1

There are strong needs to represent system behaviors for each knowledge domain in
some collective patterns, especially using tools. However the needs are not easily

PRISM: A Knowledge Engineering Tool to Model
Collective Behaviors of Real-time 10T Systems

Maryam Rahmani, Junsup Song and Moonkun Lee

Chonbuk National University

567 Beakje-daero Deokjin-gu
Jeonju-si Jeonbuk 54896, Republic of Korea

e-mail:moonkun@jbnu.ac.kr

Abstract. This paper presents a knowledge engineering tool, called PRISM, to
model collective behaviors of real-time 10T systems. PRISM is developed on
the ADOxx Meta-Modeling Platform, in order to implement the new notion of a
domain engineering method, known as behavior ontology. In PRISM, the on-
tology can be constructed as follows: 1) All the collective behaviors for a do-
main are defined from active ontology, 2) the behaviors are formed in a quanti-
fiably abstracted lattice, called n:2-Lattice, and 3) a behavior ontology for the
domain can be constructed by merging the n:2-lattices into an integrated lattice.
Once the ontology is constructed, each system in the domain can be interpreted
with respect to the ontology or lattice. In the paper, the Emergency Medical
Service (EMS) domain and a smart loT example for EMS are selected for mod-
eling and interpretation in PRISM. PRISM shows an innovative approach for
meta-modeling of domain knowledge as a tool.

Keywords: Collective Behavior; Behavior Ontology; PRISM; ADOxx; Lattice

Introduction

satisfied due to the following reasons:

In order to satisfy the needs partially, this paper presents a tool, called PRISM, with

1) There were the structural limitations caused by the size of system components
and the complexity of their interactions, as well as their composition, causing

state explosion [1].

2) There were no effective tools to model collective behaviors of systems with

the supporting meta-modeling platforms [2].

the following method and the meta-modeling support:

1) The method is based on a concept of behavior ontology [3]. The approach in
this paper extended the previous research [3] for implementation in PRISM.

The method solved the state explosion problem with abstracting behaviors.

2) PRSIM is developed on the ADOxx Meta-Modeling Platform [4] to implement
the method. The implementation demonstrates the feasibility of the method by

the meta-modeling tool.

Tool 2: PRISM for Behavior Ontology |

Abstract
Domain | " D_Class Behavior Iniepre-
\agram Modeling faon
__Capagity

Cardifglity

&
Action [3 Behavior » Ve \
Diagram Modeling < Progcion
Regular Expr ny= |
1

= | Operational Exe.

= | Specification Model %TS Block

o | (5-Calculus) Gen iagrams u
Domain Abst-

Application raction

Assertion
Procedures

Secure
Requirements
(GTS Logic)

| Tool 1: SAVE (Specification, Analysis, Verification, Evaluation) |

ADOXX

Fig. 1 Overview of the Meta-Modeling Method in PRISM

The overview of the approach in PRISM is shown in the top white box of Fig. 1. It
consists of the following steps:

1) A class hierarchy of a domain is constructed based on Active Ontology [5],
where all the actors of a domain and their interactions are defined as classes
and relations, respectively.

2) All the collective behaviors of the domain are defined in regular expression,
where each behavior is defined as a sequence of interactions among actors.
The behaviors can be organized in a hierarchical order based on their inclusion
relations, forming a special lattice, called n:2-Lattice [6].

3) All the behaviors are quantifiably abstracted with a notion of cardinality and
capacity for actors.

4) A behavior ontology for the domain is constructed by merging the n:2-lattices
into an integrated lattice, based on quantifiably common actors.

Once a final lattice for a domain is constructed, it can be used to interpret the collec-
tive behaviors of systems in the domain as follows:

1) Behavior extraction from SAVE [7]: The shaded box below the white box
just mentioned in Fig. 1 shows the method for specification and verification
of operational and secure requirements for a system with called §-calculus
[8] and GTS Logic [9]. The method is also implemented on the ADOxx Me-
ta-Modeling Platform as a tool, called SAVE. As a result of the simulation
from the specification, the behavior of the system can be extracted. However
we don’t know yet what the collective pattern of each behavior is.

2) Behavior projection and interpretation to PRISM: As shown in the right
white box of the figure, we can project the behaviors of the system, after re-
structuring the raw behaviors into the abstract ones, and interpret the behav-
iors in the patterns of the lattice as the behavior ontology for the system.

In order to demonstrate the feasibility of the approach, the Emergency Medical Ser-
vice (EMS) domain is selected for modeling its collective behaviors in PRISM. Fur-
ther a smart 10T example for EMS is selected to interpret its collective behaviors on
PRISM by projection and interpretation. The EMS example shows that the method is
very effective and efficient to construct a hierarchy of collective behaviors in the lat-
tice as the behavior ontology, as well as projection and interpretation. Compare to
other approaches for modelling behaviors and analyzing patterns of the behaviors [2],
our method can be considered to be innovative in representing the behaviors with
collective patterns by the n:2-Lattice. Further PRISM demonstrates the efficiency and
effectiveness of feasibility of the method as a tool.

This paper is organized as follows. Section 2 overviews the PRISM tool. Section 3
shows the approach in steps with the EMS domain in PRISM. Section 4 shows behav-
iors for the smart 10T example for EMS simulated in SAVE and their projection to
PRISM for interpretation. Finally, conclusions and future research will be made in
Section 5.

| Modeling | Analysis |

Model Class Dig Model Active Dig E
Model Regular Beh | Model Abstract Beh g
Model Beh Lattice | Model mLBL E

Fig. 2 The Views and Architecture of PRISM on ADOxx

2 PRISM

As stated, the PRISM tool is developed on the ADOxx Meta-Modeling Platform [5].
ADOxx was originally developed and released by the OMILAB of the University of
Vienna, and is known as one of the most innovative meta-modeling tools to model

many modeling methods. There are total 42 open models developed on ADOxx and
open to the public for non-profit applications [9].

The architecture and modeling views of PRISM is shown in Fig. 2. The graphical
representations of the models in PRISM are designed by the ADOxx Development
Tool, and the procedures of its components are built from the ADOxx libraries. The
detailed algorithms of the procedures are programmed in the ADOScript language.

The figure shows three system layers of PRISM implemented on ADOxx as follows:

1) ADOxx Platform: ADOxx provides three layers to implement mechanisms and
algorithms for PRISM as follows:

i) First Layer: Beside the pre-defined functionality, which is a basic set of
features most commonly used by modeling tools, it is possible to config-
ure the basic features for modeling definitions.

ii) Second Layer: To implement scripts like the stated ADOScripts, it pro-
vides approximately 400 APIs for the ADOxx components. Those APIs
enable the generation of objects, editing of their properties, etc.

iii) Third Layer: There are three ways of interactions with ADOxx from out-
side. The simple interaction is by exporting and importing XML files.

2) PRISM Components: PRISM uses those of the second layer of ADOXxx to im-
plement the basic components of PRISM as follows:

i) Regular Behavior Generator (RBG): This is an engine to generate a set
of regular, that is, basic behaviors from Active Ontology.

ii) Abstract Behavior Generator (ABG): This is an engine to abstract a set
of the regular behaviors from i) with respect to cardinality and capacity.

iii) Behavior Lattice Generator (BLG): This is an engine to generate a be-
havior lattice from the abstract behaviors from ii).

iv) Behavior Lattice Merger (BLM): This is an engine to merge two behav-
ior lattices into an integrated lattice with respect to the same main actors
with different cardinalities. It forms a lattice of lattices.

v) Behavior Interpreter (BI): This is an engine to input behaviors from
SAVE and project them onto the final lattice of its domain for interpre-
tation in the collective behavior patterns of the domain in the form of the
lattice.

3) PRISM Modelers: PRISM uses the functionalities of the first layer of ADOXxx to
implement the graphical elements and attributes of its graphic models as follows:

i) Class Diagram (CD): The model to define the architecture of classes for
a domain.

ii) Active Diagram (AD): The model to define the active ontology of the
domain from i).

iii) Regular Behavior (BB): The model to define a set of regular behaviors
from Active Ontology from ii).

iv) Abstract Behavior (AB): The model for a set of abstract behaviors gen-
erated automatically from that of basic behaviors by ABG from ii) of 2).

v) Behavior Lattice (BL): The model for a behavior lattice generated auto-
matically from a set of abstract behaviors by BLG from iii) of 2).

vi) Merged Lattice of Behavior Lattices (mLBL): The model for a lattice of
behavior lattices merged automatically from a set of behavior lattices by
BLM from iv) of 2).

vii) Interpreted Behavior Lattice (iBL): The model for a behavior lattice
with interpretation of behaviors of a system in the domain of the lattice
projected automatically by BI from v) of 2).

Section 3 shows how PRISM works in steps, with the EMS domain example.
3 Approach
This section presents each step of modeling in PRISM with the EMS domain. EMS is

the system where, in case of traffic and car accidents, the drivers or patients from the
accidents are transported to proper medical institutes under control of the 911.

Fig. 3 Active Ontology for EMS Domain
3.1 Step 1: Active Ontology

The first step is to design active ontology for the EMS example. Active ontology con-
sists of classes and subclasses in the domain, including their interactions.

The EMS domain example contains four classes: Ambulance (A), Patient (P), and
Place (PL). Note that Place contains Location (L) and Hospital (H) as subclasses.
Fig. 3 shows the active diagram for the active ontology as follows:
1) Actors: There are 4 different kinds of actors:
i) Patient (P): Person to be transported.
ii) Ambulance (A): Actor to deliver Patient.
iii) Location (L): Place for Patient to be delivered from.
iv) Hospital (H): Place for Patient to be delivered to.
2) Interactions: There are 6 kinds of interactions:
i) a; =<A, L>: Ambulance goes to Location
ii) a,=<P, A>: Patient gets on Ambulance.

3.2

iii) a3 =<A, H>: Ambulance goes to Hospital.
iv) a4 =<A, P>: Patient gets off Ambulance.
V) as= <P, H>: Patient goes to Hospital.

Step 2: Regular Behaviors

In this step, all the collective behaviors are defined as a sequence of interactions from
Step 1. In order to quantify the behaviors, all behaviors are divided into two kinds of
behaviors: the one with one main actor and the others with other actors. In the other
words, there are different views by different actors. For example, in EMS there are
four kind of actors, represented as B(L, A, H, P). Then, there are two types of behav-
iors for Ambulance as a main actor, represented as B(n, 1, n, n) for 1 Ambulance and
B(n, n, n, n) for n Ambulances.

There are total 9 behaviors possible for EMS, defined in regular expression as follows:

1)

2)

3)

4)

5)

6)

7

8)

9)

B, =(al,a2,a3a4,a5): An Ambulance goes to a Place, gets a Patient on, goes to a

Hospital, and gets the Patient off, who goes into the Hospital.
B, = (al,a2,a3,a4,a5)": A repeating behavior of B;.

B, = <al<a2>+ ,a3,(a4, a5>+>*: An Ambulance goes to a Place, gets Patients on,

goes to a Hospital, and gets the Patients off, who go into the Hospital. And it
repeats itself.

B, = <a1,<a2>+ (a3,a4, a5>+>+ : An Ambulance goes to a Place, gets Patients on,

and goes to Hospitals to get some of the Patients off until all the Patients off,
each group of who goes into the Hospital. And it repeats itself.

B; :<a1,<a2>+ :<a3,<a4, as)"’ |a3,a4,a5>+>+: A repeating behavior of B; and By,
that is, B, through B,.
B, = <<a1, a2)",a3,(a4, a5>*>+ : An Ambulance goes to Places to get Patients on,

goes to a Hospital, and gets the Patients off, who go to the Hospital. And it re-
peats itself.

B, = <<a1 a2)" ,(a3,a4,a5)" >+ : A repeating behavior that an Ambulance

goes to Places to get Patients on, goes to Hospitals, and gets some of the Pa-
tients off to each Hospital until all the Patients get off, each group of who goes
to the Hospital. And it repeats itself.

B, :<(a1, a2)’ ,<a3,<a4, a5)" | a3,a4, a5>*>+: A repeating behavior of Bgand B, that

is, B; through B except Bs, B, and Bs.

. /a3,(a4,a5)" |\’
<a1,<a2> '<a3’ a4.a5 > >| . A repeating behavior of By, Bs or Bs.

<<a1, @ (e l>>

g =

[——.

- z[; OB IS v s b aNE| @] s B0 A Ek

. @00
.~o~®~®~®~®~.
_.--@--@--@--@;}@-)

@-oo-oe 0@

HHI‘@OE‘@E

Fig. 4 A Part of Basic Behavior Specifications in PRISM
Fig. 4 shows a part of the BB model for EMS specified in PRISM.

3.3 Step 3: Abstract Behaviors

The next step is to abstract the regular behaviors from Step 2. The abstraction is based
on the number of main actors and the numbers of actors collaborating with their de-
gree of interactions. Formally Abstract Behavior is the behavior that has been quanti-
tatively abstracted with respect to cardinality and capacity of actors. The cardinality
implies the number of actors involved in behavior, and the capacity does the number
of possible interactions among the actors. The behavior is denoted by B(c,---,c,) .

where each c is an actor, Cony where x and (p,.-,p,) are the cardinality and ca-

pacity of c.

For EMS, the behaviors for 1 Ambulance from Step 2 can be abstracted as follows:
D B =8 (Ri Ay HG)

D oo A)
3) B, = Bs(P&)"%y)’ H<11>)

4) B4 = B4(P<i>,,0€y>, H<k11-"'v1k>)

5 B =BS(P<§(>.AX1>1H<kz "'Zk>)

6) B, =B (A{v Hl)

7) B, =B ((LenL)? A<1> <11 e)
8) By =By (R0 Ay H)

9) By =By (Pl Ay Hisoa)
Further, abstract behaviors for n Ambulances can be defined as follows:

Fig. 5 Behavior Lattices for EMS B(n, 1, n, n) & B(n, n, n, n)

3.4 Step 4: Behavior Lattice (BL)

Lattice can be constructed from Step 3, based on the inclusion relations among behav-
iors. Formal definitions for the lattice are reported in [5].

Figure 5 shows two lattices, where the bottom is for 1 Ambulance and the top one is
for n Ambulances. Note that the inclusion relations among the lattices are generated
automatically from the regular behaviors from Step 2 by RLG of PRISM.

3.5 Step 5: Behavior Ontology (BO)

Last step is to merge the lattices from Step 4 into one integrated lattice of lattices,
known as Behavior Ontology. Figure 5 shows the final output of Step 4: the lattice,
known as mLBL, consisting of the lattice for 1 Ambulance and the lattice for n Am-
bulances. As stated, it is generated by BLM of PRISM.

€S = ((CALL(HAHBP).ORDER(HAHBP). CALL(HDHD). ORDER (HDHD))
+(CALL(HDHD). ORDER (HDHD). CALL(HAHBP). ORDER (HAHBP))).
CALL(SCFP1). CALL(SCFP2). CALL(SCHD). CALL(SCHBP). ORDER(ALL1). ORDER (ALL2).
((CALL(HBHBP). ORDER (HBHBP). CALL(HCHD). ORDER (HCHD))
+(CALL(HCHD). ORDER (HCHD). CALL(HBHBP). ORDER(HBHBP))). 0°;
911 = ORDER(HDHD). ((AmbA (HD). AmbAout. ORDER(ALLL). AmbB(SC). AmbBout. ORDER (HCHD). AmbA (R))
(8 (AmbB(ﬁ). AmbBout. ORDER(ALL1). AmbA(SC). AmbAout. ORDER(HCHD). AmBA(H_c))). AmbAin. AmbBin. §*;

HospitalA = - o _
ORDER(HAHBP). AmbC (HA). AmbCout. CALL(Arrivel). HA (Readyl). AmbCin. ORDER(ALL2). AmbC (SC).

AmbCout. ORDER (HBHBP). AmbC (HB). CALL(Arrive2). HA(Ready2). HA(Ready3). AmbCin. 9*;
HospitalB = CALL(4rrive3). HB(Ready1). ((AmbA in. AmbAout)®* (AmbBin. AmbBout)).
CALL(Arrives). HB(Ready2). ((AmbBin. AmbBout)®" (AmbAin. AmbAout)).

CALL(Arrive5). HB(Ready3). c(AmbAin. AmbAout)®* (AmbBin. AmbBout)) . 0*;
HospitalC = CALL(Arrive6). HC(Readyl). HC (Ready2). | (AmbB in. AmbBou el(AmbAin.AmbAout)).(Z)”;

AmbA = ((AmbA(HD). out911. inHouseD. getPHD2. out HouseD. CALL(Arrwe3). inHospitalB. put PHD2.
outHospitalB. AmbA(HC). inHouseC. getPHD1. out HouseC. CALL(Arrive3). inHospitalB. put PHD1
outHospitalB)®' (AmbA(SC). out911. inSchool. get PFP1. getPFP2. getPHD3. outSchool.

((CALL(Arrwed). inHospitalB. putPHD3. out HospitalB. CALL(Arrive6). inHospitalC. put PFP1. put PFP2.
outHospitalC) + (CALL(Arrive6). inHospitalC. putPFP1. put PFP2. out HospitalC. CALL (Arrived).
inHospitalB.put PHD3. outHospitalB))).in911. §*;

AmbB = ((AmbB(SC). out911. inSchool. get PFP1. get PFP2. get PHD3. out School. (CALL(Arrive4). inHospitalB.
putPHD3. out HospitalB. CALL(Arrwe6). inHospitalC. put PFP1. put PFP2. out HospitalC) + (CALL(Arrives).
inHospitalC. put PFP1. put PFP2. out HospitalC. CALL(Arrive4). inHospitalB. putPHD3. out HospitalB)))

@' (AmbB (HD). out911. inHouseD. getPHD2. out HouseD. CALL(Arrtve3). inHospitalB. put PHD2.
outHospitalB. AmbB(HC).inHouseC. getPHD1. out HouseC. CALL(Arrive3). inHospitalB. put PHD1
outHospitalB)).in911. 9%;

AmbC = AmbC(HA). outHospitlA. inHouseA. getPHBP1. outHouseA. CALL(Arrwel). inHospitalA. put PHBP1.

AmbC (SC). out HospitalA. inSchool. get PHBP3. out School. AmbC (HB). inHouseB. get PHBP2. out HouseB.
CALL(Arrwe2). inHospitalA. put PHBP2. put PHBP3. %;

HouseA = AmbC in. AmbC out. 9%;

HouseB = AmbC in. AmbC out. §%;

HouseC = (AmbA in. AmbA out)@l(AmbB in. AmbB out) 0%

HouseD = ((AmbA in. AmbA out)®*(AmbB in. AmbB out)).0%;

School = ((AmbB in. AmbB out)®1(AmbA in. AmbA out) .AmbC in. AmbC out. 9%;

PHBP1 = CALL(HAHBP). AmbC get. AmbC put. SurgeryA get. DoctorA1(Surgery). %;

PHBP2 = CALL(HBHBP). AmbC get. AmbC put. SurgeryA get. DoctorA2(Surgery). 0;

PHBP3 = CALL(SCHBP). AmbC get. AmbC put. SurgeryA get. DoctorA3(Surgery). 0;

PHD1 = CALL(HCHD). ((AmbA get. AmbA put)@" (AmbB get. AmbB put)). SurgeryB get. DoctorB1(Surgery). 6*;
PHD2 = CALL(HDHD). ((AmbA get. AmbA put)®* (AmbB get. AmbB put)) . SurgeryB get. DoctorB2(Surgery). 9*;
PHD3 = CALL(SCHD). ((AmbB get. AmbB put)@" (AmbA get. AmbA put)) . SurgeryB get. DoctorB3(Surgery). 0%;

PFP1 = CALL(SCHD). | (AmbB get. AmbB put)@*(AmbA get. AmbA put)). SurgeryC get. DoctorC1(Surgery). 9%;
PFP2 = CALL(SCHD). ({AmbB get. AmbB put @' (AmbA get. AmbA put)Y. SurgeryC get. DoctorC2(Surgery). 9*;

Fig. 6 8-Calculus Code for a Smart 10T for EMS

a5%

Fig. 7 ITL View of a Smart loT for EMS

4 Interpretation by Projection

This section shows how a system in a domain can be interpreted for its collective
behavior with respect to the behavior ontology of the domain. Here a smart loT for
EMS has been designed as an example, as Fig. 6 shows with a code for the example in
8-Calculus [7], which is a process algebra to specify the movements of business pro-
cesses in real-time environments with the special notion of movements over a concep-
tual geographical space. All the interactions among processes in the system are auto-
matically handled by the notion of loT.

41 SAVE

Fig. 7 shows the ITL view of the example in SAVE [7], which consists of the follow-
ing actors:

1) Patient (P<f’1'm>): 8 Patient Objects in 5 Places with the capacity of 1,1, 1, 1, 4.
2) Ambulance (Pém): 3 Ambulance with capacity of 1, 1, 3.
3) Hospital (H<33’3,5>): 3 Hospitals with capacity of 3, 3, 5.

Here, B(P<i1,1,1,4>’ﬁi,l,ayH(ss,s,s)) can be interpreted as an abstract behavior that 5

groups of Patients with capacities of 1, 1, 1, 1 and 4 are to be delivered by 3 Ambu-
lances with capacities of 1, 1 and 3 to 3 Hospitals with capacity of 3, 3, and 5.

F 1)

an

Fig. 8 The Raw Data for Behaviors from Simulation in SAVE

x® 7
S Il 2.

-
ADOxx Modelling Toolkit (prism) lﬁ -

“ e) mActor_Beh{"A1": "B1 B1 B2 B9", "A2": "B1 B1 B1 B2 B9", "A3": "B3
‘@ B589"} I}

Fig. 9 The Abstract Behaviors for Those in Fig. 8

4.2 Behaviors from Simulation

Fig. 8 shows the raw data of behaviors for the example from the simulation in SAVE.
These behaviors are abstracted by PRISM for SAVE, as shown in Fig. 10 and Fig. 11.

o

Fig. 11 The Projected Behaviors in the Bottom Lattice from Fig. 10

4.3 Projection to PRISM

Fig. 11 shows the projection of the abstract behaviors on the lattice for EMS in
PRISM. From the top to the bottom, the behaviors are organized as follows::

Ble(PMMA &113 335 { 9.1(P<12,1>'A€>’H<21,1>) (111)? A(l 111) 9.3(P<13>’A<g>’H<13>)}

where,
B (REy: A HEy)= (B (Rl AL HE)
Bua (s A i) ={Bes (Pl Af His)
Bus (B4 AG Hiy)= (B (P 4G)

where

B,)= 1B (R A H) B (P A)

B, (111 1) (B (P A% HY) Bua (P AT HY). Bus (R AT H)
Bﬁ-l("é»”%swH<13>):{Bs-1('°<§>'/*<s>'H<s>)}

5 Conclusion and Future research

This paper presented the PRISM tool, developed on the ADOxx Meta-Modeling Plat-
form, for a new method for knowledge engineering to model collective behaviours of
systems, based on Behavior Ontology. PRISM showed an innovative approach for
meta-modeling of domain knowledge and demonstrated the efficiency and effective-
ness of the approach for implementation and feasibility as a tool. The future research
includes developing other domain knowledge and their composition, as well as devel-
oping an open model tool for PRISM on ADOXxX.

Acknowledgment

This work was supported by Basic Science Research Programs through Space Core
Technology Development Program through the NRF (National Research Foundation
of Korea) funded by the Ministry of Science, ICT and Future Planning (NRF-
2014M1A3A3A02034792), and Basic Science Research Program through NRF fund-
ed by the Ministry of Education (NRF-2015R1D1A3A01019282).

References

1. W. Choi, Y. Choe, and M. Lee. A Reduction Method for Process and System Complexity
with Conjunctive and Complement Choices in a Process Algebra. Proceedings of 39" IEEE
COMPSAC/MVDM. July 2015.

2. Longbing Cao, Philip S.Yu. Edited, Behavior Computing: Modeling, Analysis, Mining and
Decision. Springer, 2012.

3. S.Woo, J. On, and M. Lee. An Abstraction Method for Mobility, and Interaction in Process
Algebra Using Behavior Ontology. 37" IEEE COMPSAC. July 2013.

4. W. Xing, O. Corcho, C. Goble, and M. Dikaiakos. Active Ontology: An Information Inte-
gration Approach for Highly Dynamic Information Sources. Europe Semantic Web Confer-
ence 2007 (ESWC-2007), Innsbruck, Austria. 2007.

5. Y. Choe and M. Lee. A Lattice Model to Verify Behavioral Equivalence. UKSim-AMSS
8th European Modelling Symposium. Oct 2014.

6. Y. Choe, W. Choi, G. Jeon and M. Lee. A Tool for Visual Specification and Verification
for Secure Process Movements. eChallenges e-2015. November 2015.

7. Y. Choe and M. Lee. 3-Calculus: Process Algebra to Model Secure Movements of Distrib-
uted Mobile Processes in Real-Time Business Application. 23rd European Conference on
Information Systems. April 2015.

8. S. Lee, Y. Choe, M. Lee. A Dual Method to Model 10T Systems. International Journal of
Mathematical Models and Methods in Applied Sciences. May 2016.

9. http://austria.omilab.org/psm/exploreprojects?param=explore

http://austria.omilab.org/psm/exploreprojects?param=explore

