor of 15 with the acceptable quality of the interpolation.

4 Matrix-Free Solving of Interpolation System on GPU

One of the specific features of the system (1) is a dense matrix, which imposes
some restrictions on the GPU use due to the small capacity of the available
GPU memory. The problem can be resolved by (i) using several GPUs, thereby
increasing the total memory available for the system solution; (ii) solving the
system of equations without the formation of a matrix (Matrix-Free Algorithm).
In this case, the matrix elements are computed as they are required in the
algorithm of the system solution. The solution of the system by the RBF method
is possible without the formation of a matrix, since the matrix elements are
computed by the chosen basis function. This improves the data locality and
arithmetic intensity for matrices and vectors. The memory requirements and
CPU-GPU communications are reduced. The efficiency of the algorithm can be
improved if multi-GPUs are used in the similar way to that in [5].

Let us consider in more detail the MFA computing expenses. Table 2 shows
the time of the sequential and parallel formation of the matrix A of the system
(1). In the MFA, the formation time is excluded. For comparison, the time of the
solution of the system with an assembled matrix is given. The time of copying the
matrix A of the system (1) to the GPU memory is also presented. In addition,
the time is given for solving the system with the use of both the algorithm with
an assembled matrix and the matrix-free solution algorithm.

The CPU parallelization is carried out with OpenMP. The solution of the
system of equations on several GPUs is carried out by CUDA in conjunction with

76 Sergey Kopysov et al.

Table 2. The execution time of the interpolation for e−cr
2

, c = 1.0, s

Number of equation
960 9600 19200 28800

Forming A
1× CPU 0.098 5.655 33.91 60.85
8× CPU 0.018 0.907 6.166 12.16
MFA 0.0 0.0 0.0 0.0

Copy of A to GPU
1×GPU 0.009 0.312 0.842 —
2×GPU 0.006 0.125 0.433 1.393
MFA 0.0 0.0 0.0 0.0

System solution Aγ = b

1× CPU 3.343 592.8 4732 10359
8× CPU 0.271 86.82 946.6 2273
1×GPU 0.288 2.282 12.11 —
2×GPU 1.262 2.354 8.643 16.19

Matrix-free algorithm
8× CPU 1.712 249.5 1489 4492
1×GPU 0.471 14.01 91.59 191.1
2×GPU 1.226 8.664 47.03 95.58

Total time

1× CPU 3.438 598.5 4765 10419
8× CPU 0.288 86.82 952.7 2285
1×GPU 0.317 3.53 19.12 —
2×GPU 1.283 3.38 15.24 29.74

Matrix-free algorithm
8× CPU 1.712 249.6 1489 4492
1×GPU 0.472 14.01 91.59 191.1
2×GPU 1.226 8.664 47.03 95.58

OpenMP. The system of equations is solved by the conjugate gradient method
with the diagonal preconditioner [5]. The precision is equal to 10−6. In the com-
putations, double-precision arithmetic is used. The analysis and performance
estimations are performed on a computing node consisting of 2× quad-core Intel
Xeon processor E5-2609, 2×GeForce GTX 980 with 4Gb GDDR.

When the system of equations is solved using the assembled matrix on the
CPU, the step of the matrix formation is added. The use of GPU increases the
cost due to the necessity of copying the data to the GPU. When the system is
solved using the MFA the cost is not increased because there in no need to copy
the data. In the last line of Table 2, the total time is given for each of the above
approaches.

The numerical computations show that the use of eight CPU threads within
one computing node reduces the solution time almost by a factor of seven. One
GPU allows to speed up solving the system by a factor of 250 compared with one
CPU thead and by a factor of 50 compared with 8× CPU. The GPU efficiency
increases with the increase of the system size. Using two GPUs reduces the time
by a factor of 1.5 compared with one GPU and by a factor of 350 compared with
the CPU. With an increase in the number of GPUs, the strong scalability can
be provided only when the sizes of the submatrices on each GPU are preserved.

Using Radial Basis Functions to Parallel Interpolation in FSI Problems 77

The matrix-free solution of the system using 8 × CPU reduces the solution
time by a factor of 2.5. However, the solution with the assembled matrix is twice
as fast as the matrix-free solution. When one GPU is used, the time for the
matrix-free solution of the system of equations is 5 times larger than that for
the solution with the assembled matrix, and in the case of using two GPUs, the
matrix-free solution is 3 times longer. The speedup obtained at the use of one
CPU thread is 55 times smaller than that when using one GPU and 110 times
smaller than that when using two GPUs. It should be noted that the use of
local basis functions with an introduced radius of influence increases the MFA
efficiency.

Let us estimate the maximum size of the system, which can be solved us-
ing the MFA on a one GPU. For the matrix A formation, the coordinates of
the interpolation points are used. Then for interpolation in a three-dimensional
space, it is necessary to allocate memory for the vector of coordinates of length
equal to nΓΩ

× 3. The required memory size for solving the system with the
assembled matrix is nΓΩ

×nΓΩ
. The remaining vectors participating in the con-

jugate gradient method coincide for both algorithms. Thus, the memory size for
interpolating the mesh data in the three-dimensional space is decreased by a
factor of nΓΩ

/3. The maximum system size solved by the MFA increases by the
same factor. The algorithm of the conjugate gradient method with a diagonal
preconditioner involves the use of memory to store a matrix of size nΓΩ

× 3 (the
MFA) and six vectors nΓΩ

× 1. Thus, for solving the system using the MFA and
double precision arithmetic, nΓΩ

× (3 + 6)× 8 bytes are required. Consequently,
the maximum size of a system for the GPU with a 4Gb GDDR is about 6× 108

equations. Using two graphics cards, the possible size of the system is increased
to 1.2 × 109 equations. Thus, for the dense matrices obtained on the basis of
global basis functions, a parallel method of conjugate gradients is constructed.
The computations are distributed among several GPUs. The use of the matrix-
free approach makes it possible to remove any limitations on the amount of
memory.

5 Conclusion

For solving the problems on unstructured meshes, choosing the data points af-
fects the quality of interpolation. The obtained results show that the interpo-
lation on the irregularly distributed data is of high quality and applicable for
meshes of super-large dimensions. The variation of the constant c allows us to
choosing the optimal ratio of the interpolation error and the time of its con-
struction.

Using a matrix-free algorithm on large meshes significantly reduces the mem-
ory costs associated with the formation of the interpolation matrix. At the same
time, the computation locality of the matrix-vector product computations in-
creases when solving the system of equations by iterative methods. The solution
of systems with dense matrices by the MFA on the CPU does not lead to any
significant time reductions. Since the time of the matrix formation is less than

78 Sergey Kopysov et al.

1% of the solution time, the use of the MFA in conjunction with the CPU is
inefficient. The matrix-free approach is most effective when using a GPU, es-
pecially when it is not possible to achieve a large reduction of points without
the interpolation quality loss. Using a GPU for solving larger systems of equa-
tions allows minimizing the cost of additional computations associated with the
formation of the matrix elements.

References

1. Berndt, M., Breil, J., Galera, S., Kucharik, M., Maire, P.H., Shashkov, M.: Two-
step hybrid conservative remapping for multimaterial arbitrary LagrangianEulerian
methods. Journal of Computational Physics 230(17), 66646687 (2011)

2. Boer, A.D., der Shoot, M.V., Bijl, H.: Mesh deformation based on radial basis
function interpolation. Computer and Structures 85, 784795 (2007)

3. De Boer, A., Van der Schoot, M.S., Bijl, H.: New method for mesh moving based
on radial basis function interpolation. In: ECCOMAS CFD 2006: Proceedings of
the European Conference on Computational Fluid Dynamics, Egmond aan Zee,
The Netherlands, September 5-8, 2006. Delft University of Technology; European
Community on Computational Methods in Applied Sciences (ECCOMAS) (2006)

4. Farrell, P., Piggott, M., Pain, C., Gorman, G., Wilson, C.: Conservative interpola-
tion between unstructured meshes via supermesh construction. CMAME 198(33-36),
26322642 (2009)

5. Kopysov, S.P., Kuzmin, I.M., Nedozhogin, N., Novikov, A.K., Sagdeeva, Y.A.: Scal-
able hybrid implementation of the Schur complement method for multi-GPU sys-
tems. Journal of Supercomputing 69, 8188 (2014)

6. Novikov, A., Piminova, N., Kopysov, S., Sagdeeva, Y.: Layer-by-Layer Partitioning
of Finite Element Meshes for Multicore Architectures. Communications in Computer
and Information Science 687, 106117 (2016)

7. Wang, T.S., Zhao, X., Zhang, S.: Aeroelastic Modeling of a Nozzle Startup Tran-
sient. In: Journal of Propulsion and Power. vol. 30 (2013)

