
Bayesian Optimization Combined with
Incremental Evaluation for Neural Network

Architecture Optimization

Martin Wistuba

IBM Research
Dublin, Ireland

martin.wistuba@ibm.com

Abstract. The choice of hyperparameters and the selection of algo-
rithms is a crucial part in machine learning. Bayesian optimization meth-
ods and successive halving have been applied successfully to optimize
hyperparameters automatically. Therefore, we propose to combine both
methods by estimating the initial population of incremental evaluation,
our variation of successive halving, by means of Bayesian optimization.
We apply the proposed methodology to the challenging problem of opti-
mizing neural network architectures automatically and investigate how
state of the art hyperparameter optimization methods perform for this
task. In our evaluation of these automatic methods, we are able to achieve
human expert performance on the MNIST data set but we are not able
to achieve similar good results for the CIFAR-10 data set. However,
the automated methods find shallow convolutional neural networks that
outperform human crafted shallow neural networks with respect to clas-
sification error and training time.

1 Introduction

Deep neural networks are powerful models that are able to extract features from
complex data such as images, audio and text automatically. They enabled to
improve the state of the art on many different domains such as image classifica-
tion [10,18,30,39], object detection [8,27], speech recognition [4,23] and machine
translation [35]. Rather than manually extracting features from the data, the
humans’ task changed to create neural network architectures and components
which are able to learn how to extract useful features. However, the creation of
neural networks requires a lot of domain expertise. Considering the domain of
image classification only, hundreds of researchers have created several compo-
nents and architectures before reaching top performances on all the well-known
benchmark data sets. Therefore, an automatic way to find the optimal neural
network architecture would be extremely useful.

Snoek et al. proposed to apply Bayesian optimization to tackle the hy-
perparameter optimization problem automatically [31]. In numerous occasions
Bayesian optimization provided better hyperparameter configurations than hu-
man data scientists. Snoek et al. pushed the state of the art in deep learning to

new levels on the CIFAR-10 data set in 2012 [31] and again in 2015 for CIFAR-10
and CIFAR-100 [32]. However, a fixed, good performing neural network archi-
tecture was chosen and only its hyperparameters were optimized.

Since deep learning is becoming more and more important in various do-
mains, it is not utterly surprising that there are attempts to automate the search
for suitable neural network architectures [1, 26, 46]. Reinforcement learning and
evolutionary algorithms are currently the dominating methods and are able to
achieve state of the art results.

In this paper, we conduct a study to investigate whether the state of the
art for hyperparameter optimization can be applied to the task of neural net-
work architecture optimization. We propose incremental evaluation, a variation
of successive halving [13], with two different initialization methods: Bayesian op-
timization and random search. We compare Bayesian optimization, incremental
evaluation and random search [3]. We evaluate all approaches on the two popular
image classification benchmark data sets MNIST and CIFAR-10.

2 Related Work

Neural network architecture optimization got recently a lot of attention thanks
to new automatic optimizers which achieve human level performances. Zoph and
Le proposed to use a reinforcement learning method to learn optimal network
architectures [46]. They propose to learn a controller based on a recurrent neural
network which generates a sequence that encodes a neural network architecture.
Real et al. propose the use of evolutionary algorithms [26]. In contrast to the
typical operations of evolutionary algorithms, they are not using cross-over but
rely on mutations only. Both approaches achieve impressive results on CIFAR-10
but at the cost of high computation time. Zoph and Le use 800 GPUs in parallel
and evalute 12,800 different architectures before they reach their best performing
neural network architecture. Real et al. use 250 parallel workers, each of them
for more than 256 hours.

One of the current state of the art methods for hyperparameter optimiza-
tion is Bayesian optimization [31]. Various extensions are proposed to consider
different important aspects such as new surrogate models [11, 32], initializa-
tions [7,42,43], pruning [41] and learning from samples [15], learning curves [6,38]
as well as related tasks [2, 28, 37, 45], or addressing particular problems [22, 44].
Recently, successive halving [13] have been proposed for the same task and was
further extended to Hyperband [20]. Klein et al. propose a similar extension to
Hyperband. Using a special Bayesian neural network for learning curve predic-
tion, they determine the initial population after few random trials [16].

Swersky et al. propose to use a specific kernel for conditional parameter spaces
and applies it in Bayesian optimization for neural network optimization [36].
Mendoza et al. also apply Bayesian optimization for this task but replace the
surrogate model with a random forest [22].

3 Problem Definition

We define the problem of finding the optimal neural network architecture as
a black-box optimization problem. Considering an arbitrary machine learning
task, the black-box function f is defined as

f : X → R , (1)

which maps a network architecture x ∈ X to its loss on the validation data set
Dvalid. Evaluating the function f at value x involves training the neural network
encoded by x on the training data set Dtrain and evaluating it on the validation
data set Dvalid. Hence, the network architecture x∗ which minimizes f ,

x∗ = argmin
x∈X

f (x) , (2)

is the optimal neural network architecture for our machine learning task.
In the following, we will assume that we want to find the optimal network

architecture for an image classification task. Hence, we want to find the convo-
lutional neural network architecture which minimizes the classification error.

4 Combining Bayesian Optimization and Incremental
Evaluation

Bayesian optimization is an optimization method for black-box functions. It
consists of two components, a surrogate model and an acquisition function. The
surrogate model tries to approximate the function to be minimized and addi-
tionally provides uncertainty estimations about its predictions. The acquisition
function uses the prediction of the surrogate model in order to estimate the
expected utility of a possible candidate. The candidate which maximizes the
expected utility is selected to be evaluated. In our experiments, we use a Gaus-
sian process with Matérn 5/2 kernel or a Random Forest [11] combined with the
expected improvement acquisition function [14]. Kernel hyperparameters are op-
timized by maximizing the log-likelihood [25]. For more information and related
work, we refer the interested reader to the recent review by Shahriari et al. [29].

Successive halving [13] is a simple, however, effective bandit-based approach
to optimize hyperparameters for algorithms with iterative learning procedures. It
starts with a set of random hyperparameter configurations. Every iteration has
the same budget that is uniformly distributed among the remaining candidates in
order to continue the learning process. At the end of an iteration the population is
reduced by a factor r, keeping only the candidates with the smallest, current loss.
Since the budget per iteration is fix, the budget keeps increasing per remaining
candidate by a factor of r−1.

We propose incremental evaluation which is motivated by our observations
when training neural networks. We observed that it is difficult to distinguish
between good and very good architectures after a small training time because

deeper architectures need more time than shallow ones before providing good
predictions. Therefore, in contrast to succcessive halving, we propose to spend
more budget in the beginning and less later before deciding which candidates
to discard. This algorithm is outlined in Algorithm 1. Given a total budget B,
we choose a set of candidates based on an initialization strategy using an initial
budget binit for each candidate. Then, we keep training all remaining candi-
dates each with a budget of b before reducing the set of candidates by a factor
of r. Thus, the budget spent per iteration reduces exponentially. We propose
two different initialization strategies: random search and Bayesian optimization.
Random search picks the network depth at random and then chooses the hyper-
parameters of all layers at random. Each candidate network is trained for binit
epochs. The initialization with Bayesian optimization is simply running Bayesian
optimization but limiting the number of epochs to binit. We set binit = 2, b = 1
and the reduction factor to r = 0.25.

Algorithm 1 Incremental Evaluation
Input: Budget B, reduction factor r, budget per candidate for the initialization binit

and later phase b, current loss of candidate i li. The function “initPopulation”
denotes the selection strategy for the initial population. Its first argument is the
population size and the second the budget spend for each candidate.

Output: Best neural network architecture found.

1: P0 ← initPopulation

(
bB

(
binit + b

(
1

1−r − r
))−1

c, binit

)
2: for k = 0, 1, . . . , dlogr−1 (|P0|)e − 1 do
3: Let σk be a bijection on Pk such that lσk(1) ≤ . . . ≤ lσk(|Pk|).
4: Pk+1 ←

{
i ∈ Pk | lσk(i) ≤ lσk(br|Pk|c)

}
.

5: for i ∈ Pk+1 do
6: Continue training i for a budget of b.
7: return Remaining element in Pdlogr−1 (|P0|)e.

5 Experiments

5.1 Search Space

We defined the search space X of neural network architectures as follows. Each
network has between one and five convolutional layers. For each convolutional
layer the search algorithm needs to choose a quadratic filter with dimensions
between three and ten and the number of filters within the interval [2, 128]. The
activation functions of the convolutional layers are rectified linear units [24].
Each convolutional layer is followed by a dropout layer [33] with dropout rates
between 0 and 0.9. There is an optional batch normalization layer [12] after
each convolutional layer. The stride is fixed to one and we use zero padding to
ensure the dimensionality of the feature maps is not reduced. Finally, there are
optional max pooling layers after each convolutional layers. Again, zero padding
is applied but for the max pooling layer after the first and last convolutional

layer in the neural network. All networks are flattened after the convolutional
part and a fully connected layer with number of nodes equal to the number of
classes is added. We follow the lead by Zoph and Le [46] and do not include
the hyperparameters of the optimizer into our search. We use the momentum
optimizer with a learning rate of 0.1, weight decay of 10−4, momentum of 0.9 and
Nesterov momentum [34] with a batch size of 50. The reason for this decision is
that we want to focus on finding the optimal architecture and avoid to increase
the search space even more. However, learning these hyperparameters is possible
and we will consider it for future work. Each network is trained for up to 20
epochs, early stopping is applied to stop a learning process early in case the loss
on the validation set did not improve for two epochs.

Bayesian optimization expects as input a vector of constant size, even if the
network depth changes. We used following encoding, similar to the one proposed
by Diaz et al. [5]. We force all entries for layers that are unused to zero and add
another entry to the vector that encodes the depth of the network.

We conduct experiments on the famous benchmark data sets MNIST [19]
and CIFAR-10 [17]. Each optimizer has one hour for the MNIST data set and
six hours for the CIFAR-10 data set. We use the original train and test split
and create our own train/validation split using the original train split. Our train
split is used in order to train the network and the validation split to evaluate
the networks performance. We report the mean test error of five repetitions.
The test error is estimated with the neural network that performed best on our
validation split. We do not use any data augmentation techniques.

5.2 Neural Network Architecture Optimizers

In this work we compare six different neural network architecture optimizers.
Random search [3] is selecting neural network architectures at random. It seems
to be a simple baseline, however, random search has provided good results, es-
pecially in the domain of neural networks where the number of hyperparameters
is large but many of them are insensitive to smaller changes. Furthermore, we
investigate the performance of the methods we discussed in Section 4: Bayesian
optimization with Gaussian process [31] or Random Forest [11], iterative evalu-
ation in combination with random search [13] or Bayesian optimization.

5.3 Neural Network Architecture Search for MNIST

MNIST is a 20 years old digit recognition benchmark data set which has been
used by hundreds of researchers to evaluate their image classification methods.
The data set contains 60,000 28x28 grayscale images of the 10 digits 0-9, along
with a test set of 10,000 images. The results are reported in Table 1. We see
no significant differences between all methods. It seems that one GPU hour is
already enough to find top performing networks and the solution is probably close
to the optimum within our search space. To set our results into context, the best
reported result on MNIST is an error of 0.21% [40]. This result is achieved using
a neural network architecture which is not an element of our search space. During

the automatic search we found an architecture with only two convolutional layers
which is capable of achieving an classification error of 0.59%. This convolutional
neural network can be trained in only 150 seconds. This result is comparable to
the fast-learning shallow convolutional neural network proposed by McDonnell
and Vladusich which achieves in four minutes an error of 0.5% [21]. However,
our training time is significantly shorter with a slightly smaller accuracy.

Table 1. Classification error in percent. The network architecture optimization meth-
ods can achieve state of the art performance for MNIST. No reasonable solution for
CIFAR-10 have been found due to search space and computation time constraints.

Method MNIST CIFAR-10

Random Search (RS) 0.896± 0.149 29.016± 3.600
Bayesian Optimization with Gaussian Process (BO-GP) 0.792± 0.153 28.160± 2.021
Bayesian Optimization with Random Forest (BO-RF) 0.714± 0.050 30.430± 4.117
Incremental Evaluation (IE) + RS 0.648± 0.124 26.556± 2.335
IE + BO-GP 0.730± 0.073 27.964± 2.332
IE + BO-RF 0.650± 0.127 25.650± 3.657
Fast-Learning Shallow CNN [21] 0.37 24.14
Best Human Score 0.21 [40] 3.47 [9]

5.4 Neural Network Architecture Search for CIFAR-10

The CIFAR-10 data set is another popular image classification benchmark data
set which contains 50,000 32x32 color training images and 10,000 test images.
The results achieved by our investigated methods are reported in Table 1. The
best result achieved by a human is as low as 3.47% [9], clearly better than the
results we are able to achieve with the automatic methods. Actually, results
below 10% error are very common in recently published papers for this data
set. We identified two reasons for this result. First, our search space is very
restrictive, only allowing networks with a depth up to 5 convolutional layers and
without skip connections [10]. Second, we limited the search duration to only 6
GPU hours. Since we learn only shallow networks, we draw a comparison to the
work of McDonnell and Vladusich [21] again. Their best network achieved an
error of 24.14% in less than an hour while our best network achieves an error of
22.81% within less than 25 minutes training time. Thus, our training time is not
only by a factor of two shorter but it also provides a smaller classification error.

6 Conclusions

We investigated how well state of the art black-box optimization methods used
for hyperparameter optimization perform for the task of neural network archi-
tecture search. We can show that they are capable of reaching human level

performance on the MNIST data set. The results on CIFAR-10 are currently
less promising but we identified possible problems which we are going to investi-
gate in the future. Comparing the shallow networks found during our search to
human crafted shallow neural networks, we see that the automatic search is able
to find neural network architectures which need less training time for achieving
the same or even better performance.

We proposed incremental evaluation, a variation of succcessive halving, and
various initialization methods for it. While this idea is theoretically sound, our
experiments do not show any significant improvements.

As future work, we consider to increase the search space significantly in order
to create deep architectures. Furthermore, we will increase the search time and
use multiple GPUs in parallel. Finally, we want to test our variation of successive
halving for the task of hyperparameter optimization in order to see whether a
significant improvement for this task can be achieved.

References

1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. CoRR abs/1611.02167 (2016), http://arxiv.org/
abs/1611.02167

2. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter
tuning. In: Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013. pp. 199–207 (2013), http://
jmlr.org/proceedings/papers/v28/bardenet13.html

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13, 281–305 (2012), http://dl.acm.org/citation.
cfm?id=2188395

4. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Trans. Audio, Speech &
Language Processing 20(1), 30–42 (2012), https://doi.org/10.1109/TASL.2011.
2134090

5. Diaz, G.I., Fokoue, A., Nannicini, G., Samulowitz, H.: An effective algorithm for
hyperparameter optimization of neural networks. CoRR abs/1705.08520 (2017),
http://arxiv.org/abs/1705.08520

6. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial In-
telligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 3460–3468
(2015), http://ijcai.org/Abstract/15/487

7. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. pp. 1128–
1135 (2015), http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/
10029

8. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. In: 2014 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA,
June 23-28, 2014. pp. 580–587 (2014), https://doi.org/10.1109/CVPR.2014.81

9. Graham, B.: Fractional max-pooling. CoRR abs/1412.6071 (2014), http://arxiv.
org/abs/1412.6071

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778 (2016), https://doi.
org/10.1109/CVPR.2016.90

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Learning and Intelligent Optimization -
5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers. pp. 507–523 (2011), https://doi.org/10.1007/978-3-642-25566-3_40

12. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. pp. 448–456
(2015), http://jmlr.org/proceedings/papers/v37/ioffe15.html

13. Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-
rameter optimization. In: Proceedings of the 19th International Conference on Arti-
ficial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016. pp.
240–248 (2016), http://jmlr.org/proceedings/papers/v51/jamieson16.html

14. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optimization 13(4), 455–492 (1998), https://doi.
org/10.1023/A:1008306431147

15. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian optimization
of machine learning hyperparameters on large datasets. In: Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA. pp. 528–536 (2017), http:
//proceedings.mlr.press/v54/klein17a.html

16. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction
with Bayesian neural networks. In: Proceedings of the International Conference on
Learning Representations (ICLR) (2017)

17. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017), http://doi.acm.
org/10.1145/3065386

19. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE. pp. 2278–2324 (1998)

20. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyper-
band: A novel bandit-based approach to hyperparameter optimization. CoRR
abs/1603.06560 (2016), http://arxiv.org/abs/1603.06560

21. McDonnell, M.D., Vladusich, T.: Enhanced image classification with a fast-learning
shallow convolutional neural network. In: 2015 International Joint Conference on
Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015. pp. 1–7 (2015),
https://doi.org/10.1109/IJCNN.2015.7280796

22. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards
automatically-tuned neural networks. In: Proceedings of the 2016 Workshop on
Automatic Machine Learning, AutoML 2016, co-located with 33rd International
Conference on Machine Learning (ICML 2016), New York City, NY, USA, June
24, 2016. pp. 58–65 (2016), http://jmlr.org/proceedings/papers/v64/mendoza_
towards_2016.html

23. Mohamed, A., Dahl, G.E., Hinton, G.E.: Acoustic modeling using deep belief net-
works. IEEE Trans. Audio, Speech & Language Processing 20(1), 14–22 (2012),
https://doi.org/10.1109/TASL.2011.2109382

24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), June 21-24, 2010, Haifa, Israel. pp. 807–814 (2010), http://www.
icml2010.org/papers/432.pdf

25. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. Adap-
tive computation and machine learning, MIT Press (2006), http://www.worldcat.
org/oclc/61285753

26. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.V., Kurakin,
A.: Large-scale evolution of image classifiers. CoRR abs/1703.01041 (2017), http:
//arxiv.org/abs/1703.01041

27. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2017), https://doi.org/10.1109/TPAMI.2016.2577031

28. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyperparameter
optimization with factorized multilayer perceptrons. In: Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015, Proceedings, Part II. pp. 87–103 (2015),
https://doi.org/10.1007/978-3-319-23525-7_6

29. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE 104(1), 148–175 (2016), https://doi.org/10.1109/JPROC.2015.2494218

30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. CoRR abs/1409.1556 (2014), http://arxiv.org/abs/1409.1556

31. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of
machine learning algorithms. In: Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States. pp. 2960–2968 (2012), http://papers.nips.cc/paper/
4522-practical-bayesian-optimization-of-machine-learning-algorithms

32. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Pat-
wary, M.M.A., Prabhat, Adams, R.P.: Scalable bayesian optimization using deep
neural networks. In: Proceedings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July 2015. pp. 2171–2180 (2015),
http://jmlr.org/proceedings/papers/v37/snoek15.html

33. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research 15(1), 1929–1958 (2014), http://dl.acm.org/citation.
cfm?id=2670313

34. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initial-
ization and momentum in deep learning. In: Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013.
pp. 1139–1147 (2013), http://jmlr.org/proceedings/papers/v28/sutskever13.
html

35. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Advances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada. pp. 3104–3112 (2014), http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks

36. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.A.: Raiders of the
lost architecture: Kernels for bayesian optimization in conditional parameter spaces
(2014)

37. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In: Ad-
vances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States. pp. 2004–2012 (2013),
http://papers.nips.cc/paper/5086-multi-task-bayesian-optimization

38. Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization. CoRR
abs/1406.3896 (2014), http://arxiv.org/abs/1406.3896

39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015. pp. 1–9 (2015), https://doi.org/10.1109/CVPR.2015.7298594

40. Wan, L., Zeiler, M.D., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural
networks using dropconnect. In: Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. pp. 1058–
1066 (2013), http://jmlr.org/proceedings/papers/v28/wan13.html

41. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Hyperparameter search space
pruning - A new component for sequential model-based hyperparameter optimiza-
tion. In: Machine Learning and Knowledge Discovery in Databases - European Con-
ference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings,
Part II. pp. 104–119 (2015), https://doi.org/10.1007/978-3-319-23525-7_7

42. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Learning data set similarities for
hyperparameter optimization initializations. In: Proceedings of the 2015 Interna-
tional Workshop on Meta-Learning and Algorithm Selection co-located with Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases 2015 (ECMLPKDD 2015), Porto, Portugal, September 7th,
2015. pp. 15–26 (2015), http://ceur-ws.org/Vol-1455/paper-04.pdf

43. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Learning hyperparameter opti-
mization initializations. In: 2015 IEEE International Conference on Data Science
and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, Octo-
ber 19-21, 2015. pp. 1–10 (2015), https://doi.org/10.1109/DSAA.2015.7344817

44. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Automatic frankensteining: Cre-
ating complex ensembles autonomously. In: Proceedings of the 2017 SIAM Interna-
tional Conference on Data Mining. pp. 741–749. Society for Industrial and Applied
Mathematics (2017)

45. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyper-
parameter tuning. In: Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April
22-25, 2014. pp. 1077–1085 (2014), http://jmlr.org/proceedings/papers/v33/
yogatama14.html

46. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. CoRR
abs/1611.01578 (2016), http://arxiv.org/abs/1611.01578

