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Abstract. Applying 3D di�erential operators to extract point land-
marks from medical images generally su�ers from false detections. A
considerable number of these false detections is caused by neighboring
structures that are included in the region-of-interest (ROI) speci�ed by
the observer. The main contributions of this paper are two di�erent ap-
proaches to reducing false detections resulting from neighboring struc-
tures. First, we present a statistical di�erential approach to selecting a
suitable ROI size automatically. Second, we propose a di�erential ap-
proach to incorporating prior knowledge of the intensity structure at a
landmark. Also, to cope with anisotropic voxel sizes in estimating partial
derivatives, we implemented a computationally e�cient scheme based
on cubic B-spline image interpolation. Experimental results based on
3D MR and CT images of the human head are presented.
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1 Introduction

Anatomical landmarks are useful features for a wide spectrum of applications
in medical image analysis. More speci�cally, we are interested in 3D point land-
marks of the human head, which can be used for point-based elastic image reg-
istration. Here, prominent landmarks are, e.g., the tips of the lateral ventricles,
the tip of the external occipital protuberance, or the saddle points at the zy-
gomatic bones. However, manually extracting such landmarks from images is
generally very tedious and often prone to error. Consequently, automating land-
mark extraction is of central interest. To this end, computationally e�cient 3D
di�erential operators for point landmark detection were introduced [1],[2]. These
operators employ only �rst order partial derivatives of the intensity function and
hence are relatively robust w.r.t. noise (see [3] for a comparative performance
analysis of various di�erential operators for landmark detection). We apply our
operators within a semi-automatic procedure: (i) the observer determines the
landmark position only roughly, (ii) a di�erential operator is applied within a
region-of-interest (ROI) to detect landmark candidates, and (iii) the observer
selects the best candidate. However, this procedure generally su�ers from false
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detections caused by neighboring structures that are included in the ROI. The
main contributions of this paper are two di�erent approaches to reducing false
detections resulting from neighboring structures. First, we address the problem
of selecting a suitable ROI size that enables reliable landmark detection but
excludes neighboring structures. We present a statistical di�erential approach
to selecting a suitable ROI size automatically (Sec. 2). Second, we present a
di�erential approach to incorporating prior knowledge of the intensity structure
at a landmark. Detected candidates with an inconsistent intensity structure are
rejected automatically (Sec. 3). Also, to cope with anisotropic voxel sizes in es-
timating partial derivatives, we implemented a computationally e�cient scheme
based on cubic B-spline image interpolation (Sec. 4). Experimental results based
on 3D MR and CT images of the human head demonstrate the e�cacy of our
approaches in reducing false detections (Sec. 5).

2 Automatically selecting a suitable ROI size
The observer determines the position of the landmark only roughly. At this po-
sition, a ROI is placed where the di�erential operators are applied to detect
landmarks. Usually, a �xed ROI size is used. Because of this, however, neigh-
boring structures are often included in the ROI, which gives rise to additional
detections. We propose an approach to automatically selecting a suitable ROI
size, based on a 3D di�erential approach developed for re�ned landmark local-
ization [4]. With this di�erential edge intersection approach, tangent planes are
de�ned to locally approximate the surface at a landmark. The tangent planes
are intersected to estimate the landmark position. This approach can be used
for ROI size selection by taking the statistical uncertainty of the position esti-
mate as a criterion for the consistency of the present intensity structure w.r.t.
the expected surface geometry at the landmark (e.g., a tip). Preliminary results
based on a 2D version of the approach were reported in [5].

Suppose we have placed a cubic ROI of width w, say, at the manually de-
termined position. Let x�w denote the position estimate from the 3D di�erential
edge intersection approach [4]. The localization uncertainty of x�w is given by

the covariance matrix, �w = �2
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rg(xi)rg(xi)T

�
�1

; where �2
"
is a data-

dependent noise term and rg(xi) denotes the intensity gradient at xi. The sum
index i addresses all voxels within the ROI. A scalar measure for the localization
uncertainty is the determinant of the covariance matrix, Uw = det(�w) (gener-
alized variance). Exploiting the uncertainty Uw as a function of w, our strategy
for selecting the optimal ROI size is as follows (see [5] for details): We start with
a user-speci�ed minimal ROI size (e.g., w = 7 voxels). If the ROI does not cap-
ture enough surface information to reliably estimate the landmark position, we
expect that Uw is high. Hence, taking into account more image information by
enlarging the ROI, we expect Uw to decrease. However, if neighboring structures
�nally begin to interfere, we expect a signi�cant increase in Uw, which suggests
that further enlarging the ROI is not useful. In our implementation, we detect
such a signal change by requiring that (a) Uw increases and (b) the relative spa-
tial variation of the position estimate exceeds a threshold. Finally, we select the
`optimal' ROI size based on minimal uncertainty.



3 Incorporating prior knowledge of the intensity
structure at a landmark

We take advantage of prior knowledge of the intensity structure at a landmark
to impose additional constraints for accepting a detected candidate. In an ap-
plication, the user generally knows the landmark type (e.g., tip or saddle point)
as well as the imaging modality. Here, we distinguish between tips and saddle
points. Additionally, we distinguish between tips of dark and bright structures
w.r.t. the background. To classify these structures, we exploit the curvature
properties of the isointensity surface at a detected candidate.

Suppose we have detected a point xd on the surface of an anatomical struc-
ture. Let K denote the Gaussian curvature and H denote the mean curvature
of the isointensity surface at xd (for details on computing di�erential measures
of isointensity surfaces, we refer to, e.g., [6],[7]). Exploiting the sign of K; we
distinguish between tips (K > 0) and saddle points (K < 0). Exploiting the sign
of H, we further distinguish between tips of dark (H < 0) and bright (H > 0)
structures w.r.t. the background. The candidate is rejected if the present classi-
�cation is inconsistent with the expected intensity structure.

4 Coping with anisotropic voxel sizes in estimating
partial derivatives

Our approaches described above require partial derivatives of the intensity func-
tion. Usually, the derivatives are calculated by applying sampled Gaussian deriv-
ative �lters. However, problems generally arise when dealing with anisotropic
data. Then, the �lter sizes have to be adapted, which can result in instabilities.
To cope with anisotropic voxel sizes, we implemented a computationally e�cient
scheme based on cubic B-spline image interpolation, following the work in [8].
With this approach, the partial derivatives are calculated based on the recon-
structed continuous signal. Since the B-spline basis functions are separable, we
only describe the 1D case and briey point out the extension to 3D.

Let ĝ(x) denote the cubic B-spline interpolated intensity function. Sup-
pose the sampling distance is �x (in mm), i.e., the spatial variable in ĝ(x) is
given in �x units. To further smooth ĝ(�), we apply a Gaussian �lter G�(x) =
1=(
p
2��) exp(�x2=(2�2)), which we also represent in terms of cubic B-splines

as Ĝ�(x). To take into account the di�erent coordinate scalings, the Gaussian
is rescaled by adapting the standard deviation � (in mm) to �0 = � � 1mm=�x.
The whole computational chain for calculating the derivatives at the points of
the discrete image can be expressed by convolving the B-spline coe�cients of
ĝ(x) with a discrete �lter. This �lter is derived from (a) the B-spline coe�cients
of Ĝ�0(x), (b) the �nite di�erence operator, (c) the discrete B-spline, and (d) a
normalization constant depending on �x. The extension to 3D consists of three
1D convolutions in x�, y�, and z�direction with such a discrete �lter. Hence,
calculating the derivatives this way has the same complexity as `conventional'
derivative calculation. The only additional computational burden lies in com-
puting the B-spline coe�cients of the image.



5 Experimental results

We applied our approaches to 3D synthetic images and 3D tomographic images.
Here, we study the e�cacy of our approaches in reducing false detections in
extracting anatomical landmarks frommedical images. Exemplarily, we consider
the tip of the external occipital protuberance (MC5e), the tip of the left frontal
horn of the ventricular system (MC6l), and the saddle point at the left zygomatic
bone (MC15l). We report on experiments with a 3D T1-weighted MR image
(256�256�120 voxels, voxel resolution 0:86�0:86�1:2mm3) and a 3D CT image
(320�320�87 voxels, voxel resolution 0:63�0:63�1mm3). To detect landmarks,
the di�erential operator Op3 = det(N)=tr(N) was used [2]. Here, N denotes the

averaged dyadic product of the intensity gradient, N = rgrgT , and det(�) and
tr(�) denote the determinant and the trace of a matrix, resp. The scale of the
Gaussian derivative �lters was set to � = 1:0mm (which, however, was adapted
according to the voxel resolution). Averaging the gradient was done within a
neighborhood of 5 � 5 � 5 voxels. Landmark candidates were determined by
searching for local maxima of the operator responses in 3�3�3 neighborhoods.
No thresholds were applied to the operator responses.

Reducing false detections by selecting a suitable ROI size First, we manually
determined the landmark positions. Then, a ROI was placed at those positions.
The ROI size was automatically selected as described above, starting with w = 7
voxels. The maximum ROI size was restricted to w = 21. The operator was
applied within the automatically selected ROIs and the number of remaining
detections is compared with the case when using a maximumROI size of w = 21.

In Fig. 1, the operator responses at the detected positions are drawn as a
function of the distance to the manual position. Those candidates that lie within
the automatically selected ROI are indicated by bold bars. Other candidates that
would additionally be obtained by using the maximum ROI size are indicated
by narrow bars. Moreover, the total number of detections as well as the number
of remaining detections within the automatically selected ROI are given. In the
case of MC5e and MC6l in MR, we obtain optimal ROIs that yield a unique
candidate. In the case of MC5e in CT, two candidates remain, both of which
are located at this structure. In the case of MC6l in CT and MC15l (both
modalities), the automatically selected ROI size corresponds to the maximum
ROI size. Further experiments with other data and other landmarks showed
similar results, i.e., in a number of cases, adapting the ROI size avoids additional
false detections from neighboring structures. Also, we tested the e�ect of varying
the manual positions (e.g., due to di�erent observers) on selecting the ROI size.
Our approach appeared to be robust w.r.t. varying manual positions.

Reducing false detections by incorporating prior intensity knowledge A ROI of
size 21 � 21 � 21 voxels was placed at the manually determined landmark po-
sitions. In the case of MC6l (CT), a ROI of size 21 � 21 � 14 was used since
this landmark is located at the border of the image. The operator was applied
within the ROIs and at each detected point the present intensity structure was
classi�ed.
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(a) MC5e (MR) 15/1
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(b) MC6l (MR) 4/1

5 10

     6
5. 10

     7
1. 10

      7
1.5 10

     7
2. 10

      7
2.5 10

Distance to the ROI center [mm]

O
pe

ra
to

r 
re

sp
on

se

(c) MC5e (CT) 5/2

Fig. 1. Reducing false detections by automatically selecting a suitable ROI size. The
operator responses are drawn as a function of the distance to the ROI center. Bold bars
indicate the remaining detections within the automatically selected ROI. The numbers
in the captions mean total number of detections/remaining number of detections.

In Fig. 2, the operator responses at the detected positions are drawn as
a function of the distance to the manual position. Those candidates where the
present intensity structure corresponds to the expected one are indicated by bold
bars. Other candidates that would additionally be obtained without this distinc-
tion are indicated by narrow bars. Moreover, the total number of detections as
well as the number of remaining detections after classi�cation are given. We see
that a large number of detections that partly show signi�cant operator responses
are rejected due to an inconsistent intensity structure. However, in either case,
those candidates that best detect the landmark, i.e., having minimal distance to
the manual position, are correctly classi�ed. Thus, the localization performance
has not been a�ected. In sum, classifying the detections as described above has
proven to be very e�ective in reducing false detections.

Both approaches to reducing false detections, i.e., automatically selecting the
ROI size and incorporating prior intensity knowledge, have so far been studied
separately. However, combining both approaches can further improve the results.
For example, in the case of MC5e in CT, then only one candidate remains.

6 Conclusion

The performance of a semi-automatic procedure for extracting anatomical land-
marks from medical images substantially depends on the number of detected
landmark candidates. We have proposed two di�erent approaches to reducing
false detections. In experiments with 3D tomographic images, automatically se-
lecting the ROI size and incorporating prior knowledge of the intensity structure
at a landmark have proven to be e�ective in reducing false detections.
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Fig. 2. Reducing false detections by incorporating prior knowledge of the intensity
structure at a landmark. The operator responses are drawn as a function of the distance
to the ROI center. Bold bars indicate the remaining detections after classi�cation.
The numbers in the captions mean total number of detections/remaining number of

detections.
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