
Focusing on Two Different Aspects of
Collaboration in Software Engineering:
Supporting Collaborative Modeling and
Specifications of Collaborative Activities

Peter Forbrig, Anke Dittmar, Gregor Buchholz, and Mathias Kühn

University of Rostock, Rostock, Germany
{peter.forbrig,anke.dittmar,gregor.buchholz,mathias.kuehn}@uni-rostock.de

Abstract. The paper discusses two aspect of collaboration in software
engineering. The first one focusses on methodological support for collab-
orative modelling and the second one on the specification of collaborative
activities and their simulation. For both aspects links to the literature
are provided and existing tool support is discussed. The language CoTaL
and their simulation environment CoTaSE are shortly introduced.

Keywords: collaborative modelling · collaborative activities specifica-
tion

1 Introduction

Professional software development is most of the time a collaborative activity.
Only in very rare situations software is developed by one person only. There
are several studies on collaborative programming like [8] and [9]. Rittgen [11]
focusses on collaborative modelling that is less studied. Renger et.al. [10] provide
a literature review about collaborative modeling. With new technologies like
table tops the question arises how collaborative modeling can be supported.

2 Collaborative Modelling with Class Diagrams

This section describes a study [5] that was conducted on supporting collaborative
software design sessions. Several groups of software designers were observed while
performing certain design tasks. The study included an initial analysis of manual
collaborative modelling sessions each with 3 participants (Fig. 1). Paper was used
to represent classes and associations. Based on this analysis, a software prototype
for interactive table tops was developed that support teams up to 3 designers in
modeling with class diagrams (Fig. 2). The software considers different spaces
on its graphical interface. Based on the analysis, these spaces can be grouped
into personal spaces for each designer and one group space for all designers.

Different class diagram designs can be reflected at runtime to compare alter-
natives for certain design solutions. Ongoing investigation is made on improving



Collaborative Modeling and Collaborative Activities 65

design processes by supporting teams with different strategies. One strategy can
be to guide sessions for structuring processes at all. However, tool support for
multiple designers of collaborative teams differs from tool support for single
designers.

Fig. 1. Analysis of collaborative work with manual support.

Fig. 2. Class diagram editor for three developers.

Software that can be used for collaborative design sessions must satisfy needs
of persons and groups as well. The analysis (Fig. 1) has shown that software
requirements exist not only for collaborative but also for individual support.



66 Peter Forbrig, Anke Dittmar, Gregor Buchholz, and Mathias Kühn

This results in a user interface that is shown in Fig. 2. Individual designers have
their own personal spaces for editing classes, relations, and notes of models.

All personal spaces are equipped with toolbars and software keyboards that
support making edits. The group space shows designed class diagrams and allows
designers to adapt layouts. Classes, relations, and notes of diagrams can be
blocked by designers that select them in the group space. This strategy helps to
avoid conflicts when editing elements.

Individual support for designers is integrated to the user interface of this
software prototype. Personal spaces could also be provided on different devices
what is part of other studies. However, the problem of merging models that come
from more than one participating designer arises when targeting the functionality
of how to deal with conflicting model elements. The same problem arises when
designers try to merge different forks of alternative models designs. Solutions
for this problem are parts of ongoing studies. However, the process of designing
models with class diagrams also is affected by the expertise of participating
designers.

Fig. 3. Facilitated design session with the software prototype.

Design sessions can be structured in different ways. Most of the time designers
are on their own and the problem can arise that the design process is getting
unstructured. Moderators can facilitate design sessions in a way that they guide
the process to open up unknown domains in a more structured way. However,
also moderators must have a certain expertise to help participants in designing
domain-specific models. Another solution can be to make rules for designers on
how to behave in collaborative design sessions. These rules need to be identified



Collaborative Modeling and Collaborative Activities 67

by comparing the results coming from structured and unstructured sessions,
what is part of ongoing studies.

3 Specifying Collaborative Activities

The software under development often has to support collaborative activities as
well. Therefore, it is necessary to have precise specifications for these activities.
Some of our studies recognized that current task models and business process
specifications [2] are not precise enough [1].

3.1 A Language for Specifying Cooperative Activities

Based on the concept of task models [4], a language CoTaL [1] was developed to
allow dynamic variable binding for variables. In this way context dependencies
can be specified in an easy way. It is e.g. possible to specify that the doctor who
diagnosed a patient also has to perform the treatment.

Besides the language CoTaL an environment CoTaSE [3] was developed that
allows the animation of the CoTaL specifications. It can be characterized as
follows:

– Hierarchical description of a team model and several role models.
– Temporal relations are support. It includes instance iteration.
– Models can be simulated.
– Each role model can be instantiated several times.
– Instantiation can be performed during runtime. (simulation time)
– Triggers, preconditions and contexts can be specified.

Specifications can be in depth validated before implementing the software. An
overview of the language and its application to smart environments is provided
in [1]. To provide an example we picked one from the literature. It is taken from
X and based on the following natural language description.

“An employee fills in a holiday application form. He/She puts in a start and
end date of his/her vacation. The responsible manager checks the application
and informs the employee about his/her decision; the holiday request might be
rejected or get approved. In case of approval the holiday data are sent to the
human resource department which updates the days-off in the holiday file.” ([6],
p. 220)

From the text one can identify three roles: Employee, Manager, and Human
Resources (HR). A task Process request is identified for the manager. It has to
be of type instance iterative. Otherwise, a manger would only be able to accept
one request at any time. According to the provided specification below, there
has to be at least one instance iteration. Additionally it is specified that there
is no maximal number of requests (-1 represents the infinite symbol).

Three variables E1, M1 and H1 are declared and bound to the context C1.
In this way, the instance of the employee that requests a vacation (bindVar-
Task = “E1.Ask”) is stored in variable E1. This has the consequence, that



68 Peter Forbrig, Anke Dittmar, Gregor Buchholz, and Mathias Kühn

the task “GoOnVacation” is restricted to the same Person by “bindVarTask =
E1.GoOnVacation”. These details are often neglected in business process speci-
fications. They often do not specify such details. Some comparisons of business
process specification examples are provided in [7].

It seems to be obvious, that such details of specifications are very impor-
tant for the implementation of corresponding software systems. They should be
analyzed and clarified during the requirements analysis activities.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<taskmodel name=”Handling vacat ion reque s t ” r o l e=”Team”>

<r o l e s >
<r o l e name=”Employee” f i l e =”Employee . xml” />
<r o l e name=”Manager” f i l e =”Manager . xml” />
<r o l e name=”HR” f i l e =”HR. xml” />

</r o l e s >
<task name=”Process r eque s t ” bindingContext=”C1”

i n s t i t e r a t i v e =”true ” instmin =”1” instmax=”4”>
<ro leVar r o l e=”Employee” var=”E1”/>
<ro leVar r o l e=”Manager” var=”M1”/>
<ro leVar r o l e=”HR” var=”H1”/>
<task name=”Create r eque s t ” operator=”enab l ing ”

bindVarTask=”E1 . Ask”>
</task>
<task name=”Request accepted ” operator=”enab l ing ”

bindVarTask=”M1. ManageRequest” />
<task name=”Handle d e c i s i o n”>

<task name=”Option Yes” operator=”cho i c e”>
<task name=”Decide Yes” operator=”enab l ing ”

bindVarTask=”M1. AcceptRequest ” />
<task name=”Inform ” operator=”enab l ing ”

bindVarTask=”M1. CongratulateEmployee ” />
<task name=”Handle Yes” >

<task name=”Do something ”
operator=” i n t e r l e a v i n g ”
bindVarTask=”E1 . GoOnVacation” />

<task name=”Document Yes”
bindVarTask=”H1 . Archive ” />

</task>
</task>
<task name=”Option No”>

<task name=”Decide No” operator=”enab l ing ”
bindVarTask=”M1. TurnDownRequest” />

<task name=”Inform ” operator=”enab l ing ”
bindVarTask=”M1. RejectEmployee ” />

<task name=”Handle No”>
<task name=”Work as usua l ”

bindVarTask=”E1 . GoToWork” />
</task>

</task>
</task>



Collaborative Modeling and Collaborative Activities 69

</task>
</taskmodel>

The initially animated models of the vacation request example are provided
by Fig. 4 and Fig. 5. Green circles signal that the corresponding task can be
executed. If a read circle is attached to the green one this means that in principle
(according to the own temporal relations) the task of the model instance could
be executed. However, certain constraints are not fulfilled. For Fig. 4 human
resources has to announce first that holidays are approaching. Employees can
ask for vacation afterwards and managers can process requests after they were
formulated.

Fig. 4. Initial task model instances of the holiday request example.

In the upper part of Fig. 4 on can the see the model that describes the
collaboration. We call it team model. It exists only once. All other models are
role models and different instance can exist. In the example above there are
two managers Regina and Marco. Additionally, there are two employees Mary
and Peter. For human resources there is only on instance that is called Janet.



70 Peter Forbrig, Anke Dittmar, Gregor Buchholz, and Mathias Kühn

The simulation environment CoTaSE allows the dynamic creation of further role
model instances at any time. In this way constraints can change.

Let us create a further role instance for employee that is called Paul. We will
have a look at the model instances after the first vacation request was created.

Fig. 5. A task model instance after first request was accepted.

Already from the team model one can imagine that in parallel to request
one there might be the next one processed in parallel. One can also see that
manager Regina made her first decision. She accepted a request. The request
came from Mary who can go on vacation now. Regine could manage the second
request. However, there is no further request available. A request from Paul or
Peter could be processed by Regina or Marco.

3.2 Summary of Specifying Collaborative Activities

While analyzing existing language and tools for task models a lack of support
for specifying cooperative work was identified in the domain of smart meeting



Collaborative Modeling and Collaborative Activities 71

rooms. A new specification language CoTaL was introduced that extends features
of task models in such a way that more precise specifications are possible.

Each role is specified by a task model. The communication between roles is
characterized by a specific task model that is called team model. It reflects the
activities of all actors and exists only once. Each actor is associated with one or
more role model instances.

The specification of task models specifying cooperative activities was ex-
tended by context definitions. Within such task context, variables can be defined.
They allow the storing of references to instances of roles. A language CoTaL is
provided for this purpose. This language and its interpreting environment Co-
TaSE were discussed.

The environment CoTaSE allows the dynamic instantiation of task models
during runtime which is an important feature for the application of task model
specifications for smart environments and cooperative work in general. It im-
plements the temporal operator of instance iteration. Additionally, it provides
the feature of ending and starting tasks (in contrast to executing tasks as an
atomic action, i.e. a task execution that takes place at a specific point of time
instead of a time span ∆t = tend − tstart) which is important for simulating
parallel activities. Tasks can have preconditions, start triggers, and end triggers.
Scenarios can be created that are useful for testing the final application or for
other duties. It is for instance possible to generate a series of scenarios that are
used to construct new versions of task models.

4 Summary

Two different aspects of collaboration in software engineering were discussed.
The first one focusses on collaborative modelling, which is not very well un-
derstood yet. More precise methodological support seems to be necessary in
the future. This has to go together with corresponding tool support. Addition-
ally, specifications were discussed that allow precise descriptions of collaborative
work. Also for this aspect more conceptual work and tool support are necessary.
It would be a challenge for the future to describe the activities in collaborative
modelling by corresponding task models.

References

1. Buchholz, G., and Forbrig, P.: Extended Features of Task Models for Specifying
Cooperative Activities. Proc. ACM Hum.-Comput. Interact. 1, 1, Article 7 (June
2017), pp. 1-21. doi: 10.1145/3095809

2. BPMN: http://www.bpmn.org/, last visited July 31 2017.
3. CoTaSE: http://www.cotase.info/, last visited July 31 2017.
4. CTTE: http://giove.cnuce.cnr.it/ctte.html, last visited July 31 2017.
5. Dittmar, A., Buchholz, G., and Kühn, M.: Effects of Facilitation on Collaborative

Modeling Sessions with a Multi-Touch UML Editor. In: Proceedings of the ICSE-
SEET 2017, pp. 97-106. doi: 10.1109/ICSE-SEET.2017.14



72 Peter Forbrig, Anke Dittmar, Gregor Buchholz, and Mathias Kühn

6. Fleischmann, A. and Stary, C.: Whom to talk to? A stakeholder perspective on
business process development. Universal Access in the Information Society, 11(2),
pp. 125-150, http://link.springer.com/article/10.1007/s10209-011-0236-x

7. Forbrig, P., and Buchholz, G.: Subject-Oriented Specification of Smart Environ-
ments, Proc. 9th Conference on Subject-oriented Business Process Management,
S-BPM ONE 2017, Darmstadt, Germany, March 30-31, 2017. ACM 2017, ISBN
978-1-4503-4862-1, http://dl.acm.org/citation.cfm?id=3040570

8. McDowell, C., Werner, L., Bullock, H., and Fernald, J.: The effects of pair-
programming on performance in an introductory programming course. SIGCSE
Bull. 34, 1 (February 2002), pp. 38-42. doi: 10.1145/563517.563353

9. Nosek, J. T.: The case for collaborative programming. Commun. ACM 41, 3 (March
1998), pp. 105-108. doi: 10.1145/272287.272333

10. Renger, M., Kolfschoten, G. L., and de Vreede, G.-J.: Challenges in collabora-
tive modelling: a literature review and research agenda, M. Renger, G.L. Kolf-
schoten, G.-J. de Vreede, Challenges in Collaborative Modeling: A Literature Re-
view, CIAO! 2008 and EOMAS 2008, LNBIP 10, 2008, pp. 6177.

11. Rittgen, P.: Collaborative Modeling: Roles, Activities and Team Organization. Int.
J. Inf. Syst. Model. Des. 1, 3 (July 2010), pp. 1-19. doi: 10.4018/jismd.2010070101


