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Abstract. This paper describes a new method for the automated seg-
mentation of MRI images of brain tumors. The algorithm is an iterative,
hierarchical approach that integrates a statistical classification scheme
and anatomical knowledge from an aligned digital atlas. For validation,
the method was applied to 10 tumor cases in different locations in the
brain including meningiomas and astrocytomas (grade 1-3). The brain
and tumor segmentation results were compared to manual segmentations
carried out by 4 independent medical experts. It is demonstrated that
the algorithm produces results of comparable accuracy to those of the
manual segmentations in a shorter time.
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1 Introduction

Many applications of computer assisted neuro-surgery and -radiology rely on
previously segmented medical images. However, this task often requires labor
intensive and time consuming manual interaction. The goal was to develop a
method for the automated segmentation of brain and tumor.

When considering the design of a tumor segmentation method, a large num-
ber of tumor types which vary greatly in size, shape, location, tissue composition
and homogeneity has to be accounted for. Clinical image analysis reports large
inter- and intra-patient variations and considerable overlap in grey value distri-
bution both among different tumor histologies and with normal tissue, indicating
that segmentation methods based on image information alone may be insufficient
for successful differentiation between normal and tumor tissues [8].

Consequently, preliminary work on tumor segmentation using general seg-
mentation methods that rely on the image information alone like thresholding
and morphological operators [7], neural networks [16] or statistical classification
methods [2] work well in some cases but may not differentiate between active
tumor, associated pathology and normal tissue.



Template based segmentation methods solve the segmentation problem by
aligning a digital atlas of a normal brain to the individual [3, 9, 12]. The anatom-
ical knowledge represented in the atlas then may serve as a lookup map. How-
ever, these methods rely on the correctness of the alignment, and, by definition,
normal digital brain atlases don’t include pathologic structures, which poses a
problem if used for the segmentation of pathology.

This paper describes a template based segmentation technique for the seg-
mentation of meningiomas and grade 1-3 astrocytomas. The method is a hi-
erarchical, iterative approach that uses anatomical knowledge to moderate a
multi-spectral classification scheme.

2 Methods

Image database Development and validation of the algorithms are based on an
MRI database of appr. 100 manually segmented tumor patients. Each dataset
consisted of an SPGR volume (256x256x124, 1x1x1.5 mm), and pre- and post-
contrast T1 and T2 weighted volumes (256x256x30, 1x1x5 mm) obtained with
a GE 1.5 T MR imaging device [10].

Preprocessing Before the actual segmentation process, mis-registration due
to patient movement was minimized with a linear registration algorithm based
on the maximization of mutual information [15]. For noise reduction, edge pre-
serving anisotropic diffusion filtering was applied [6].

Combining statistical classification with anatomical knowledge. For super-
vised multi-spectral statistical classification the k-Nearest-Neighbor (kNN) rule
was applied, which has shown to be the most accurate and robust statistical
classifier for application to MRI [1, 5].

Overlapping intensity distributions of different tissue classes result in voxel
mis-classification. To resolve such ambiguities, a pre-segmented anatomical at-
las can be used as a template to interact with the classification process. Since
the atlas usually differs significantly from the individual to be segmented, some
kind of spatial alignment is required. However, the registration produces some
error so the atlas cannot be used directly for segmentation. Thus, the template’s
influence on the segmentation should reflect some amount of uncertainty. This
is achieved by presenting the atlas information as additional feature channels to
the classifier, one for each anatomical structure[13]. The classification is spatially
constrained if both the prototype and the voxel of unknown class are located in
different anatomical structures suggested by the atlas. The certainty of anatom-
ical localization is modeled by generating distance maps for each structure.

Registration. The goal of the registration is to achieve alignment between the
anatomical brain atlas and the patient. Alignment is computed in two steps:
First, a linear registration based on segmented data accounts for the global
translation and rotation [14]. The remaining mis-alignment is considered local
and non-linear. This step is based on a fast multi-resolution optical-flow algo-
rithm using a sum-of-squared-difference similarity measure on labeled data [4].
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Fig. 1. Tumor segmentation algorithm scheme (a), original SPGR image (b) and au-
tomated segmentation result (c).

Local refinement of classified structures. Artifacts from the previous classi-
fication (small holes and unrelated structures connected with thin lines) were
eliminated automatically with an erosion to remove thin connections, followed
by a seeded region growing to fill small holes and remove non-connected pixels,
and a dilation to recover the previously eroded boundaries [11].

Tumor Segmentation. Figure 1(a) presents a schematic overview of the tumor
segmentation algorithm. The pre-processed image data and anatomic templates
enter a closed loop of segmentation (classification and local refinement) and reg-
istration. Hierarchically, the method proceeds starting with skin-neck-bone, icc,
ventricles and finally tumor. For the purpose of elastic matching the pathology
is labeled as normal brain.

3 Results

The algorithm was validated on 10 tumor cases including meningiomas and grade
1-3 astrocytomas of compact shape in different locations of the brain. For quan-
titative analysis of the algorithm, we compared the brain and tumor from the
3D automatic segmentation to a randomly selected 2D slice within the tumor
region that was segmented by 4 independent medical experts. A standard seg-
mentation was defined as the area of overlapping voxels identified in at least 3
out of 4 manual segmentations. The variation in the expert’s opinion is denoted
as the disagreement (D), the area where less than 3 experts agreed.

To measure agreement and disagreement between automated and standard
segmentations, we compared the volumes of brain and tumor respectively from
the automatic method (V,) to the volume from the standard segmentation (V).
The voxels in V, and V; are the true positives, the voxels in V, and not in Vj
the false positives and the voxels in V; and not in V, the false negatives. All
measures are given with respect to the standard volume V.

High true positive (TP) ratios for automatic segmentation (brain: 94-99%,
tumor: 91-97%) and low false positive (FP) (brain: 2-14%, tumor: 2-9%) and



false negative (FN) (brain: 0.1-6%, tumor: 4-10%) ratios express good compara-
bility to the expert’s standard. The expert’s disagreement ratio (brain: 0.1-6%,
tumor:14-22%) were in the range of or higher than the automated segmentation’s
error ratios FP and FN. The false positives are partially due to the expert’s vari-
ation and in part due to the oversegmentation of the algorithm in the area of
the lateral sulcus with abundant vessels and the tentorium cerebelli. Some of the
extrinsic tumor cases (meningiomas) were underestimated by our method due
to an underestimation of the brain. This may be accounted for by adapting the
weight of the spatial constraint to the location of the tumor.

The overall computation time for a typical tumor case on an 8-processor Sun
ES 5000 amounted to appr. 75 minutes including appr. 5-10 minutes operator
time for training of the classifier. Complete manual segmentation time has been
reported to be in the range of 180 minutes [10], which implies that the automatic
method achieves a 95% reduction of operator time.

4 Discussion and Conclusion

We have developed a new automated anatomy atlas moderated statistical clas-
sification scheme for the segmentation of MRI of meningiomas and grade 1-3
astrocytomas.

The comparison between the new method and manual segmentations ob-
tained from medical experts demonstrate comparable quality and significant
reduction of operator time. Our algorithm may fail in cases where the intensity
value distribution of the tumor is highly inhomogeneous and shows large spec-
tral overlap with spatially close brain tissue. In such a case the initial tumor
estimate may impose an incorrect spatial constraint on the classification process
that may not be resolved in subsequent iterations. However, this can easily be
corrected by extending the manual interaction.

Several issues remain uninvestigated. We are currently in the process of ex-
tending our model for more complex tumors such as the glioblastoma multiforme.
This involves the improvement of the elastic matching technique to explicitly
deal with the pathologic structures and the investigation of the use of additional
feature channels for discrimination between the various tumor tissue classes.
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