
.NET Library for Seamless Remote Execution of
Supercomputing Software

Alexander Tsidaev1,2

1 Bulashevich Institute of Geophysics, Yekaterinburg, Russia
2 Ural Federal University, Yekaterinburg, Russia

pdc@tsidaev.com

Abstract. Supercomputers are usually a Linux machines, that requires
user to have additional skills in Linux. And while high-level program-
ming for Linux and Windows is quite similar, all the infrastructure and
tools are different. This paper presents a way to hide Linux interac-
tion level from user by introducing the new library for .NET framework
that handles SSH communication internally. Library has ability to run
single-CPU/GPU processes as well as multicore/multi-GPU. Slurm task
scheduler is supported for parallelized programs. Library also contains
helper classes that allows user to retrieve source code from remote lo-
cation (git and Subversion are supported) and compile program from
sources (make is supported).

Keywords: asynchronous library · parallel computing · SLURM · re-
mote supercomputing

1 Introduction

Supercomputer calculations are not exotic anymore. With growth of data, which
should be processed during science research, there is a need to use supercomput-
ers for programmers of any skill and background. And there is a problem. Su-
percomputers usually (if not always) works under Linux operation system, while
most widespread operation system for desktop computers is Microsoft Windows.
Thus, there is a big amount of programmers, who can develop software under
OS Windows, but are not experienced Linux developers (or even users).

On the other hand, even Linux developers may experience difficulties working
with remote supercomputer system using Secure Shell (SSH, the most common
way to access Linux computers via network). This procedure includes many
routine operations such as transmission of program source code to remote com-
puter, compilation of source code, transmission of data to process and, at last,
obtaining the results of calculations.

There are many different approaches to make easier remote access to su-
percomputers: REST API, Grid access or Web interface. This techniques are
described in [1], where first two methods were acknowledged to be hard for user.
This is because REST API or Grid control software are complex usually and,

80 Alexander Tsidaev

thus, big additional efforts are needed to learn them. Akimova et al. in [2] de-
velops Web interface method and presents a system that allows execution of
precompiled programs. However, this solution does not allow any changes in
used programs. While this is not a problem for regular user, for a developer this
creates a barrier for developer who wants to modify algorithms.

So, there is a need in small tiny wrapper that should minimize count of
required manual operations over SSH during supercomputer usage, but still al-
low developer to modify executed programs. In this paper author presents new
library developed for .NET programming platform, which has these abilities.
Library is written with full support of asynchronous features of .NET platform
and C# language and allows easy convenient access to remote Linux system.

1.1 Library Structure

Fig. 1 presents class structure of the library. Base class is Remote Executor,
which contains all functions for SSH communication and program execution.

Fig. 1. Class structure of the library

Three types of classes are inherited from the base class. First one is VCS
(version control system) Client classes, which are intended to get source code
for use program from remote repository. Currently three providers are imple-
mented: Git, Subversion and CVS. Password-based authentication schemes are
supported.

Second group is Builder classes. This is an abstraction for a set of tools that
can translate source code into executable. Make and CMake are supported.

Classes in third group are needed to execute user programs. There are two
ways of execution. First is direct run, that could be used if target computer has

.NET Library for Supercomputing 81

no ability to perform time-separation of tasks of different users or if executed
program does not use any shared resource. Second way is execution using Slurm
workload manager by sending program to the execution queue.

2 Usage

SSH communication is implemented in a fully asynchronous way by using async/await
paradigm of .NET 4.0. All of the operations can be executed in parallel.

All SSH communication level is encapsulated in RemoteExecutor class. Usage
example is provided below.

var exec = new RemoteExecutor("server.com", "user", "password");
var git = new GitClient(exec);
var path = await git.Instantiate("https :// github.com/my/program");

var compiled = await new MakeClient(exec).Make(path);

if (compiled)
Task.WaitAll(exec.Run("(cd program; ./ program)"));

else
Console.WriteLine("Compilation error");

This program first logs into Secure Shell server with provided credentials.
Then, git repository with needed program is cloned from external location. After
that, a compilation is executed with make command. And if the compilation
succeeds, resulting program is executed.

As it can be seen from the example above, in this case there is no parallel
execution. All created tasks are awaited before the execution continues. This is
related to sequential character of operations: make cannot be executed until all
source code is available, and program cannot be run until it compiled.

However, for more independent tasks the parallelization can be obtained in
the same simple way:

var cmd1 = exec.Run("for i in ‘seq 1 10‘; do echo $i; sleep 1; done");
var cmd2 = exec.Run("for i in ‘seq 1 5‘; do echo $i; sleep 2; done");

var results = await Task.WhenAll(cmd1 , cmd2);

Each command is simple bash loop, which takes 10 seconds to be executed
fully. Both loops will be run simultaneously and program will still finish in 10
seconds. Result of each exec.Run operation is an instance of CommandOutput
structure that contains return value, standard output and standard error streams
(stdout and stderr). No mixing of output is performed even when commands are
run in parallel because new SSH stream is created for any new command.

3 Execution of Parallelized Programs

The main goal of creation of this library was to provide an easy way for seamless
execution of software, which had been written not just for Linux platform, but
for Linux-based supercomputers. This includes programs working via MPI tech-
nological stack or using CUDA/OpenCL libraries for GPU computations. Such
supercomputer systems in most cases are designed to be used by many users

82 Alexander Tsidaev

simultaneously and, thus, contain some software for program execution schedul-
ing. Library, which is described in this paper, contains support for one of most
widespread schedulers, Slurm [3].

Class for execution of parallel program with Slurm scheduler is called Par-
allelCodeExecutor. Execution itself is performed with Execute method, which
signature is

public async Task <CommandOutput > Execute(
int nodesNumber ,
int gpuNumber ,
string partitionName ,
string program ,
params ProgramArgument [] arguments)

Here nodesNumber is number of CPU nodes that should be used by this
execution, gpuNumber is the number of GPU devices, requested on each node,
partitionName is a name of cluster partition, where program should be executed,
program and arguments are executed program and its arguments.

Each element of arguments can be either fixed file name on remote system or
local file, which will be uploaded automatically. ProgramArgument encapsulates
this logic.

Return value is the CommandOutput structure with information about re-
turn code and stdout/stderr, the same for non-parallel executor. All streams
redirection is handled internally and no user attention is needed to these details.

4 Conclusion

The presented software library covers full spectrum of tasks that exists in exe-
cution of custom supercomputing programs: source code obtaining, compilation
and execution. Library helps developer to speed up the development process.
Novice users are isolated from SSH layer, which may be not well-known for
them. Experienced users can obtain development acceleration by automating
routing operations.

Two main tasks can be solved using this library:

1. Reduce manual operations count during development process
2. Allow users to execute parallel programs in the same way as non-parallel.

All logic related to execution queue, job identification and task completeness
is encapsulated inside library

As the result, it is convenient to use described technique for iterative pro-
cesses. If program to be executed should be run in a loop, each iteration of which
depends on results of the previous one, then this process includes many man-
ual operation such as file copy or command execution. Usage of the library can
significantly reduce overall time needed to obtain the final result.

Library is distributed “as is” under LGPL 3.0 license. Source code can be
obtained from https://github.com/atsidaev/parallexec. Since the structure can
easily be extended by additional blocks, author welcomes everyone interested to
submit patches and pull-requests.

.NET Library for Supercomputing 83

References

1. Dubenskaya, J., Kryukov, A., Demichev, A.: Some approaches to organizing of
remote access to supercomputer resources. CEUR Workshop Proceedings Volume
1482: 1st Russian Conference on Supercomputing Days, 712–719 (2015)

2. Akimova, E.N., Misilov, V. E., Skurydina, A. F., Martyshko, M. P.: Specialized Web
Portal for Solving Problems on Multiprocessor Computing Systems. CEUR Work-
shop Proceedings Volume 1513: Proceedings of the 1st Ural Workshop on Parallel,
Distributed, and Cloud Computing for Young Scientists, 123–129 (2015)

3. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), Volume 2862, 44–60
(2003)

