
PRISM: A Knowledge Engineering Tool to Model

Collective Behaviors of Real-time IoT Systems

Maryam Rahmani, Junsup Song and Moonkun Lee

Chonbuk National University

567 Beakje-daero Deokjin-gu

Jeonju-si Jeonbuk 54896, Republic of Korea

e-mail:moonkun@jbnu.ac.kr

Abstract. This paper presents a knowledge engineering tool, called PRISM, to

model collective behaviors of real-time IoT systems. PRISM is developed on

the ADOxx Meta-Modeling Platform, in order to implement the new notion of a

domain engineering method, known as behavior ontology. In PRISM, the on-

tology can be constructed as follows: 1) All the collective behaviors for a do-

main are defined from active ontology, 2) the behaviors are formed in a quanti-

fiably abstracted lattice, called n:2-Lattice, and 3) a behavior ontology for the

domain can be constructed by merging the n:2-lattices into an integrated lattice.

Once the ontology is constructed, each system in the domain can be interpreted

with respect to the ontology or lattice. In the paper, the Emergency Medical

Service (EMS) domain and a smart IoT example for EMS are selected for mod-

eling and interpretation in PRISM. PRISM shows an innovative approach for

meta-modeling of domain knowledge as a tool.

Keywords: Collective Behavior; Behavior Ontology; PRISM; ADOxx; Lattice

1 Introduction

There are strong needs to represent system behaviors for each knowledge domain in

some collective patterns, especially using tools. However the needs are not easily

satisfied due to the following reasons:

1) There were the structural limitations caused by the size of system components

and the complexity of their interactions, as well as their composition, causing

state explosion [1].

2) There were no effective tools to model collective behaviors of systems with

the supporting meta-modeling platforms [2].

In order to satisfy the needs partially, this paper presents a tool, called PRISM, with

the following method and the meta-modeling support:

1) The method is based on a concept of behavior ontology [3]. The approach in

this paper extended the previous research [3] for implementation in PRISM.

The method solved the state explosion problem with abstracting behaviors.

2) PRSIM is developed on the ADOxx Meta-Modeling Platform [4] to implement

the method. The implementation demonstrates the feasibility of the method by

the meta-modeling tool.

Fig. 1 Overview of the Meta-Modeling Method in PRISM

The overview of the approach in PRISM is shown in the top white box of Fig. 1. It

consists of the following steps:

1) A class hierarchy of a domain is constructed based on Active Ontology [5],

where all the actors of a domain and their interactions are defined as classes

and relations, respectively.

2) All the collective behaviors of the domain are defined in regular expression,

where each behavior is defined as a sequence of interactions among actors.

The behaviors can be organized in a hierarchical order based on their inclusion

relations, forming a special lattice, called n:2-Lattice [6].

3) All the behaviors are quantifiably abstracted with a notion of cardinality and

capacity for actors.

4) A behavior ontology for the domain is constructed by merging the n:2-lattices

into an integrated lattice, based on quantifiably common actors.

Once a final lattice for a domain is constructed, it can be used to interpret the collec-

tive behaviors of systems in the domain as follows:

1) Behavior extraction from SAVE [7]: The shaded box below the white box

just mentioned in Fig. 1 shows the method for specification and verification

of operational and secure requirements for a system with called δ-calculus

[8] and GTS Logic [9]. The method is also implemented on the ADOxx Me-

ta-Modeling Platform as a tool, called SAVE. As a result of the simulation

from the specification, the behavior of the system can be extracted. However

we don’t know yet what the collective pattern of each behavior is.

2) Behavior projection and interpretation to PRISM: As shown in the right

white box of the figure, we can project the behaviors of the system, after re-

structuring the raw behaviors into the abstract ones, and interpret the behav-

iors in the patterns of the lattice as the behavior ontology for the system.

In order to demonstrate the feasibility of the approach, the Emergency Medical Ser-

vice (EMS) domain is selected for modeling its collective behaviors in PRISM. Fur-

ther a smart IoT example for EMS is selected to interpret its collective behaviors on

PRISM by projection and interpretation. The EMS example shows that the method is

very effective and efficient to construct a hierarchy of collective behaviors in the lat-

tice as the behavior ontology, as well as projection and interpretation. Compare to

other approaches for modelling behaviors and analyzing patterns of the behaviors [2],

our method can be considered to be innovative in representing the behaviors with

collective patterns by the n:2-Lattice. Further PRISM demonstrates the efficiency and

effectiveness of feasibility of the method as a tool.

This paper is organized as follows. Section 2 overviews the PRISM tool. Section 3

shows the approach in steps with the EMS domain in PRISM. Section 4 shows behav-

iors for the smart IoT example for EMS simulated in SAVE and their projection to

PRISM for interpretation. Finally, conclusions and future research will be made in

Section 5.

Fig. 2 The Views and Architecture of PRISM on ADOxx

2 PRISM

As stated, the PRISM tool is developed on the ADOxx Meta-Modeling Platform [5].

ADOxx was originally developed and released by the OMiLAB of the University of

Vienna, and is known as one of the most innovative meta-modeling tools to model

many modeling methods. There are total 42 open models developed on ADOxx and

open to the public for non-profit applications [9].

The architecture and modeling views of PRISM is shown in Fig. 2. The graphical

representations of the models in PRISM are designed by the ADOxx Development

Tool, and the procedures of its components are built from the ADOxx libraries. The

detailed algorithms of the procedures are programmed in the ADOScript language.

The figure shows three system layers of PRISM implemented on ADOxx as follows:

1) ADOxx Platform: ADOxx provides three layers to implement mechanisms and

algorithms for PRISM as follows:

i) First Layer: Beside the pre-defined functionality, which is a basic set of

features most commonly used by modeling tools, it is possible to config-

ure the basic features for modeling definitions.

ii) Second Layer: To implement scripts like the stated ADOScripts, it pro-

vides approximately 400 APIs for the ADOxx components. Those APIs

enable the generation of objects, editing of their properties, etc.

iii) Third Layer: There are three ways of interactions with ADOxx from out-

side. The simple interaction is by exporting and importing XML files.

2) PRISM Components: PRISM uses those of the second layer of ADOxx to im-

plement the basic components of PRISM as follows:

i) Regular Behavior Generator (RBG): This is an engine to generate a set

of regular, that is, basic behaviors from Active Ontology.

ii) Abstract Behavior Generator (ABG): This is an engine to abstract a set

of the regular behaviors from i) with respect to cardinality and capacity.

iii) Behavior Lattice Generator (BLG): This is an engine to generate a be-

havior lattice from the abstract behaviors from ii).

iv) Behavior Lattice Merger (BLM): This is an engine to merge two behav-

ior lattices into an integrated lattice with respect to the same main actors

with different cardinalities. It forms a lattice of lattices.

v) Behavior Interpreter (BI): This is an engine to input behaviors from

SAVE and project them onto the final lattice of its domain for interpre-

tation in the collective behavior patterns of the domain in the form of the

lattice.

3) PRISM Modelers: PRISM uses the functionalities of the first layer of ADOxx to

implement the graphical elements and attributes of its graphic models as follows:

i) Class Diagram (CD): The model to define the architecture of classes for

a domain.

ii) Active Diagram (AD): The model to define the active ontology of the

domain from i).

iii) Regular Behavior (BB): The model to define a set of regular behaviors

from Active Ontology from ii).

iv) Abstract Behavior (AB): The model for a set of abstract behaviors gen-

erated automatically from that of basic behaviors by ABG from ii) of 2).

v) Behavior Lattice (BL): The model for a behavior lattice generated auto-

matically from a set of abstract behaviors by BLG from iii) of 2).

vi) Merged Lattice of Behavior Lattices (mLBL): The model for a lattice of

behavior lattices merged automatically from a set of behavior lattices by

BLM from iv) of 2).

vii) Interpreted Behavior Lattice (iBL): The model for a behavior lattice

with interpretation of behaviors of a system in the domain of the lattice

projected automatically by BI from v) of 2).

Section 3 shows how PRISM works in steps, with the EMS domain example.

3 Approach

This section presents each step of modeling in PRISM with the EMS domain. EMS is

the system where, in case of traffic and car accidents, the drivers or patients from the

accidents are transported to proper medical institutes under control of the 911.

Fig. 3 Active Ontology for EMS Domain

3.1 Step 1: Active Ontology

The first step is to design active ontology for the EMS example. Active ontology con-

sists of classes and subclasses in the domain, including their interactions.

The EMS domain example contains four classes: Ambulance (A), Patient (P), and

Place (PL). Note that Place contains Location (L) and Hospital (H) as subclasses.

Fig. 3 shows the active diagram for the active ontology as follows:

1) Actors: There are 4 different kinds of actors:

i) Patient (P): Person to be transported.

ii) Ambulance (A): Actor to deliver Patient.

iii) Location (L): Place for Patient to be delivered from.

iv) Hospital (H): Place for Patient to be delivered to.

2) Interactions: There are 6 kinds of interactions:

i) a1 = <A, L>: Ambulance goes to Location

ii) a2 = <P, A>: Patient gets on Ambulance.

iii) a3 = <A, H>: Ambulance goes to Hospital.

iv) a4 = <A, P>: Patient gets off Ambulance.

v) a5 = <P, H>: Patient goes to Hospital.

3.2 Step 2: Regular Behaviors

In this step, all the collective behaviors are defined as a sequence of interactions from

Step 1. In order to quantify the behaviors, all behaviors are divided into two kinds of

behaviors: the one with one main actor and the others with other actors. In the other

words, there are different views by different actors. For example, in EMS there are

four kind of actors, represented as B(L, A, H, P). Then, there are two types of behav-

iors for Ambulance as a main actor, represented as B(n, 1, n, n) for 1 Ambulance and

B(n, n, n, n) for n Ambulances.

There are total 9 behaviors possible for EMS, defined in regular expression as follows:

1)
1 1, 2, 3, 4, 5B a a a a a : An Ambulance goes to a Place, gets a Patient on, goes to a

Hospital, and gets the Patient off, who goes into the Hospital.

2)
2 1, 2, 3, 4, 5B a a a a a

 : A repeating behavior of B1.

3)
3 1, 2 , 3, 4, 5B a a a a a

 : An Ambulance goes to a Place, gets Patients on,

goes to a Hospital, and gets the Patients off, who go into the Hospital. And it

repeats itself.

4)
4 1, 2 , 3, 4, 5B a a a a a

 : An Ambulance goes to a Place, gets Patients on,

and goes to Hospitals to get some of the Patients off until all the Patients off,

each group of who goes into the Hospital. And it repeats itself.

5)
5 1, 2 , 3, 4, 5 | 3, 4, 5B a a a a a a a a

 : A repeating behavior of B3 and B4,

that is, B1 through B4.

6)
6 1, 2 , 3, 4, 5B a a a a a

 : An Ambulance goes to Places to get Patients on,

goes to a Hospital, and gets the Patients off, who go to the Hospital. And it re-

peats itself.

7)
7 1, 2 , 3, 4, 5B a a a a a

 : A repeating behavior that an Ambulance

goes to Places to get Patients on, goes to Hospitals, and gets some of the Pa-

tients off to each Hospital until all the Patients get off, each group of who goes

to the Hospital. And it repeats itself.

8)
8 1, 2 , 3, 4, 5 | 3, 4, 5B a a a a a a a a

 : A repeating behavior of B6 and B7, that

is, B1 through B7 except B3, B4 and B5.

9)

9

3, 4, 5 |
1, 2 , |

3, 4, 5

3, 4, 5 |
1, 2 ,

3, 4, 5

a a a
a a

a a a
B

a a a
a a

a a a

: A repeating behavior of B2, B5 or B8.

Fig. 4 A Part of Basic Behavior Specifications in PRISM

Fig. 4 shows a part of the BB model for EMS specified in PRISM.

3.3 Step 3: Abstract Behaviors

The next step is to abstract the regular behaviors from Step 2. The abstraction is based

on the number of main actors and the numbers of actors collaborating with their de-

gree of interactions. Formally Abstract Behavior is the behavior that has been quanti-

tatively abstracted with respect to cardinality and capacity of actors. The cardinality

implies the number of actors involved in behavior, and the capacity does the number

of possible interactions among the actors. The behavior is denoted by
1(, ,)nB c c ,

where each c is an actor,
1 , , x

x

p p
c , where x and

1, , xp p are the cardinality and ca-

pacity of c.

For EMS, the behaviors for 1 Ambulance from Step 2 can be abstracted as follows:

1) 1 1 1

1 1 1 1 1
, ,B B P A H

2)
1 1

1

2 2 1, , , ,
, ,

i k

i k

x x z z
B B P A H

3) 1 1 1

3 3 , ,
x y z

B B P A H

4)
1

1 1

4 4 1 , ,1
, ,

k

k

x y
B B P A H

5)
1

1 1

5 5 , ,
, ,

k

k

x y z z
B B P A H

6)
1

1 1

6 6 1 , ,1
, ,

i

i

y k
B B P A H

7)
1 1

1

7 6 11 , ,1 1 , ,1
, ,

i k

i kB B P A H

8)
1 1

1

8 8 1 , ,1 , ,
, ,

i k

i k

y z z
B B P A H

9)
1 1

1

9 8 , , , ,
, ,

i k

i k

yx x z z
B B P A H

Further, abstract behaviors for n Ambulances can be defined as follows:

1)
1

1 1

11 11 , ,
, ,

j

j

x zy y
B B P A H

2) 11

1

12 12 , ,, ,
, ,

kj

j k

x z zy y
B B P A H

3) 1 1

1

13 13 , , , ,
, ,

i j

j k

zx x y y
B B P A H

4) 1 11

1

14 14 , , , ,, ,
, ,

i kj

j k

x x z zy y
B B P A H

Fig. 5 Behavior Lattices for EMS B(n, 1, n, n) & B(n, n, n, n)

3.4 Step 4: Behavior Lattice (BL)

Lattice can be constructed from Step 3, based on the inclusion relations among behav-

iors. Formal definitions for the lattice are reported in [5].

Figure 5 shows two lattices, where the bottom is for 1 Ambulance and the top one is
for n Ambulances. Note that the inclusion relations among the lattices are generated
automatically from the regular behaviors from Step 2 by RLG of PRISM.

3.5 Step 5: Behavior Ontology (BO)

Last step is to merge the lattices from Step 4 into one integrated lattice of lattices,
known as Behavior Ontology. Figure 5 shows the final output of Step 4: the lattice,
known as mLBL, consisting of the lattice for 1 Ambulance and the lattice for n Am-
bulances. As stated, it is generated by BLM of PRISM.

𝐶𝑆 = ((𝐶𝐴𝐿𝐿(𝐻𝐴𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐴𝐻𝐵𝑃̅̅̅̅̅̅̅̅). 𝐶𝐴𝐿𝐿(𝐻𝐷𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐷𝐻𝐷̅̅̅̅̅̅̅))

 +(𝐶𝐴𝐿𝐿(𝐻𝐷𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐷𝐻𝐷̅̅̅̅̅̅̅). 𝐶𝐴𝐿𝐿(𝐻𝐴𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐴𝐻𝐵𝑃̅̅̅̅̅̅̅̅))).

 𝐶𝐴𝐿𝐿(𝑆𝐶𝐹𝑃1). 𝐶𝐴𝐿𝐿(𝑆𝐶𝐹𝑃2). 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷). 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿1̅̅ ̅̅ ̅̅). 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿2̅̅ ̅̅ ̅̅).

 ((𝐶𝐴𝐿𝐿(𝐻𝐵𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐵𝐻𝐵𝑃̅̅̅̅̅̅̅̅). 𝐶𝐴𝐿𝐿(𝐻𝐶𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷̅̅̅ ̅̅ ̅̅))

 +(𝐶𝐴𝐿𝐿(𝐻𝐶𝐻𝐷). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷̅̅̅ ̅̅ ̅̅). 𝐶𝐴𝐿𝐿(𝐻𝐵𝐻𝐵𝑃). 𝑂𝑅𝐷𝐸𝑅(𝐻𝐵𝐻𝐵𝑃̅̅̅̅̅̅̅̅))). ∅∞ ;

911 = 𝑂𝑅𝐷𝐸𝑅(𝐻𝐷𝐻𝐷). ((𝐴𝑚𝑏𝐴(𝐻𝐷̅̅ ̅̅). 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿1). 𝐴𝑚𝑏𝐵(𝑆�̅�). 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷). 𝐴𝑚𝑏𝐴(𝐻𝐶̅̅̅))

 ⨁1 (𝐴𝑚𝑏𝐵(𝐻𝐷̅̅ ̅̅). 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿1). 𝐴𝑚𝑏𝐴(𝑆�̅�). 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐻𝐶𝐻𝐷). 𝐴𝑚𝐵𝐴(𝐻𝐶̅̅̅))). 𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑖𝑛. ∅∞;

𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴 =
𝑂𝑅𝐷𝐸𝑅(𝐻𝐴𝐻𝐵𝑃). 𝐴𝑚𝑏𝐶(𝐻𝐴̅̅̅). 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒1). 𝐻𝐴(𝑅𝑒𝑎𝑑𝑦1̅̅̅̅̅̅̅̅). 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝑂𝑅𝐷𝐸𝑅(𝐴𝐿𝐿2). 𝐴𝑚𝑏𝐶(𝑆�̅�).

 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. 𝑂𝑅𝐷𝐸𝑅(𝐻𝐵𝐻𝐵𝑃). 𝐴𝑚𝑏𝐶(𝐻𝐵̅̅ ̅̅). 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒2). 𝐻𝐴(𝑅𝑒𝑎𝑑𝑦2̅̅̅̅̅̅̅̅). 𝐻𝐴(𝑅𝑒𝑎𝑑𝑦3̅̅̅̅̅̅̅̅). 𝐴𝑚𝑏𝐶 𝑖𝑛. ∅∞;

𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝐵 = 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒3). 𝐻𝐵(𝑅𝑒𝑎𝑑𝑦1̅̅̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)).

 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒4). 𝐻𝐵(𝑅𝑒𝑎𝑑𝑦2̅̅̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)).

 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒5). 𝐻𝐵(𝑅𝑒𝑎𝑑𝑦3̅̅̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)) . ∅∞;
𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶 = 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒6). 𝐻𝐶(𝑅𝑒𝑎𝑑𝑦1̅̅̅̅̅̅̅̅). 𝐻𝐶(𝑅𝑒𝑎𝑑𝑦2̅̅̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)) . ∅∞ ;

𝐴𝑚𝑏𝐴 = ((𝐴𝑚𝑏𝐴(𝐻𝐷). 𝑜𝑢𝑡 911. 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐷. 𝑔𝑒𝑡 𝑃𝐻𝐷2. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐷. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒3̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷2.

 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐴𝑚𝑏𝐴(𝐻𝐶). 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐶. 𝑔𝑒𝑡 𝑃𝐻𝐷1. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒3̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷1

 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵)⨁1(𝐴𝑚𝑏𝐴(𝑆𝐶). 𝑜𝑢𝑡 911. 𝑖𝑛 𝑆𝑐ℎ𝑜𝑜𝑙. 𝑔𝑒𝑡 𝑃𝐹𝑃1. 𝑔𝑒𝑡 𝑃𝐹𝑃2. 𝑔𝑒𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝑆𝑐ℎ𝑜𝑜𝑙.

 ((𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒4̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒6̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2.

 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶) + (𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒6̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒4̅̅̅ ̅̅̅̅ ̅̅).

 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵))). 𝑖𝑛 911. ∅∞;

𝐴𝑚𝑏𝐵 = ((𝐴𝑚𝑏𝐵(𝑆𝐶). 𝑜𝑢𝑡 911. 𝑖𝑛 𝑆𝑐ℎ𝑜𝑜𝑙. 𝑔𝑒𝑡 𝑃𝐹𝑃1. 𝑔𝑒𝑡 𝑃𝐹𝑃2. 𝑔𝑒𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝑆𝑐ℎ𝑜𝑜𝑙. ((𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒4̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵.

 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒6̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶) + (𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒6̅̅̅ ̅̅̅̅ ̅̅).

 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝑝𝑢𝑡 𝑃𝐹𝑃1. 𝑝𝑢𝑡 𝑃𝐹𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒4̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷3. 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵)))

 ⨁1(𝐴𝑚𝑏𝐵(𝐻𝐷). 𝑜𝑢𝑡 911. 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐷. 𝑔𝑒𝑡 𝑃𝐻𝐷2. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐷. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒3̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷2.

 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝐴𝑚𝑏𝐵(𝐻𝐶). 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐶. 𝑔𝑒𝑡 𝑃𝐻𝐷1. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐶. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒3̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵. 𝑝𝑢𝑡 𝑃𝐻𝐷1

 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐵)). 𝑖𝑛 911. ∅∞ ;

𝐴𝑚𝑏𝐶 = 𝐴𝑚𝑏𝐶(𝐻𝐴). 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑙𝐴. 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐴. 𝑔𝑒𝑡 𝑃𝐻𝐵𝑃1. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐴. 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒1̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴. 𝑝𝑢𝑡 𝑃𝐻𝐵𝑃1.

 𝐴𝑚𝑏𝐶(𝑆𝐶). 𝑜𝑢𝑡 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴. 𝑖𝑛 𝑆𝑐ℎ𝑜𝑜𝑙. 𝑔𝑒𝑡 𝑃𝐻𝐵𝑃3. 𝑜𝑢𝑡 𝑆𝑐ℎ𝑜𝑜𝑙 . 𝐴𝑚𝑏𝐶(𝐻𝐵). 𝑖𝑛 𝐻𝑜𝑢𝑠𝑒𝐵. 𝑔𝑒𝑡 𝑃𝐻𝐵𝑃2. 𝑜𝑢𝑡 𝐻𝑜𝑢𝑠𝑒𝐵.
 𝐶𝐴𝐿𝐿(𝐴𝑟𝑟𝑖𝑣𝑒2̅̅̅ ̅̅̅̅ ̅̅). 𝑖𝑛 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝐴. 𝑝𝑢𝑡 𝑃𝐻𝐵𝑃2. 𝑝𝑢𝑡 𝑃𝐻𝐵𝑃3. ∅∞ ;

𝐻𝑜𝑢𝑠𝑒𝐴 = 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. ∅∞ ;

𝐻𝑜𝑢𝑠𝑒𝐵 = 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. ∅∞;

𝐻𝑜𝑢𝑠𝑒𝐶 = ((𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)) . ∅∞;

𝐻𝑜𝑢𝑠𝑒𝐷 = ((𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)) . ∅∞;

𝑆𝑐ℎ𝑜𝑜𝑙 = ((𝐴𝑚𝑏𝐵 𝑖𝑛. 𝐴𝑚𝑏𝐵 𝑜𝑢𝑡)⨁1(𝐴𝑚𝑏𝐴 𝑖𝑛. 𝐴𝑚𝑏𝐴 𝑜𝑢𝑡)) . 𝐴𝑚𝑏𝐶 𝑖𝑛. 𝐴𝑚𝑏𝐶 𝑜𝑢𝑡. ∅∞;

𝑃𝐻𝐵𝑃1 = 𝐶𝐴𝐿𝐿(𝐻𝐴𝐻𝐵𝑃̅̅̅̅̅̅̅̅). 𝐴𝑚𝑏𝐶 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐶 𝑝𝑢𝑡. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐴 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐴1(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;

𝑃𝐻𝐵𝑃2 = 𝐶𝐴𝐿𝐿(𝐻𝐵𝐻𝐵𝑃̅̅̅̅̅̅̅̅). 𝐴𝑚𝑏𝐶 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐶 𝑝𝑢𝑡. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐴 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐴2(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;

𝑃𝐻𝐵𝑃3 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐵𝑃̅̅̅̅ ̅̅̅ ̅). 𝐴𝑚𝑏𝐶 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐶 𝑝𝑢𝑡. 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐴 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐴3(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;

𝑃𝐻𝐷1 = 𝐶𝐴𝐿𝐿(𝐻𝐶𝐻𝐷̅̅̅ ̅̅ ̅̅). ((𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)⨁1(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)) . 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐵 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐵1(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;

𝑃𝐻𝐷2 = 𝐶𝐴𝐿𝐿(𝐻𝐷𝐻𝐷̅̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)⨁1(𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)) . 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐵 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐵2(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;

𝑃𝐻𝐷3 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)⨁1(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)) . 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐵 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐵3(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;

𝑃𝐹𝑃1 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)⨁1(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)) . 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐶 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐶1(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞;
𝑃𝐹𝑃2 = 𝐶𝐴𝐿𝐿(𝑆𝐶𝐻𝐷̅̅̅̅̅̅). ((𝐴𝑚𝑏𝐵 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐵 𝑝𝑢𝑡)⨁1(𝐴𝑚𝑏𝐴 𝑔𝑒𝑡. 𝐴𝑚𝑏𝐴 𝑝𝑢𝑡)) . 𝑆𝑢𝑟𝑔𝑒𝑟𝑦𝐶 𝑔𝑒𝑡. 𝐷𝑜𝑐𝑡𝑜𝑟𝐶2(𝑆𝑢𝑟𝑔𝑒𝑟𝑦). ∅∞ ;

Fig. 6 δ-Calculus Code for a Smart IoT for EMS

Fig. 7 ITL View of a Smart IoT for EMS

4 Interpretation by Projection

This section shows how a system in a domain can be interpreted for its collective

behavior with respect to the behavior ontology of the domain. Here a smart IoT for

EMS has been designed as an example, as Fig. 6 shows with a code for the example in

δ-Calculus [7], which is a process algebra to specify the movements of business pro-

cesses in real-time environments with the special notion of movements over a concep-

tual geographical space. All the interactions among processes in the system are auto-

matically handled by the notion of IoT.

4.1 SAVE

Fig. 7 shows the ITL view of the example in SAVE [7], which consists of the follow-
ing actors:

1) Patient (
5

1,1,1,1,4
P): 8 Patient Objects in 5 Places with the capacity of 1, 1, 1, 1, 4.

2) Ambulance (
3

1,1,3
A): 3 Ambulance with capacity of 1, 1, 3.

3) Hospital (
3

3,3,5
H): 3 Hospitals with capacity of 3, 3, 5.

Here,
5 3 5

1,1,1,1,4 1,1,3 3,3,5
(, ,)B P A H can be interpreted as an abstract behavior that 5

groups of Patients with capacities of 1, 1, 1, 1 and 4 are to be delivered by 3 Ambu-
lances with capacities of 1, 1 and 3 to 3 Hospitals with capacity of 3, 3, and 5.

Fig. 8 The Raw Data for Behaviors from Simulation in SAVE

Fig. 9 The Abstract Behaviors for Those in Fig. 8

4.2 Behaviors from Simulation

Fig. 8 shows the raw data of behaviors for the example from the simulation in SAVE.

These behaviors are abstracted by PRISM for SAVE, as shown in Fig. 10 and Fig. 11.

Fig. 10 The Projected Behaviors from Fig. 9 to the Lattice of the EMS Domain in PRISM

Fig. 11 The Projected Behaviors in the Bottom Lattice from Fig. 10

4.3 Projection to PRISM

Fig. 11 shows the projection of the abstract behaviors on the lattice for EMS in

PRISM. From the top to the bottom, the behaviors are organized as follows::

 5 3 5 2 2 3 3 1 1

16 9.1 9.2 9.31,1,1,1,4 1,1,3 3,3,5 1,1 1 1,1 1,1,1 1 1,1,1 3 3 3
(, ,) , , , , , , , ,A B CB P A H B P A H B P A H B P A H

where,

 2 2 2 2

9.1 2.11,1 1 1,1 1,1 1 1,1
, , , ,A AB P A H B P A H ,

 3 3 3 3

9.2 2.21,1,1 1 1,1,1 1,1,1 1 1,1,1
, , , ,B BB P A H B P A H

 1 1 1 1

9.3 5.13 3 3 3 3 3
, , , ,C CB P A H B P A H

where,

 2 2 1 1 1 1

2.1 1.1 1.21,1 1 1,1 1 1 1 1 1 1
, , , , , , ,A A AB P A H B P A H B P A H

 3 3 1 1 1 1 1 1

2.2 1.3 1.4 1.51,1,1 1 1,1,1 1 1 1 1 1 1 1 1 1
, , , , , , , , , ,B B B BB P A H B P A H B P A H B P A H

 1 1 1 1

5.1 3.13 3 3 3 3 3
, , , ,C CB P A H B P A H

5 Conclusion and Future research

This paper presented the PRISM tool, developed on the ADOxx Meta-Modeling Plat-

form, for a new method for knowledge engineering to model collective behaviours of

systems, based on Behavior Ontology. PRISM showed an innovative approach for

meta-modeling of domain knowledge and demonstrated the efficiency and effective-

ness of the approach for implementation and feasibility as a tool. The future research

includes developing other domain knowledge and their composition, as well as devel-

oping an open model tool for PRISM on ADOxx.

Acknowledgment

This work was supported by Basic Science Research Programs through Space Core

Technology Development Program through the NRF (National Research Foundation

of Korea) funded by the Ministry of Science, ICT and Future Planning (NRF-

2014M1A3A3A02034792), and Basic Science Research Program through NRF fund-

ed by the Ministry of Education (NRF-2015R1D1A3A01019282).

References

1. W. Choi, Y. Choe, and M. Lee. A Reduction Method for Process and System Complexity

with Conjunctive and Complement Choices in a Process Algebra. Proceedings of 39th IEEE

COMPSAC/MVDM. July 2015.

2. Longbing Cao, Philip S.Yu. Edited, Behavior Computing: Modeling, Analysis, Mining and

Decision. Springer, 2012.

3. S. Woo, J. On, and M. Lee. An Abstraction Method for Mobility, and Interaction in Process

Algebra Using Behavior Ontology. 37th IEEE COMPSAC. July 2013.

4. W. Xing, O. Corcho, C. Goble, and M. Dikaiakos. Active Ontology: An Information Inte-

gration Approach for Highly Dynamic Information Sources. Europe Semantic Web Confer-

ence 2007 (ESWC-2007), Innsbruck, Austria. 2007.

5. Y. Choe and M. Lee. A Lattice Model to Verify Behavioral Equivalence. UKSim-AMSS

8th European Modelling Symposium. Oct 2014.

6. Y. Choe, W. Choi, G. Jeon and M. Lee. A Tool for Visual Specification and Verification

for Secure Process Movements. eChallenges e-2015. November 2015.

7. Y. Choe and M. Lee. δ-Calculus: Process Algebra to Model Secure Movements of Distrib-

uted Mobile Processes in Real-Time Business Application. 23rd European Conference on

Information Systems. April 2015.

8. S. Lee, Y. Choe, M. Lee. A Dual Method to Model IoT Systems. International Journal of

Mathematical Models and Methods in Applied Sciences. May 2016.

9. http://austria.omilab.org/psm/exploreprojects?param=explore

http://austria.omilab.org/psm/exploreprojects?param=explore

