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Abstract. A recently introduced master program offering a Business Modelling 
track in the authors' university includes several courses that touch on conceptual 
modelling topics. They cover both modelling with well-known languages 
(UML, BPMN etc.), as well as the development of domain-specific modelling 
software driven by targeted requirements. Consequently, the study program 
aims to support two complementary modeller perspectives: (i) of the modellers 
who adopt "de jure" or "de facto" standards that are reusable across domains; 
(ii) of the modellers who prefer to have a modelling tool tailored for specific 
needs and their preferred domain-specific abstraction. While the first perspec-
tive is quite common and well served in Business Information Systems curricu-
la, the second perspective requires a well-designed minimal case capable of fos-
tering deep understanding of a modelling method's building blocks and of the 
methodology needed to tailor or evolve those building blocks towards satisfying 
explicit requirements. The paper reports on such a teaching experience and pro-
vides insights regarding its learning design rationale. 

Keywords: Teaching Conceptual Modelling, Domain-specific Modelling, Met-
amodelling, Agile Modelling Method Engineering 

1 Introduction 

The goal of the paper is to reflect on the teaching experience and the design rationale 
of a teaching case developed for a conceptual modelling study track covering both 
practitioner-oriented and research-oriented topics. The study program was proposed 
to align the local Business Information Systems curriculum to various study programs 
around Europe, and to benefit from the teachers' experience and interactions with the 
community of experts giving lectures in the Next Generation Enterprise Modelling 
(NEMO) Summer School series [1]. The intent was to compensate for a weak repre-
sentation of conceptual modelling topics in Romanian university programs, as the 
majority of investigated programs present such topics as ancillary to courses on Data-
bases (e.g., Entity-Relationships Diagrams) or Software Engineering courses (e.g., 
UML). Rather than having conceptual modelling perceived as subordinated to soft-
ware design concerns, the goal of this track was to position conceptual modelling 



under the Design Science paradigm [2], emphasising its specific artefacts, practices 
and the general value for models as results of knowledge externalisation. 

The profile of the master students participating in the hereby discussed teaching 
experience is summarised as follows: 

Student background: The majority of students graduated a Business Information 
Systems (IS) program or a Computer Science (CS) program. A minority (<10%) 
graduated a Business Administration (BA) program. 

Student experience with modelling: The majority (IS/CS graduates) used UML in 
MS Visio as means of graphically documenting their bachelor thesis. ER diagrams 
were used in their Database courses. The BA graduates prefer to use Powerpoint dia-
gramming – typically for organisational charts and process diagrams - due to the lack 
of constraints ("the freedom of drawing"). The students have a general intuition that 
not all models are correct, but take a rather intuitive approach in assessing this. 

Student understanding of modelling goals: All students agree that the main goal 
of modelling is to support human understanding of a system design through graphical 
documentation, as alternative to written text which is "tiring to read". Some CS grad-
uates are aware about the "code generation" use case but have never employed it. 

Considering this profile, a showcase modelling method was designed and em-
ployed as a teaching artefact, in order to emphasise its engineering process in a tutori-
al style and to widen the perception on the role and means of conceptual modelling. 
This experience and its learned lessons are further shared in this paper. The remainder 
of the paper is structured as follows: Section 2 will decompose this initial state of 
affairs in more granular teaching challenges and concerns. Section 3 will discuss 
methodological aspects. Section 4 will overview the modelling method employed as a 
teaching artefact. Section 5 will summarise findings via a SWOT analysis. Section 6 
will comment on related works. The paper ends with conclusions. 

2 Teaching Challenges 

The initial state of affairs (summarised in the Introduction) is decomposed in Table 1 
in several directly targeted "issues" that needed to be alleviated, considering the initial 
understanding of students about certain key concepts. 

3 Methodology 

3.1 Teaching Methodology 

Overarching the identified teaching challenges, the tutorial's design rationale is also 
driven by several targeted meta-qualities: (i) minimalism to ensure quick comprehen-
sion, requiring only trivial domain expertise, (ii) domain-specificity manifesting in all 
building blocks of the engineered method, (iii) an evolutionary approach highlighting 
how each method building block can evolve under an assumption of evolving re-
quirements, (iv) a constructivist approach [3] aiming to stimulate lateral thinking and 



 

the generation of understanding by forcing a clash between what is already known 
(preconceptions about modelling means, goals and purposes) and what is revealed 
through hands-on experience. 

Table 1. Targeted teaching challenges 

Issue A: Understanding the goals and value of "modelling at large" 
Initial assessment: Limited understanding of modelling goals. All students agree that the goal of model-
ling is graphical documentation of system design or requirements. Some CS graduates are aware about 
the "code generation" goal (they can point to the UML Class Diagram, as a potential source for code 
generation). Inability to provide a simple Knowledge Management (KM) scenario that can use models. 
Teaching goal: To shift the student understanding from "modelling is drawing" to "modelling is 
knowledge representation". To raise awareness on the Knowledge Management paradigm. 

Issue B: Understanding the modelling method building blocks 
Initial assessment: Weak understanding of distinctions between notation, syntax, semantics, modelling 
procedure, modelling method, modelling functionality. Students intuitively distinguish between syntax 
("pertaining to form") and semantics ("pertaining to meaning"). 
Teaching goal: To clarify these distinctions. 

Issue C: Understanding the semantics of "semantics" 
Initial assessment: Confusion regarding the distinction between human-oriented semantics and ma-
chine-oriented semantics. When asked "who is the main consumer of models – humans or machines?" - 
the majority answers "humans" ("machines do not need diagrams"). 
Teaching goal: To clarify the different semantic levels of diagrammatic models. 

Issue D: Understanding model "correctness" 
Initial assessment: Weak understanding of model qualities and model-to-reality relation. When asked 
"what is a correct model?" the common answer is "a model that accurately represents reality". 
Teaching goal: To reveal the axiomatic principle that "all models are wrong, but some are better than 
others" (according to the model's purpose). 

Issue E: Understanding the application domain of conceptual modelling 
Initial assessment: Weak understanding of the application domain for conceptual modelling. When 
asked "where is conceptual modelling applied?" the common answer is "software engineering". 
Teaching goal: To emphasise the general value of models as means of knowledge externalisation inde-
pendent of domain (i.e., adaptable to any application domain). 

Issue F: Understanding agility at "modelling method level" 
Initial assessment: A recurring idea that all modelling should be done with UML "because it is a stand-
ard". General lack of awareness of the Design Science paradigm and of the fact that modelling soft-
ware/languages/methods are artefacts subjected to design/development processes. 
Teaching goal: To shift the student understanding that a modelling language is a given invariant to-
wards the understanding that agility principles from software development can be easily transferred to 
modelling method implementation. To raise awareness on the Design Science paradigm. 

Issue G: Low awareness of conceptualisation activities  
Initial assessment: The general perception is that a modelling language is a set of graphical symbols to 
which meaning is assigned, rather than a conceptualisation whose elements have visual representation. 
When asked to make a presentation about BPMN, the students' discourse starts from the "numerous 
graphical symbols" rather than from the set of concepts. 
Teaching goal: To create awareness on conceptualisation efforts that stand behind a modelling method. 

 
By aggregating the teaching goals in Table 1, several high-level goals are formulated 
in Fig. 1(a) – these are the "targeted revelations" to be induced to students with re-
spect to established Information Systems paradigms: (i) establishing the role of a 
modelling method as a means of externalising "query-able" knowledge (and not only 
as support for graphical documentation or code generation); (ii) establishing the role 
of a modelling method as a Design Science artefact that can be tailored for a specific 
purpose/usefulness and is subjected to a specific engineering process involving both 



abstract conceptualisation and implementation of usable tooling; (iii) introducing the 
"agility" quality of a modelling method; (iv) establishing the non-fixed application 
scope of modelling methods (complementing the popular use in software design). 
 

  
Fig. 1. The paradigms grounded in the proposed teaching case (a) and  

the orthogonal criteria for incrementing the teaching artefact (b) 

Process-wise, the teaching starts by presenting the modelling method building blocks 
cf. the definition of [4]. Then a sample modelling method is implemented incremen-
tally on the ADOxx platform [5], in small increments that are immediately imitated 
by students. These increments are accompanied by a theoretical exposé following a 
bottom-up approach: small building blocks are explained as they are implemented in 
an additive manner. At the end, students are taken back to the "modelling method" 
concept, to reflect back on how they worked on its building blocks. Finally, more 
complex tools are shown as exemplary outcomes to which students can easily relate – 
e.g., the BEE-UP tool [6-7] allowing modelling with UML, BPMN, EPC, Petri Nets, 
ER and a few extensions on those languages. When using this tool, students are able 
to extrapolate from their own implementation experience and, at the same time, they 
come in contact with a concrete case of applying the Agile Modelling Method Engi-
neering (AMME) framework [8]. 

3.2 Teaching Artefact Co-Development Methodology 

The learning effort is supported by the agile (incremental, iterative and requirements-
driven) implementation of a usable artefact – a modelling tool that deploys a domain-
specific modelling method designed for knowledge acquisition (i.e., models form a 
knowledge base which can be queried and processed by machines). Two orthogonal 
criteria are thus guiding the incremental development, as highlighted in Fig. 1b: (i) 
gradually adding building blocks to the modelling method; (ii) agilely evolving each 
building block in relation to satisfy some assumed changing requirements. 

The additive and the evolving development are intended to reflect the two manifes-
tations of agility as stated by the AMME framework: (i) artefact agility and (ii) meth-
odological agility. The first means that a (partial) separation of concerns should be 
achieved by decomposing the modelling method artefact in constituents – notation, 



 

syntax, semantics, functionality and modelling procedure (derived from the definition 
in [4]). The latter means that all these constituents can evolve, in order to address 
changing requirements according to the iterations of the AMME methodology, with 
each iteration including both conceptualisation efforts and implementation/testing. 

4 The Showcase Modelling Method 

4.1 The Selected Application Domain 

The application domain of Cooking was selected for several reasons: (i) to provide a 
uniform starting point for all students regardless of their background and modelling 
experience; (ii) to defuse the dominant perception that modelling activities are subor-
dinated to software engineering, as means of graphical documentation for which a 
"drawing tool" is sufficient; (iii) to show what domain-specificity means without re-
quiring extensive domain expertise; (iv) to be able to make analogies with business 
process modelling. 

The assumed case is that of a Food Establishment whose manager decides to apply 
a KM strategy of collecting recipes from the hired chefs in the form of a model base 
that can be later consulted, analysed and transferred to other human resources (cooks, 
future chefs). The role of modelling in KM was discussed in deep detail in [9]. A 
Cooking Recipe modelling method and tool are required to externalise knowledge that 
otherwise would be captured in unstructured, natural language form. The goal of code 
generation is out of the discussion; the goal of graphical documentation is fulfilled but 
is not central; the key purpose being the accumulation of a knowledge base that can 
be processed by machines (queried, at the very least). 

4.2 Initial Method Implementation 

The conceptualisation effort starts with imagining how a diagram describing a cook-
ing recipe should look. Intuitive mock-ups such as the one in Fig. 2 (bottom) are cre-
ated on blackboard or with Powerpoint, then the types for each diagram element are 
collected in the "language terminology" layer (top of Fig. 2). The mock-up shows a 
cooking recipe described as a linear chain of cooking steps, with the Start and Stop 
clearly distinguished. To enrich the KM value of a recipe (i.e., semantic richness), 
each step is attached to requirements for an ingredient, a tool and/or further documen-
tation support (e.g., a video showing how to perform the step). 

After the types for mock-up elements are collected at metamodel level, the notion 
of (abstract) syntax is introduced and minimally exemplified through domain and 
range constraints for visual connectors – i.e., what types of elements should be con-
nected by each type of connector. Students are already accustomed from natural lan-
guage grammar (or from programming "syntax errors") that syntax governs the struc-
ture of sentences/statements and the order of their constituents. In conceptual model-
ling, the domain, range (and cardinality, to be introduced later) dictate the order in 
which elements of different types can be connected in models. Unlike natural lan-
guage where words are linearly juxtaposed (e.g., left-to-right), in models the elements 



are connected in a graph expanding in all 2D directions. Model elements are present-
ed as "words", models as "phrases", and the metamodel as "the language terminology" 
("vocabulary", "dictionary"). The analogy with natural language facilitates to bring all 
students to a common level of understanding without resorting to the specialised jar-
gon of metamodelling (as homework, they are also asked to organise the metamodel 
as a UML class diagram). 
 

 
Fig. 2. A diagram mock-up and its governing terminology 

Since some relations may connect multiple types of elements, those types are unified 
under common generalised superclasses presented as "uninstantiated concepts" - i.e., 
concepts that will not be directly instantiated in models (i.e., no graphical symbol will 
be devised for them) but are nonetheless useful as a generalisation mechanism. They 
allow, for example, the SEQUENCE relation to connect elements of any of the types 
START, STOP or COOKING STEP. 

The next building block that is introduced is the notation (concrete syntax) – i.e., a 
graphical symbol is attached to each concept and relation. Syntax and notation are 
implemented in tandem to obtain a usable modelling tool, based on the ADOxx plat-
form [5]. The implemented tool (using minimalistic and quite arbitrarily chosen 
shapes) allows students to create models such as the one shown in Fig. 3. During im-
plementation, awareness is raised on the need to communicate human-oriented mean-
ing by incorporating labels in graphical symbols, thus establishing a bridge towards 
the next building block - semantics. 

Semantics is dominantly understood as the meaning that a user assigns to (or un-
derstands from) a model, primarily through labels. However, this is a drastically re-
ductive viewpoint that stands behind the "modelling is drawing" understanding. Even 
under this understanding, (i) graphical shapes should not be arbitrary shapes (see the 



 

works of Moody on notational qualities [10]); (ii) they should dynamically communi-
cate some changes in meaning (i.e., unlike in pen-and-paper diagramming, a model 
can communicate properties through notational dynamics and interactivity). 

  

Fig. 3. Model example showcasing the implementation of the initial iteration 

As we push towards the "modelling is knowledge representation" perspective, seman-
tics should become machine-readable (i.e., query-able, at least). This is induced via 
two means: (i) through syntax, since the connectivity constraints are dictated by some 
semantic rationale; (ii) through conceptional schemata – i.e., the meaning of elements 
in the language terminology should rely not only on labels and graphics, but also on 
machine-readable concept descriptions in the form of properties prescribed for the 
domain-specific characterisation that we need to capture. 

Fig. 4(a) shows an explicit example of such a schema for one of the language ter-
minology concepts (COOKING STEP), thus introducing a clear notion of domain-
specificity manifesting on semantic level. Based on the machine-readable semantics 
(induced by either conceptional schema or by syntax), model query functionality can 
be developed. A simple query builder is automatically generated by ADOxx (Fig. 4(b) 
and Fig. 4(c)) and additional functionality is implementable with the help of its inter-
nal programming environment (ADOScripts). 

Finally, the last building block of a modelling method – the procedure is intro-
duced as a human-oriented (documented or assisted) process of creating models that 
are adequate for some targeted purpose. This also creates the opportunity of discuss-
ing the notion of correctness, emphasising the following: 

• the relativity of model correctness to purpose – i.e., a process simulation algorithm 
would require more constraints than the model query functionality, and possibly 
even more concepts (e.g., decisions) or properties (e.g., probabilities);  

• the variety of means for enforcing correctness: (i) at interaction level (i.e., when 
the modellers tries to create an invalid element); (ii) at saving time (i.e., a global 
check is applied only when saving); (iii) through fully customised functionality 



(e.g., checking properties of the conceptional schemata); (iv) through procedural 
guidance (i.e., leaving the user interaction unconstrained but providing assistance 
and documentation). 
 

 

Fig. 4. Conceptional schema of COOKING STEP instantiated for the "Prepare Dough" step (a), 
model query that uses this schema (b) and model query that uses only the syntax (c)  

4.3 Agilely Evolved Method Implementation 

The agility quality for modelling methods is introduced in tight relation with that of 
modelling requirements – i.e., requirements that are specifically targeted to the men-
tioned building blocks. This section only briefly suggests several increments driven 
by assumed requirements. Table 2 summarises these requirements and the associated 
increments, while Fig. 5 shows how the evolved version of the modelling language 
looks after these increments are applied. 

 
Fig. 5. Model examples according to the evolved version of the modelling language 



 

Table 2. Requirements for evolving the modelling method 

Requirement Solution 
"Construct overload" means that semantic distinctions 
are not mapped on visual distinctions. In the current 
state of the language, the same relation 
(REQUIREMENT) is used to connect the ingredient, 
the tool and the support documentation. Distinction is 
ensured by the targeted element type, but not by the 
relation, which is generic for all target types. The 
disadvantage can be perceived in the model query in 
Fig. 4c – the query is not be able to distinguish 
meaning based solely on the connector. 

The relations between a cooking step and its ingredients, 
tools or documentation are differentiated. This distinction 
may be ensured either by (i) specialising the 
REQUIREMENT relation for each type of required thing or 
by (ii) replacing some of its specialisations with hyperlink 
(see next row). 

There's a risk of visual cluttering even in simple 
models like Fig. 3, due to the numerous 
REQUIREMENT connectors. 

A separation of concerns can be obtained by splitting the 
modelling language in two types of models: one that de-
scribes strictly the recipe (order of steps) and one that cata-
logues the resources required for recipes. Consequently, the 
REQUIREMENT visual connector will be replaced by 
hyperlinks that communicate relations on an interaction level 
(and through visual anchors rather than connectors). 

The DOCUMENTATION concept was created to 
offer concrete documents (videos, Web pages, PDFs 
etc.) that describe how to perform a certain cooking 
step. Therefore it makes more sense to use addressa-
ble documents directly linked to model elements. 

The DOCUMENTATION concept will be completely re-
moved from the language terminology. Instead, a dedicated 
hyperlink will be added to the COOKING STEP concept. 

Functionality to compute total ingredient cost is 
needed, based on prices and quantities required along 
a cooking recipe model. 

Prices may be added to the conceptional schema of 
INGREDIENT, but quantity is not a property of ingredients, 
it is a property of the relation between COOKING STEP and 
INGREDIENT. Since we decided above that this relation will 
not be a visual connector anymore, but a hyperlink, a tabular 
property is necessary to attach attributes to the hyperlink. 
Once the new properties are made available and filled with 
values, a menu item will be added to perform the required 
calculation with the help of the internal scripting language of 
ADOxx (and the procedure will be updated to teach users 
how to use it). 

Domain-specificity, which currently manifests on a 
semantic level, should also be reflected in notation.  

The modeller should have the freedom of selecting preferred 
icons for the required tools or ingredients. Domain-specific 
information, based on the properties in the conceptional 
schema, should be communicated through visual cues and 
hyperlinks that are interactive directly on the elements' 
notation. 

5 Findings 

Table 3 reflects on the teaching goals formulated in Table 1 and indicates the explicit 
means of pursuing them, directly illustrated and commented upon during the students' 
hands-on experience discussed in the previous sections. In the following, a SWOT 
analysis summarises the reported experience and its learned lessons: 

Strengths: The proposed modelling method has the following teaching qualities: 
(i) minimalism and ease of implementation (reduced repetitive tasks); (ii) it reveals 
the notion of modelling method as a Design Science artefact; (iii) it is detached from 
software engineering and is domain-specific without requiring prior domain expertise; 
(iv) it relies on free tooling towards deploying a usable result in which students can 
relate their modelling effort to the design decisions on which it is based.  

Weaknesses: When presenting their own homework projects, all students reported 
process-centric methods. This is due to the behavioural focus of popular modelling 



languages (BPMN, Petri Nets, EPC etc.), which is also central to the showcase meth-
od example. A false impression was created, that any modelling method should depict 
behaviour. It is therefore necessary to complement the showcase method with others 
that share its meta-qualities while avoiding behaviour modelling (i.e., limited to rules-
centric or dependency-centric model types) in order to further push the lateral think-
ing that is stimulated through this teaching case. 

Table 3. Specific means of addressing the teaching challenges 

Issue A: Understanding the goals and value of "modelling at large" 
Approach: Emphasising model queries in contrast with "models as graphics", as means of granularly 
retrieving the knowledge externalised in model form. Emphasising the dynamic user experience of 
modelling, as distinguished from pen-and-paper static diagramming. 

Issue B: Understanding the modelling method building blocks 
Approach: Instilling a gradual "revelation by example" approach, as each building block is introduced 
separately and evolved additively. 

Issue C: Understanding the semantics of "semantics" 
Approach: Distinguishing explicitly between human interpretation (label-based or graphics-based) and 
machine interpretation (based on conceptional schemata and their editable properties to support model 
queries) 

Issue D: Understanding "model correctness" 
Approach: Revealing a multitude of means for ensuring correctness relative to the purpose of models: 
(i) metamodel constraints vs. programmatic constraints, (ii) UI event-based checking (during modelling 
actions) vs. global model checking, (iii) syntactic constraints vs. semantic constraints. 

Issue E: Understanding the application domain of conceptual modelling 
Approach: Targeting an application domain far detached from software engineering concerns (and 
revealing that software engineering is itself an application domain). 

Issue F: Understanding agility at "modelling method level" 
Approach: Taking an iterative and incremental approach to deploying a modelling method while em-
phasising its status as a requirements-oriented Design Science artefact. 

Issue G: Low awareness on conceptualisation activities  
Approach: Creating awareness on the conceptualisation phases leading to the modelling software im-
plementation. 

 
Opportunities: By decoupling conceptual modelling from software engineering, 

students are stimulated towards lateral thinking and the ability to devise and use mod-
elling methods for domain-specific goals (e.g., business model evaluation, ser-
vice/value designs). They can transfer their expertise and learned lessons to arbitrary 
other Business Administration domains (accounting, marketing, management), to 
develop modelling methods for student projects or theses that are not necessarily sub-
ordinated to business informatics. 

Threats: Preconceptions and a narrow end-user perspective pose default resistance 
against the notion of modelling method agility and domain-specificity. A particular 
threat is raised by how conceptual modelling is introduced to students as subordinated 
to software development goals and processes. Common practices around the local 
industry also show (i) a limited goal of models as graphical documentation (lack of 
awareness on the notions of user-centric modelling goals and modelling require-
ments); (ii) limited practice and understanding of modelling methods (e.g., Power-
point drawings with UML shapes rather than UML modelling per se); (iii) lack of 
awareness on conceptualisation efforts and design rationale underlying any modelling 
method. 



 

6 Background and Related Works 

As the discussed teaching goals indicate, the work at hand contributes to devising 
effective means for teaching conceptual modelling as a design paradigm for 
knowledge capture rather than as a practice subordinated to popular use cases or ap-
plication domains (e.g., software engineering). 

The challenge of "how can conceptual modelling education be improved?" is be-
come more relevant in recent years – see the position statements in the panel discus-
sion summarised by [11]: "Supportive means such as text books, case examples are 
hardly available. In many cases teaching may boil down to an art being passed on to 
students. [...] (basic) courses are dominated by the coding exercise, i.e., students ef-
forts in mastering simulation software, or, to a lesser degree, statistics associated with 
model elements or outputs. Hence little time is left for Conceptual Modelling. Some 
people may even say little time is “required” as case examples often boil down to 
close reading rather than modelling." 

The proposed teaching case aims to stimulate design thinking as a necessity for any 
conceptual modelling effort, while also fostering creativity in the sense discussed by 
[12] in the context of wicked systems. The showcase method was created after study-
ing or acquiring experience with previous teaching cases relying on ADOxx imple-
mentations [13-14]. The previous experience was hereby refined to reveal aspects 
pertaining to (i) Knowledge Management; (ii) Design Science; (iii) agility of method 
building blocks; (iv) domain-specific modelling requirements. 

The authors of [15] also share a masters-level teaching experience regarding con-
ceptual modelling for a narrow domain – however, their discourse relies on quantified 
(mathematical) means. The author of [16] focuses on assessing, based on logs of 
modelling events, how students perform modelling tasks with well-known methods. 
Our focus is rather on giving a complete control over the modelling method, so that 
students can shift their perspective from that of an end user towards understanding the 
effort of conceptualising modelling means and constraints, while also reflecting on 
the design rationale. 

7 Conclusions 

The paper reported on the teaching experience and design rationale aimed to establish 
a strong foundation for Business Information Systems master students in understand-
ing the modelling method concept from multiple perspectives – as a Design Science 
artefact; as means of knowledge externalisation; as an evolvable artefact, adaptable to 
any domain-specificity; as having a usable manifestation in the form of modelling 
software. A showcase modelling method for Cooking Recipes was analysed through 
the lens of the Agile Modelling Method Engineering framework. The teaching goals 
and means to achieve those goals were analysed in a granular way, relative to the 
starting state of affairs (initial student understanding and profile). Future work will 
refine the discussed artefact towards non-behavioural types of models in order to 
further generalise the learned lessons. 
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