
Early Performance Evaluation of Supervised
Graph Anomaly Detection Problem

Implemented in Apache Spark

Artem Mazeev1, Alexander Semenov1, Dmitry Doropheev2, Timur Yusubaliev3

1 JSC NICEVT, Moscow, Russia
2 Moscow Institute of Physics and Technology, Moscow, Russia

3 Quality Software Solutions ltd, Moscow, Russia
{a.mazeev,semenov}@nicevt.ru, dmitry@dorofeev.su, ytr@kpr-it.com

Abstract. Apache Spark is one of the most popular Big Data frame-
works. Performance evaluation of Big Data frameworks is a topic of in-
terest due to the increasing number and importance of data analytics
applications within the context of HPC and Big Data convergence. In
the paper we present early performance evaluation of a typical super-
vised graph anomaly detection problem implemented using GraphX and
MLlib libraries in Apache Spark on a cluster.

Keywords: machine learning · MLlib · Spark · graph processing · su-
pervised anomaly detection · performance evaluation

1 Introduction

In recent years, data intensive applications have become widespread and ap-
peared in many science and engineering areas (biology, bioinformatics, medicine,
cosmology, finance, social network analysis, cryptanalysis etc.). They are charac-
terized by a large amount of data, irregular workloads, unbalanced computations
and low sustained performance of computing systems. Development of new algo-
rithmic approaches and programming technologies are urgently needed to boost
efficiency of HPC systems for similar applications thus enabling advancing of
HPC and Big Data convergence [13].

Spark [15] is a framework which optimizes programming and execution mod-
els of MapReduce [6] by introducing resilient distributed dataset (RDD) ab-
straction. Users can choose between the cost of storing an RDD, the speed of
accessing it, the probability of losing part of it, and the cost of recomputing it.
Apache Spark [1] is a popular open-source implementation of Spark. It supports
a rich set of high-level tools including MLlib for machine learning and GraphX
for graph processing.

Anomaly detection in graphs occurs in many application areas, for example,
in the analysis of financial markets, in spam filtering, as well as in detection of
cyber attacks.

In the paper we evaluate performance of a typical supervised anomaly de-
tection problem implemented using GraphX [10] and MLlib libraries in Apache

Supervised Graph Anomaly Detection Problem in Apache Spark 85

Spark. We use synthetic graph generator for performance evaluation. In our ap-
proach we calculate features based on community extraction. Then we fit model
using supervised machine learning techniques. One can apply this model to new
objects, thus performing anomaly detection to new data sets.

2 Related Works

Performance evaluation of Big Data frameworks is drawing more attention due
to increasing number and importance of data analytics applications within the
context of HPC and Big Data convergence. There exist many papers that present
performance evaluation of Spark, e.g. [3, 11, 7]. Chaimov et al. [5] ported, tuned
and evaluated Spark on Cray XC systems developed in production at a large
supercomputing center. They have reached scalability up to 10,000 cores of the
Cray XC system.

Performance evaluation of the initial version of the GraphX library is con-
sidered in [10]. The paper presents strong scaling of the PageRank algorithm.

Some papers consider performance evaluation of machine learning applica-
tions implemented in Spark. In [14] the MLlib library is not used. In [12, 8] there
is no scalability results of the MLlib library.

In this paper, we present performance and scalability results of the typical
machine learning application implemented using the latest version (2.1.1, May
2017) of standard GraphX and MLlib libraries in Apache Spark on a cluster
equipped with Angara and 1 Gbit/s Ethernet interconnect.

3 Supervised Graph Anomaly Detection Problem

We consider an anomaly detection problem for synthetic graphs to evaluate per-
formance and scalability of graph processing and the machine learning techiques
in Apache Spark.

We consider a random uniform weighted directed graph G = (V,E) [9],
|V | = N, |E| = M . Each edge connects two random vertices of the graph G
so that there is no self-loops. Each edge has attributes. The list of attributes
includes integer edge weight (a random value in [0, 105)) and another integer
values; max degree is a maximal degree of each vertex.

The edge is considered as anomaly if its weight is greater than a given thresh-
old. We consider ANOMALY EDGES FRACTION ∗ M random edges as
anomalous by adding to their weights random values in [0, 109). We consider
ANOMALY EDGES FRACTION = 0.05. Other edges are normal.

The edge weight is an opaque anomaly feature, it allows to build a training
set and a test data set for our synthetic supervised problem. In the problem we
have to fit model using supervised machine learning techniques. It is needed to
classify whether the edge is anomalous or normal.

Eventually, the computation process consists of two stages: feature calcula-
tion and supervised (machine) learning. First, it is necessary to calculate the

86 Artem Mazeev et al.

features for each edge. Feature calculation includes community extraction pro-
cedure.

We define a community around vertex u as a set of vertices v : dist(u, v) ≤
R, where dist – the shortest distance between u and v. Edges are considered
as undirected during the community extraction. We extract two communities
around both vertices of each edge of the training set. We consider communities
with R = {1, 2}.

Feature calculation is heavily based on the extracted community. The total
number of features is 52. The set of features for an edge includes:

– degrees of the edge vertices, weight of the edge, other parameters from the
edge attributes,

– minimum, maximum and average for degree, indegree and outdegree of the
community,

– number of edges and vertices in the community,
– sum of weights of all edges in the community.

After the feature calculation stage, a machine learning stage is performed.
We believe that our synthetic supervised graph anomaly detection problem

is typical because during the data mining research it is needed to calculate graph
features many times, and then to fit a model. Especially, it is required in the
beginning of a research while trying to choose a suitable set of features and to
select an appropriate machine learning technique.

3.1 Time Complexity

We consider time complexity of the feature calculation stage. We calculate fea-
tures for each edge of the graph. Each edge has two incident vertices. The com-
plexity of feature calculation for one vertex is the number of vertices in the
community with R = 2 around this vertex, i.e. max degree2 operations in the
worst case. So, time complexity for one vertex is O(1).

The number of vertices in the graph for which we calculate features is O(min(N,M))
because if M < N , then we calculate features only for the relevant vertices. So,
theoretical time complexity of the feature calculation stage is O(min(N,M)). Of
course, we can run it by parallel and then with p processes time complexity will
be O(min(N,M)/p).

4 Implementation

We implement the algorithm and the synthetic graph generator with using of
Scala language, the GraphX system and the MLlib library on top of Apache
Spark, version 2.1.1.

In our implementation each edge has a string which stores integer attributes
delimited by a ’,’ symbol. After generating vertices and edges we create a graph
using Graph method from the GraphX library.

Supervised Graph Anomaly Detection Problem in Apache Spark 87

In the work we use Sparks RDD program interface. Resilient distributed
dataset (RDD) is the main abstraction in Spark, which represents a read-only
collection of objects partitioned across a set of machines. Users can explicitly
cache RDD in memory across machines and reuse it in multiple MapReduce-like
parallel operations [15]. The latest Spark program interface DataFrame [4] seems
to be more efficient, we plan to use it in the future work.

The feature calculation stage works as follows. We use degrees, inDegrees,

outDegrees methods from GraphX library, in the current implementation ver-
sion we calculate other features by using join and map RDD operations. We
calculate features for all edges of the graph because it costs almost the same
time as calculating features only for edges which are used in the machine learn-
ing stage.

Our implementation uses simple operations (for example, map, filter) that
can be performed independently for each element from dataset. Also, the imple-
mentation uses expensive operations: distinct, subtract, join, and groupBy.
These operations are potentially expensive because they include a shuffle. The
shuffle is a Spark mechanism for re-distributing data so that it is grouped differ-
ently across partitions of data. This typically involves copying data across the
cluster, making the shuffle a complex and costly operation. In our implementa-
tion we often use cache method to store data in the main memory.

In the machine learning stage we use LogisticRegressionWithLBFGS, SVMWithSGD,

RandomForest methods from the MLlib library. Currently, there is no feature
selection stage in our solution, but we plan to add it in future work.

4.1 Time Complexity in Apache Spark

The sort algorithm used for the shuffle operation is not specified in the Apache
Spark documentation. We assume that optimal complexity of parallel sort al-
gorithms is O(n ∗ log(n)/p), where p is a number of processes which can not
be more than n. We use it as a rough bound of the time complexity for the
sort algorithm inside the shuffle operation. Therefore, the complexity of shuffle
is O(n ∗ log(n)/p), where n is the number of elements in RDD or DataFrame, p
is the number of processes.

The programs hot spot is the calculation of communities with R = 2. This
operation contains a join of the two RDDs, the first RDD consists of pairs (a
neighbour of the vertex and the vertex) and the second consists of the reversed
pairs (the vertex and a neighbour of the vertex), i.e. after the join operation we
have vertices with dist = 2 for any vertex in the graph. Both RDDs consist of
O(max degree ∗ min(N,M)) = O(min(N,M)) elements. So, complexity of the
shuffle operation is O(min(N,M) ∗ log(min(N,M))/p).

Complexity of the local calculations after the shuffle operation is O(min(N,M)/p),
p — the number of parallel processes because for each element of the first RDD
there exist max degree elements of the second RDD in the worst case (we build
an extension of the community with R = 1 to the community with the R = 2).

Our theoretical and profiling analysis shows that the time of the remaining
programs operations is insignificant. Eventually, our time complexity evaluation

88 Artem Mazeev et al.

of the feature calculation stage implemented in Apache Spark is O(min(N,M) ∗
log(min(N,M))/p).

5 Performance Evaluation

Table 1. System configuration of the Angara-K1 cluster

Cluster Angara-K1

Chassis SuperServer 5017GR-TF

Processor E5-2660 (8 cores, 2.2 GHz)

Memory DDR3 64 GB

Number of nodes 36

Interconnect Angara 4D-torus 3× 3× 2× 2
1 Gbit/s Ethernet

Operating system SLES 11 SP4

Spark Apache Spark 2.1.1

Scala Compiler sbt 0.13.13

All presented results has been obtained on the Angara-K1 cluster. It has
36 nodes, but in the paper we use only 8 nodes. Table 1 provides information
about the architecture and a software overview of the Angara-K1 partition. All
Angara-K1 nodes are connected to each other by the Angara and 1 Gbit/s Eth-
ernet interconnects. High-speed Angara interconnect is developed in NICEVT,
performance evaluation of the Angara-K1 cluster with Angara interconnect on
scientific workloads is presented in [2].

We use the following default graph parameters: N = 219, M = 222. We
suggest that the graph size is large enough for scalability evaluation, but perfor-
mance evaluation consumes reasonable time.

In the figures the dashed line shows theoretical evaluation. We plot this
line as follows. We take left point in the corresponding obtained results line and
multiply this value on the ratio of corresponding asymptotic values, for example,
for weak scaling we get time value X for the single core point, then for the 64
cores point we get theoretical time X∗((64∗N)∗log(64∗N)/64)/(N∗log(N)/1) =
X ∗ log(64 ∗N)/log(N), where N is the number of vertices.

Strong scaling on the default graph is shown in Fig. 1a and Fig. 1b. The
speedup of feature calculation from 1 to 8 cores on the single node is 3.41 but
speedup from 1 to 8 nodes using 8 cores per node is 5.08. The reason of poor single
node scalability is that feature calculation is a memory bound Spark application.
Fig. 2 confirms this by showing strong scaling on the same problem with different
cores per node number.

From the results in Fig. 1a, we can see that on the single node the feature
calculation stage requires more time than the machine learning stage, but feature
calculation scales fairly good.

Supervised Graph Anomaly Detection Problem in Apache Spark 89

1 2 4 8 16 32 64
Number of cores

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
 (
se

c.
)

Feature calculation

+Machine learning

Theoretical feature calculation

Feature calculation (1 core per node)

(a)

1 2 4 8 16 32 64
Number of cores

0

10

20

30

40

50

60

70

S
p
e
e
d
u
p

Feature calculation

Theoretical feature calculation

(b)

Fig. 1. Strong scaling on the default graph (N = 219,M = 222). 8 cores per Angara-K1
cluster node

1 2 4 8
Number of nodes

0

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

1 core per node

2 cores per node

4 cores per node

8 cores per node

Theoretical feature calculation

Fig. 2. Strong scaling of the feature cal-
culation stage on the default graph (N =
219,M = 222) with different values of
cores per node

Logistic regression SVM Random forest

50

100

150

200

250

300

T
im

e
 (
se
c.
)

1.74x
1.99x

1.89x

1 core

4 cores

Fig. 3. Strong scaling of the MLlib meth-
ods on the default graph (N = 219,M =
222)

Strong scaling of the different machine learning algorithms is shown in Fig. 3.
We consider LogisticRegressionWithLBFGS, SVMWithSGD and RandomForest

methods of the MLlib library. These methods scale only to 4 cores of the cluster
single node.

Weak scaling is shown in Fig. 4. For p processes (cores) we use graph with
N = 214 ∗p vertices and M = 217 ∗p edges. Weak scaling results is poor. Among
the possible reasons there is a single one that Spark configuration is not optimal.
Future tuning can address the problem.

Fig. 5 shows execution time of the program on graphs with different size. We
use 8 nodes of the Angara-K1 cluster. The feature calculation results are near
to the optimal theoretical line.

90 Artem Mazeev et al.

1 2 4 8 16 32 64
Number of cores

0

100

200

300

400

500

600

700

800

900

T
im

e
 (
se

c.
)

Feature calculation

+Machine learning

Theoretical feature calculation

Fig. 4. Weak scaling on the graphs with
N = 214 ∗ P vertices and M = 217 ∗ p
edges, where p – number of cores. 8 cores
per Angara-K1 cluster node

18 19 20 21
log2(N)

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
 (
se
c.
)

Feature calculation

+Machine learning

Theoretical feature calculation

Fig. 5. Program execution on different
graphs. 8 cores per each of the 8 Angara-
K1 cluster nodes. M = N ∗ 8

6 Conclusion

The paper presents performance evaluation of a typical supervised graph anomaly
detection problem detection problem implemented using GraphX and MLlib in
Apache Spark on the commodity cluster equipped with Angara and 1 Gbit/s
Ethernet interconnects.

The considered anomaly detection problem consists of calculation of features
and supervised machine learning. The feature calculation requires more time
than machine learning stage on the single cluster node, but it scales good. The
machine learning stage implemented using the MLlib library does not scale be-
yond the single cluster node.

Our theoretical analysis shows that the performance results of strong scal-
ing and scaling on graphs with different size on a fixed cluster configuration
is relatively good. It seems that Apache Spark is a memory bound application
and many cores per cluster node running leads to lower efficiency. This fact and
poor performance results of weak scaling of the problem is the subject of future
research.

Acknowledgments. Research is being conducted with the finance support of
the Ministry of Education and Science of the Russian Federation Unique ID for
Applied Scientific Research (project) RFMEFI57816X0218. The data presented,
the statements made, and the views expressed are solely the responsibility of the
authors.

References

1. Apach Spark Homepage, http://spark.apache.org, http://spark.apache.org/

Supervised Graph Anomaly Detection Problem in Apache Spark 91

2. Agarkov, A., Ismagilov, T., Makagon, D., Semenov, A., Simonov, A.: Performance
evaluation of the Angara interconnect. In: Proceedings of the International Con-
ference Russian Supercomputing Days. pp. 626–639 (2016)

3. Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Stoica, I.,
Wendell, P., Xin, R., Zaharia, M.: Scaling spark in the real world: performance
and usability. Proceedings of the VLDB Endowment 8(12), 1840–1843 (2015)

4. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., et al.: Spark sql: Relational data processing
in spark. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. pp. 1383–1394. ACM (2015)

5. Chaimov, N., Malony, A., Canon, S., Iancu, C., Ibrahim, K.Z., Srinivasan, J.:
Scaling Spark on HPC systems pp. 97–110 (2016)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
and Implementation - Volume 6. OSDI’04, USENIX Association, Berkeley, CA,
USA (2004)

7. Dünner, C., Parnell, T., Atasu, K., Sifalakis, M., Pozidis, H.: High-performance
distributed machine learning using Apache Spark. arXiv preprint arXiv:1612.01437
(2016), https://arxiv.org/pdf/1612.01437.pdf

8. Dünner, C., Parnell, T.P., Atasu, K., Sifalakis, M., Pozidis, H.: High-performance
distributed machine learning using Apache Spark. CoRR abs/1612.01437 (2016),
http://arxiv.org/abs/1612.01437

9. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6,
290–297 (1959)

10. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
GraphX: Graph processing in a distributed dataflow framework. OSDI 14, 599–
613 (2014)

11. Hong, S., Kim, S., Jang, J., Choi, C.h., Jung, I.s., Na, J., Cho, W.S., Chi, S.y.:
Performance evaluation of apache spark according to the number of nodes using
principal component analysis. In: Proceedings of the 2015 International Conference
on Big Data Applications and Services. pp. 98–103. BigDAS ’15, ACM, New York,
NY, USA (2015)

12. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman,
J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R., Franklin, M.J., Zadeh, R.,
Zaharia, M., Talwalkar, A.: MLlib: Machine learning in Apache Spark. Journal of
Machine Learning Research 17(34), 1–7 (2016)

13. Reed, D., Dongarra, J.: Exascale computing and big data: The next frontier. Com-
munications of the ACM 57(7), 56–68 (2014)

14. Wei, J., Kim, J.K., Gibson, G.A.: Benchmarking Apache Spark with machine learn-
ing applications (2016), http://www.pdl.cmu.edu/PDL-FTP/BigLearning/CMU-
PDL-16-107.pdf

15. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. HotCloud 10, 1–7 (2010)

