
Engineering the Cooking Recipe Modelling Method:
a Teaching Experience Report

Robert Andrei Buchmann, Ana-Maria Ghiran

Business Informatics Research Centre,
 Faculty of Economic Sciences and Business Administration,

 Babeş-Bolyai University, Cluj Napoca, Romania
{robert.buchmann,anamaria.ghiran@econ.ubbcluj.ro}

Abstract. A recently introduced master program offering a Business Modelling
track in the authors' university includes several courses that touch on conceptual
modelling topics. They cover both modelling with well-known languages
(UML, BPMN etc.), as well as the development of domain-specific modelling
software driven by targeted requirements. Consequently, the study program
aims to support two complementary modeller perspectives: (i) of the modellers
who adopt "de jure" or "de facto" standards that are reusable across domains;
(ii) of the modellers who prefer to have a modelling tool tailored for specific
needs and their preferred domain-specific abstraction. While the first perspec-
tive is quite common and well served in Business Information Systems curricu-
la, the second perspective requires a well-designed minimal case capable of fos-
tering deep understanding of a modelling method's building blocks and of the
methodology needed to tailor or evolve those building blocks towards satisfying
explicit requirements. The paper reports on such a teaching experience and pro-
vides insights regarding its learning design rationale.

Keywords: Teaching Conceptual Modelling, Domain-specific Modelling, Met-
amodelling, Agile Modelling Method Engineering

1 Introduction

The goal of the paper is to reflect on the teaching experience and the design rationale
of a teaching case developed for a conceptual modelling study track covering both
practitioner-oriented and research-oriented topics. The study program was proposed
to align the local Business Information Systems curriculum to various study programs
around Europe, and to benefit from the teachers' experience and interactions with the
community of experts giving lectures in the Next Generation Enterprise Modelling
(NEMO) Summer School series [1]. The intent was to compensate for a weak repre-
sentation of conceptual modelling topics in Romanian university programs, as the
majority of investigated programs present such topics as ancillary to courses on Data-
bases (e.g., Entity-Relationships Diagrams) or Software Engineering courses (e.g.,
UML). Rather than having conceptual modelling perceived as subordinated to soft-
ware design concerns, the goal of this track was to position conceptual modelling

under the Design Science paradigm [2], emphasising its specific artefacts, practices
and the general value for models as results of knowledge externalisation.

The profile of the master students participating in the hereby discussed teaching
experience is summarised as follows:

Student background: The majority of students graduated a Business Information
Systems (IS) program or a Computer Science (CS) program. A minority (<10%)
graduated a Business Administration (BA) program.

Student experience with modelling: The majority (IS/CS graduates) used UML in
MS Visio as means of graphically documenting their bachelor thesis. ER diagrams
were used in their Database courses. The BA graduates prefer to use Powerpoint dia-
gramming – typically for organisational charts and process diagrams - due to the lack
of constraints ("the freedom of drawing"). The students have a general intuition that
not all models are correct, but take a rather intuitive approach in assessing this.

Student understanding of modelling goals: All students agree that the main goal
of modelling is to support human understanding of a system design through graphical
documentation, as alternative to written text which is "tiring to read". Some CS grad-
uates are aware about the "code generation" use case but have never employed it.

Considering this profile, a showcase modelling method was designed and em-
ployed as a teaching artefact, in order to emphasise its engineering process in a tutori-
al style and to widen the perception on the role and means of conceptual modelling.
This experience and its learned lessons are further shared in this paper. The remainder
of the paper is structured as follows: Section 2 will decompose this initial state of
affairs in more granular teaching challenges and concerns. Section 3 will discuss
methodological aspects. Section 4 will overview the modelling method employed as a
teaching artefact. Section 5 will summarise findings via a SWOT analysis. Section 6
will comment on related works. The paper ends with conclusions.

2 Teaching Challenges

The initial state of affairs (summarised in the Introduction) is decomposed in Table 1
in several directly targeted "issues" that needed to be alleviated, considering the initial
understanding of students about certain key concepts.

3 Methodology

3.1 Teaching Methodology

Overarching the identified teaching challenges, the tutorial's design rationale is also
driven by several targeted meta-qualities: (i) minimalism to ensure quick comprehen-
sion, requiring only trivial domain expertise, (ii) domain-specificity manifesting in all
building blocks of the engineered method, (iii) an evolutionary approach highlighting
how each method building block can evolve under an assumption of evolving re-
quirements, (iv) a constructivist approach [3] aiming to stimulate lateral thinking and

the generation of understanding by forcing a clash between what is already known
(preconceptions about modelling means, goals and purposes) and what is revealed
through hands-on experience.

Table 1. Targeted teaching challenges

Issue A: Understanding the goals and value of "modelling at large"
Initial assessment: Limited understanding of modelling goals. All students agree that the goal of model-
ling is graphical documentation of system design or requirements. Some CS graduates are aware about
the "code generation" goal (they can point to the UML Class Diagram, as a potential source for code
generation). Inability to provide a simple Knowledge Management (KM) scenario that can use models.
Teaching goal: To shift the student understanding from "modelling is drawing" to "modelling is
knowledge representation". To raise awareness on the Knowledge Management paradigm.

Issue B: Understanding the modelling method building blocks
Initial assessment: Weak understanding of distinctions between notation, syntax, semantics, modelling
procedure, modelling method, modelling functionality. Students intuitively distinguish between syntax
("pertaining to form") and semantics ("pertaining to meaning").
Teaching goal: To clarify these distinctions.

Issue C: Understanding the semantics of "semantics"
Initial assessment: Confusion regarding the distinction between human-oriented semantics and ma-
chine-oriented semantics. When asked "who is the main consumer of models – humans or machines?" -
the majority answers "humans" ("machines do not need diagrams").
Teaching goal: To clarify the different semantic levels of diagrammatic models.

Issue D: Understanding model "correctness"
Initial assessment: Weak understanding of model qualities and model-to-reality relation. When asked
"what is a correct model?" the common answer is "a model that accurately represents reality".
Teaching goal: To reveal the axiomatic principle that "all models are wrong, but some are better than
others" (according to the model's purpose).

Issue E: Understanding the application domain of conceptual modelling
Initial assessment: Weak understanding of the application domain for conceptual modelling. When
asked "where is conceptual modelling applied?" the common answer is "software engineering".
Teaching goal: To emphasise the general value of models as means of knowledge externalisation inde-
pendent of domain (i.e., adaptable to any application domain).

Issue F: Understanding agility at "modelling method level"
Initial assessment: A recurring idea that all modelling should be done with UML "because it is a stand-
ard". General lack of awareness of the Design Science paradigm and of the fact that modelling soft-
ware/languages/methods are artefacts subjected to design/development processes.
Teaching goal: To shift the student understanding that a modelling language is a given invariant to-
wards the understanding that agility principles from software development can be easily transferred to
modelling method implementation. To raise awareness on the Design Science paradigm.

Issue G: Low awareness of conceptualisation activities
Initial assessment: The general perception is that a modelling language is a set of graphical symbols to
which meaning is assigned, rather than a conceptualisation whose elements have visual representation.
When asked to make a presentation about BPMN, the students' discourse starts from the "numerous
graphical symbols" rather than from the set of concepts.
Teaching goal: To create awareness on conceptualisation efforts that stand behind a modelling method.

By aggregating the teaching goals in Table 1, several high-level goals are formulated
in Fig. 1(a) – these are the "targeted revelations" to be induced to students with re-
spect to established Information Systems paradigms: (i) establishing the role of a
modelling method as a means of externalising "query-able" knowledge (and not only
as support for graphical documentation or code generation); (ii) establishing the role
of a modelling method as a Design Science artefact that can be tailored for a specific
purpose/usefulness and is subjected to a specific engineering process involving both

abstract conceptualisation and implementation of usable tooling; (iii) introducing the
"agility" quality of a modelling method; (iv) establishing the non-fixed application
scope of modelling methods (complementing the popular use in software design).

Fig. 1. The paradigms grounded in the proposed teaching case (a) and

the orthogonal criteria for incrementing the teaching artefact (b)

Process-wise, the teaching starts by presenting the modelling method building blocks
cf. the definition of [4]. Then a sample modelling method is implemented incremen-
tally on the ADOxx platform [5], in small increments that are immediately imitated
by students. These increments are accompanied by a theoretical exposé following a
bottom-up approach: small building blocks are explained as they are implemented in
an additive manner. At the end, students are taken back to the "modelling method"
concept, to reflect back on how they worked on its building blocks. Finally, more
complex tools are shown as exemplary outcomes to which students can easily relate –
e.g., the BEE-UP tool [6-7] allowing modelling with UML, BPMN, EPC, Petri Nets,
ER and a few extensions on those languages. When using this tool, students are able
to extrapolate from their own implementation experience and, at the same time, they
come in contact with a concrete case of applying the Agile Modelling Method Engi-
neering (AMME) framework [8].

3.2 Teaching Artefact Co-Development Methodology

The learning effort is supported by the agile (incremental, iterative and requirements-
driven) implementation of a usable artefact – a modelling tool that deploys a domain-
specific modelling method designed for knowledge acquisition (i.e., models form a
knowledge base which can be queried and processed by machines). Two orthogonal
criteria are thus guiding the incremental development, as highlighted in Fig. 1b: (i)
gradually adding building blocks to the modelling method; (ii) agilely evolving each
building block in relation to satisfy some assumed changing requirements.

The additive and the evolving development are intended to reflect the two manifes-
tations of agility as stated by the AMME framework: (i) artefact agility and (ii) meth-
odological agility. The first means that a (partial) separation of concerns should be
achieved by decomposing the modelling method artefact in constituents – notation,

syntax, semantics, functionality and modelling procedure (derived from the definition
in [4]). The latter means that all these constituents can evolve, in order to address
changing requirements according to the iterations of the AMME methodology, with
each iteration including both conceptualisation efforts and implementation/testing.

4 The Showcase Modelling Method

4.1 The Selected Application Domain

The application domain of Cooking was selected for several reasons: (i) to provide a
uniform starting point for all students regardless of their background and modelling
experience; (ii) to defuse the dominant perception that modelling activities are subor-
dinated to software engineering, as means of graphical documentation for which a
"drawing tool" is sufficient; (iii) to show what domain-specificity means without re-
quiring extensive domain expertise; (iv) to be able to make analogies with business
process modelling.

The assumed case is that of a Food Establishment whose manager decides to apply
a KM strategy of collecting recipes from the hired chefs in the form of a model base
that can be later consulted, analysed and transferred to other human resources (cooks,
future chefs). The role of modelling in KM was discussed in deep detail in [9]. A
Cooking Recipe modelling method and tool are required to externalise knowledge that
otherwise would be captured in unstructured, natural language form. The goal of code
generation is out of the discussion; the goal of graphical documentation is fulfilled but
is not central; the key purpose being the accumulation of a knowledge base that can
be processed by machines (queried, at the very least).

4.2 Initial Method Implementation

The conceptualisation effort starts with imagining how a diagram describing a cook-
ing recipe should look. Intuitive mock-ups such as the one in Fig. 2 (bottom) are cre-
ated on blackboard or with Powerpoint, then the types for each diagram element are
collected in the "language terminology" layer (top of Fig. 2). The mock-up shows a
cooking recipe described as a linear chain of cooking steps, with the Start and Stop
clearly distinguished. To enrich the KM value of a recipe (i.e., semantic richness),
each step is attached to requirements for an ingredient, a tool and/or further documen-
tation support (e.g., a video showing how to perform the step).

After the types for mock-up elements are collected at metamodel level, the notion
of (abstract) syntax is introduced and minimally exemplified through domain and
range constraints for visual connectors – i.e., what types of elements should be con-
nected by each type of connector. Students are already accustomed from natural lan-
guage grammar (or from programming "syntax errors") that syntax governs the struc-
ture of sentences/statements and the order of their constituents. In conceptual model-
ling, the domain, range (and cardinality, to be introduced later) dictate the order in
which elements of different types can be connected in models. Unlike natural lan-
guage where words are linearly juxtaposed (e.g., left-to-right), in models the elements

are connected in a graph expanding in all 2D directions. Model elements are present-
ed as "words", models as "phrases", and the metamodel as "the language terminology"
("vocabulary", "dictionary"). The analogy with natural language facilitates to bring all
students to a common level of understanding without resorting to the specialised jar-
gon of metamodelling (as homework, they are also asked to organise the metamodel
as a UML class diagram).

Fig. 2. A diagram mock-up and its governing terminology

Since some relations may connect multiple types of elements, those types are unified
under common generalised superclasses presented as "uninstantiated concepts" - i.e.,
concepts that will not be directly instantiated in models (i.e., no graphical symbol will
be devised for them) but are nonetheless useful as a generalisation mechanism. They
allow, for example, the SEQUENCE relation to connect elements of any of the types
START, STOP or COOKING STEP.

The next building block that is introduced is the notation (concrete syntax) – i.e., a
graphical symbol is attached to each concept and relation. Syntax and notation are
implemented in tandem to obtain a usable modelling tool, based on the ADOxx plat-
form [5]. The implemented tool (using minimalistic and quite arbitrarily chosen
shapes) allows students to create models such as the one shown in Fig. 3. During im-
plementation, awareness is raised on the need to communicate human-oriented mean-
ing by incorporating labels in graphical symbols, thus establishing a bridge towards
the next building block - semantics.

Semantics is dominantly understood as the meaning that a user assigns to (or un-
derstands from) a model, primarily through labels. However, this is a drastically re-
ductive viewpoint that stands behind the "modelling is drawing" understanding. Even
under this understanding, (i) graphical shapes should not be arbitrary shapes (see the

works of Moody on notational qualities [10]); (ii) they should dynamically communi-
cate some changes in meaning (i.e., unlike in pen-and-paper diagramming, a model
can communicate properties through notational dynamics and interactivity).

Fig. 3. Model example showcasing the implementation of the initial iteration

As we push towards the "modelling is knowledge representation" perspective, seman-
tics should become machine-readable (i.e., query-able, at least). This is induced via
two means: (i) through syntax, since the connectivity constraints are dictated by some
semantic rationale; (ii) through conceptional schemata – i.e., the meaning of elements
in the language terminology should rely not only on labels and graphics, but also on
machine-readable concept descriptions in the form of properties prescribed for the
domain-specific characterisation that we need to capture.

Fig. 4(a) shows an explicit example of such a schema for one of the language ter-
minology concepts (COOKING STEP), thus introducing a clear notion of domain-
specificity manifesting on semantic level. Based on the machine-readable semantics
(induced by either conceptional schema or by syntax), model query functionality can
be developed. A simple query builder is automatically generated by ADOxx (Fig. 4(b)
and Fig. 4(c)) and additional functionality is implementable with the help of its inter-
nal programming environment (ADOScripts).

Finally, the last building block of a modelling method – the procedure is intro-
duced as a human-oriented (documented or assisted) process of creating models that
are adequate for some targeted purpose. This also creates the opportunity of discuss-
ing the notion of correctness, emphasising the following:

• the relativity of model correctness to purpose – i.e., a process simulation algorithm
would require more constraints than the model query functionality, and possibly
even more concepts (e.g., decisions) or properties (e.g., probabilities);

• the variety of means for enforcing correctness: (i) at interaction level (i.e., when
the modellers tries to create an invalid element); (ii) at saving time (i.e., a global
check is applied only when saving); (iii) through fully customised functionality

(e.g., checking properties of the conceptional schemata); (iv) through procedural
guidance (i.e., leaving the user interaction unconstrained but providing assistance
and documentation).

Fig. 4. Conceptional schema of COOKING STEP instantiated for the "Prepare Dough" step (a),
model query that uses this schema (b) and model query that uses only the syntax (c)

4.3 Agilely Evolved Method Implementation

The agility quality for modelling methods is introduced in tight relation with that of
modelling requirements – i.e., requirements that are specifically targeted to the men-
tioned building blocks. This section only briefly suggests several increments driven
by assumed requirements. Table 2 summarises these requirements and the associated
increments, while Fig. 5 shows how the evolved version of the modelling language
looks after these increments are applied.

Fig. 5. Model examples according to the evolved version of the modelling language

Table 2. Requirements for evolving the modelling method

Requirement Solution
"Construct overload" means that semantic distinctions
are not mapped on visual distinctions. In the current
state of the language, the same relation
(REQUIREMENT) is used to connect the ingredient,
the tool and the support documentation. Distinction is
ensured by the targeted element type, but not by the
relation, which is generic for all target types. The
disadvantage can be perceived in the model query in
Fig. 4c – the query is not be able to distinguish
meaning based solely on the connector.

The relations between a cooking step and its ingredients,
tools or documentation are differentiated. This distinction
may be ensured either by (i) specialising the
REQUIREMENT relation for each type of required thing or
by (ii) replacing some of its specialisations with hyperlink
(see next row).

There's a risk of visual cluttering even in simple
models like Fig. 3, due to the numerous
REQUIREMENT connectors.

A separation of concerns can be obtained by splitting the
modelling language in two types of models: one that de-
scribes strictly the recipe (order of steps) and one that cata-
logues the resources required for recipes. Consequently, the
REQUIREMENT visual connector will be replaced by
hyperlinks that communicate relations on an interaction level
(and through visual anchors rather than connectors).

The DOCUMENTATION concept was created to
offer concrete documents (videos, Web pages, PDFs
etc.) that describe how to perform a certain cooking
step. Therefore it makes more sense to use addressa-
ble documents directly linked to model elements.

The DOCUMENTATION concept will be completely re-
moved from the language terminology. Instead, a dedicated
hyperlink will be added to the COOKING STEP concept.

Functionality to compute total ingredient cost is
needed, based on prices and quantities required along
a cooking recipe model.

Prices may be added to the conceptional schema of
INGREDIENT, but quantity is not a property of ingredients,
it is a property of the relation between COOKING STEP and
INGREDIENT. Since we decided above that this relation will
not be a visual connector anymore, but a hyperlink, a tabular
property is necessary to attach attributes to the hyperlink.
Once the new properties are made available and filled with
values, a menu item will be added to perform the required
calculation with the help of the internal scripting language of
ADOxx (and the procedure will be updated to teach users
how to use it).

Domain-specificity, which currently manifests on a
semantic level, should also be reflected in notation.

The modeller should have the freedom of selecting preferred
icons for the required tools or ingredients. Domain-specific
information, based on the properties in the conceptional
schema, should be communicated through visual cues and
hyperlinks that are interactive directly on the elements'
notation.

5 Findings

Table 3 reflects on the teaching goals formulated in Table 1 and indicates the explicit
means of pursuing them, directly illustrated and commented upon during the students'
hands-on experience discussed in the previous sections. In the following, a SWOT
analysis summarises the reported experience and its learned lessons:

Strengths: The proposed modelling method has the following teaching qualities:
(i) minimalism and ease of implementation (reduced repetitive tasks); (ii) it reveals
the notion of modelling method as a Design Science artefact; (iii) it is detached from
software engineering and is domain-specific without requiring prior domain expertise;
(iv) it relies on free tooling towards deploying a usable result in which students can
relate their modelling effort to the design decisions on which it is based.

Weaknesses: When presenting their own homework projects, all students reported
process-centric methods. This is due to the behavioural focus of popular modelling

languages (BPMN, Petri Nets, EPC etc.), which is also central to the showcase meth-
od example. A false impression was created, that any modelling method should depict
behaviour. It is therefore necessary to complement the showcase method with others
that share its meta-qualities while avoiding behaviour modelling (i.e., limited to rules-
centric or dependency-centric model types) in order to further push the lateral think-
ing that is stimulated through this teaching case.

Table 3. Specific means of addressing the teaching challenges

Issue A: Understanding the goals and value of "modelling at large"
Approach: Emphasising model queries in contrast with "models as graphics", as means of granularly
retrieving the knowledge externalised in model form. Emphasising the dynamic user experience of
modelling, as distinguished from pen-and-paper static diagramming.

Issue B: Understanding the modelling method building blocks
Approach: Instilling a gradual "revelation by example" approach, as each building block is introduced
separately and evolved additively.

Issue C: Understanding the semantics of "semantics"
Approach: Distinguishing explicitly between human interpretation (label-based or graphics-based) and
machine interpretation (based on conceptional schemata and their editable properties to support model
queries)

Issue D: Understanding "model correctness"
Approach: Revealing a multitude of means for ensuring correctness relative to the purpose of models:
(i) metamodel constraints vs. programmatic constraints, (ii) UI event-based checking (during modelling
actions) vs. global model checking, (iii) syntactic constraints vs. semantic constraints.

Issue E: Understanding the application domain of conceptual modelling
Approach: Targeting an application domain far detached from software engineering concerns (and
revealing that software engineering is itself an application domain).

Issue F: Understanding agility at "modelling method level"
Approach: Taking an iterative and incremental approach to deploying a modelling method while em-
phasising its status as a requirements-oriented Design Science artefact.

Issue G: Low awareness on conceptualisation activities
Approach: Creating awareness on the conceptualisation phases leading to the modelling software im-
plementation.

Opportunities: By decoupling conceptual modelling from software engineering,

students are stimulated towards lateral thinking and the ability to devise and use mod-
elling methods for domain-specific goals (e.g., business model evaluation, ser-
vice/value designs). They can transfer their expertise and learned lessons to arbitrary
other Business Administration domains (accounting, marketing, management), to
develop modelling methods for student projects or theses that are not necessarily sub-
ordinated to business informatics.

Threats: Preconceptions and a narrow end-user perspective pose default resistance
against the notion of modelling method agility and domain-specificity. A particular
threat is raised by how conceptual modelling is introduced to students as subordinated
to software development goals and processes. Common practices around the local
industry also show (i) a limited goal of models as graphical documentation (lack of
awareness on the notions of user-centric modelling goals and modelling require-
ments); (ii) limited practice and understanding of modelling methods (e.g., Power-
point drawings with UML shapes rather than UML modelling per se); (iii) lack of
awareness on conceptualisation efforts and design rationale underlying any modelling
method.

6 Background and Related Works

As the discussed teaching goals indicate, the work at hand contributes to devising
effective means for teaching conceptual modelling as a design paradigm for
knowledge capture rather than as a practice subordinated to popular use cases or ap-
plication domains (e.g., software engineering).

The challenge of "how can conceptual modelling education be improved?" is be-
come more relevant in recent years – see the position statements in the panel discus-
sion summarised by [11]: "Supportive means such as text books, case examples are
hardly available. In many cases teaching may boil down to an art being passed on to
students. [...] (basic) courses are dominated by the coding exercise, i.e., students ef-
forts in mastering simulation software, or, to a lesser degree, statistics associated with
model elements or outputs. Hence little time is left for Conceptual Modelling. Some
people may even say little time is “required” as case examples often boil down to
close reading rather than modelling."

The proposed teaching case aims to stimulate design thinking as a necessity for any
conceptual modelling effort, while also fostering creativity in the sense discussed by
[12] in the context of wicked systems. The showcase method was created after study-
ing or acquiring experience with previous teaching cases relying on ADOxx imple-
mentations [13-14]. The previous experience was hereby refined to reveal aspects
pertaining to (i) Knowledge Management; (ii) Design Science; (iii) agility of method
building blocks; (iv) domain-specific modelling requirements.

The authors of [15] also share a masters-level teaching experience regarding con-
ceptual modelling for a narrow domain – however, their discourse relies on quantified
(mathematical) means. The author of [16] focuses on assessing, based on logs of
modelling events, how students perform modelling tasks with well-known methods.
Our focus is rather on giving a complete control over the modelling method, so that
students can shift their perspective from that of an end user towards understanding the
effort of conceptualising modelling means and constraints, while also reflecting on
the design rationale.

7 Conclusions

The paper reported on the teaching experience and design rationale aimed to establish
a strong foundation for Business Information Systems master students in understand-
ing the modelling method concept from multiple perspectives – as a Design Science
artefact; as means of knowledge externalisation; as an evolvable artefact, adaptable to
any domain-specificity; as having a usable manifestation in the form of modelling
software. A showcase modelling method for Cooking Recipes was analysed through
the lens of the Agile Modelling Method Engineering framework. The teaching goals
and means to achieve those goals were analysed in a granular way, relative to the
starting state of affairs (initial student understanding and profile). Future work will
refine the discussed artefact towards non-behavioural types of models in order to
further generalise the learned lessons.

Acknowledgment: The work presented in this paper is supported by the Romanian
National Research Authority through UEFISCDI, under grant agreement PN-III-P2-
2.1-PED-2016-1140.

References

1. NEMO Summer School Series, http://nemo.omilab.org/2017/
2. Hevner, A. R., March, S. T., Park, J., Ram, S.: Design Science in Information Systems

Research, MIS quarterly 28(1):75–105 (2004).
3. Richardson, V.: Constructivist Teaching and Teacher Education: Theory and Practice. In

Richardson, V. (ed.): Constructivist Teacher Education: Building a World of New Under-
standings, pp. 3–14. Routledge (1997)

4. Karagiannis, D., Kühn, H.: Metamodeling Platforms, In: Bauknecht, K., Min Tjoa, A.,
Quirchmayr, G. (eds.), Proceedings of EC-Web 2002 – DEXA 2002, Aix-en-Provence,
France, LNCS 2455, p. 182, Springer (2002)

5. BOC GmbH, The ADOxx metamodelling platform – reference webpage.
http://www.adoxx.org/live.

6. Karagiannis, D., Buchmann, R. A., Burzynski, P., Reimer, U., Walch, M.: Fundamental
Conceptual Modeling Languages in OMiLAB. In:Karagiannis, D., Mayr, H. C., Mylopou-
los, J. (eds.) Domain-specific Conceptual Modelling, pp. 3-30, Springer (2016)

7. OMiLAB, Bee-Up download page, http://austria.omilab.org/psm/content/bee-up/info
8. Karagiannis, D.: Agile Modeling Method Engineering. In: Karanikolas, N., Akoumianakis,

D., Mara, N., Vergados, D., Xenos, M. (eds.) Proceedings of PCI 2015, pp. 5-10, ACM
(2015)

9. Karagiannis, D., Buchmann, R. A., Walch, M.: How can diagrammatic conceptual model-
ling support knowledge management? In: Proceedings of ECIS 2017, paper 101, AIS
(2017)

10. Moody, D.: The physics of notations: towards a scientific basis for constructing visual no-
tations in software engineering. In: IEEE Transactions on Software Engineering, 35 (5):
756-777 (2009)

11. van der Zee, D. J., Kotiadis, K., Tako, A.A., Pidd, M., Balci, O., Tolk, A., Elder, M., Panel
discussion: education on conceptual modeling for simulation – challenging the art, In: Pro-
ceedings of the 2010 Winter Simulation Conference, IEEE, pp. 290-304 (2010)

12. Hawryszkiewycz, I., Pradhan, S., Agarwal, R.: Design Thinking as a Framework for Fos-
tering Creativity in Management and Information Systems Teaching Programs. In: The
19th Pacific Asia Conference on Information Systems (PACIS 2015), pp. 5–9, AIS (2015)

13. Bork, D., Fill, H. G., Karagiannis, D., Miron, E. T., Tantouris, N., Walch, M., Conceptual
Modelling for Smart Cities: a Teaching Case, Interaction Design & Architectures
27(Winter):10-27 (2015)

14. Bork, D., Buchmann, R., Hawryszkiewycz, I., Karagiannis, D., Tantouris, N., Walch, M.:
Using Conceptual Modeling to Support Innovation Challenges in Smart Cities, In: Pro-
ceedings of IEEE 14th Int. Conf. On Smart City, IEEE, pp. 1317-1324 (2016)

15. Muller, G.: Teaching conceptual modeling at multiple system levels using multiple views,
Procedia CIRP 21, Elsevier, pp. 58-63 (2014)

16. Snoeck, M.: Conceptual modelling: how to do it right? Tutorial presented at the 11th Int.
Conf. on Research Challenges in Information Science (RCIS 2017), IEEE, pp. 19 (2017)

	1 Introduction
	2 Teaching Challenges
	3 Methodology
	3.1 Teaching Methodology
	3.2 Teaching Artefact Co-Development Methodology

	4 The Showcase Modelling Method
	4.1 The Selected Application Domain
	4.2 Initial Method Implementation
	4.3 Agilely Evolved Method Implementation

	5 Findings
	6 Background and Related Works
	7 Conclusions
	References

