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1 Introduction

Most patients with Ewing’s sarcoma undergo neoadjuvant (preoperative) chemother-
apy before surgery is performed. Generally, chemotherapy reduces the size of the
tumor which makes the subsequent treatment more successful. MR-imaging aims at
monitoring the effect of chemotherapy by identifying areas of vital remnant tumor.
An MR-examination includestatic T1- and T2-weighted MR-images as well as
dynamic, contrast-enhanced T1-weighted MR-images. Whereas the static MR-images
are used to estimate the volume of intra- and extra-osseous bone tumor, the dynamic
contrast-enhanced MR-sequence indicates which parts of the tumor are highly per-
fused by blood. In general, malignant bone tumors are highly perfused. Moreover,
these lesions are heterogenuous (sometimes multifocal) containing viable as well as
nonviable (necrotic) parts. The only way to reliably distinguish viable from nonviable
tumor tissue is by performing a perfusion study by dynamic contrast-enhanced MRI
[1].

The temporal images (typically 45-55) per MR-slice obtained from contrast-
enhanced MR-imaging using the contrast tracer GdTP need to be analyzed before a
distinction is possible between viable and nonviable tumor. Important perfusion char-
acteristics of tissue amgash-in, wash-out andmaximal enhancement of blood. Each
characteristic is modeled with a separnaarmacokinetic parameter for each indi-
vidual voxel using a two-compartment pharmacokinetic model. This facilitates a
classification of tissue into viable and nonviable tumor on a voxel-by-voxel basis.

Our approach reduces the information of the MR-signal to 3 pharmacokinetic
characteristics, an operation that might retain information which contributes to the
distinction between viable and nonviable tumor. In this paper, we compare the seg-



mentation results obtained using the estimated parmacokinetic parameters with the
segmentation result obtained from a feed-forward neural network that is trained to
segment areas with viable tumor. The gold standard is obtained from matched his-
tologic studies of the postoperative specimen.

2 Two-compartment phar macokinetic model

In this section, we derive the two-compartment model that is used to differentiate
viable from nonviable tumor. One compartment is the intravascular blood whereas the
other is extracellular compartment surrounding the tumor cells.

The presence of MR-tracer causes local magnetic field fluctuations which results
in reduced relaxation times, T; and T,, of heavily vascularized tissues, see [2]. The
total signal enhancement is linearly related with the tracer concentration in tissue C,
viathe bulk longitudinal relaxation time T:
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whereby the reduction of T, relaxation time is neglected. The parameter T is the re-
laxation time of the tissue in the absence of tracer and a the tissue- and frequency
dependent relaxivity, sy(x,y) the signal intensity in the absence of tracer. The signal
intensity after the tracer has arrived in the tissue (voxel) is proportional to T,
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When the recovery time T, is small compared to T, this exponential function can be
approximated with a linear equation s(X,y,t)[(BTe, t O {O,tma}. Assuming that the
infusion of contrast tracer is a Dirac pulse and no wash-out takes place, the concen-
tration of tracer follows a step function, which can be approximated by the differen-
tial equation
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with t the time and ty the moment of local contrast arrival. The wash-out of tracer
from the blood compartment is given by the differential equation
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with k; the transfer rate from the blood to the extracellular space, the second com-
partment in our pharmacokinetic model. Combining Eq. (3) with Eq. (4) yields the
following pharmacokinetic model for the blood compartment
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For the extracellular compartment, the concentration of tracer after the bolus has been
injected is specified by [2]
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Combining Eg. (3) with Eq. (6) yields
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which encompasses Eq. (5) as a special case. This pharmacokinetic model is extended
with an amplitude factor a and the MR-signal so(x,y) before the tracer has arrived
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This function is differentiable and can be estimated for each individual voxel by least
square minimization of the residual error € using the Levenberg Marquart algorithm.
The free parameters are the wash-in rate k;, wash-out rate k,, maxima enhancement
a, local arrival time of tracer ty and the initial signal intensity before tracer has arrived
invoxel (xy), So(Xy). The constant gis set to 10.

3 Segmentation of MR-images

The best indicator for the effect of chemotherapy that can be obtained from MR-
examination is the (decrease in the) volume of viable tumor, an assessment that en-
tails a segmentation of the diagnostic and preoperative dynamic MR-images into
viable and nonviable tumor. Viable tumor is characterized by both a high amount of
vessels and a high perfusion. The many blood vessels supply the dividing cancer cells
with enough blood to ensure a high metabolism. The high perfusion of viable tumor

is a pharmacokinetic characteristic that is captured well by our two-compartment
model (Eg. (8)). The pharmacokinetic parameters contain functional information
which is visualized by so-called parametric images. By thresholding the wash-in (ky)
image, which indicates the relative wash-in rate per voxel, we can identify the
(viable) parts of the tumor where the wash-in rate of tracer is high. This segmentation

is compared with a postoperative histologic macro slice — our gold standard — ob-
tained a few days after the preoperative MR-scan. In this histologic slice, which is



oriented and positioned as to obtain the best match with the MR-dlice, areas contain-
ing viable tumor are clearly indicated. The histologic dice is digitized on a color
scanner and annotations are made by an experienced pathol ogist.

We compare the segmentation results obtained from wash-in parametric images
with the results obtained from a feed-forward neural network. In general, a feed-
forward neura network with one hidden layer is capable of approximating every
continuous function to an arbitrary precision when the number of hidden nodes is
large enough [3]. Neural networks are trained to classify each individual voxel into
viable and nonviable tumor based on the dynamic MR-signal. The networks are
trained using a mask based on the annotations from the histologic macroslice. Each
neural network obtains as input the intensities of voxel (x,y) corresponding to all time
steps, s(x,y). The network output contains the two (complementary) posterior prob-
abilities that the voxel belongs to an area with viable tumor or not, P(Wyiae |

S(X,Y))=1-P(Whonviapie | S(X.Y)).-

4 Experiments

We analyzed the dynamic (preoperative) MR-images from two patients with Ewing’s
sarcoma. Both patients underwent neoadjuvant chemotherapy followed by limb sal-
vage surgery as specified by the standard protocols used in our hospital. The wash-in
parametric image was computed and postprocessed witk3amgdian filter. A
threshold was chosen such that the number of incorrectly classified voxels was mini-
mal. The resulting binary image was compared with the mask image derived from the
histologic macro slice.

Neural networks with one hidden layer were trained with back-propagation to
classify individual voxels as viable or nonviable tumor. Note that the average inten-
sity p(x,y) is subtracted from each sigrek,y) before being processed by the net-
work. Neural networks with 1, 2, 4 and 6 hidden nodes were trained 3.000 cycles
with back-propagation, learning rate=0,0001, momentum=0,5, offline learning.

Table 1. Overall and class-conditional correctness measures [4] for the 2 patients with Ewing’s
sarcoma computed from the segmentation obtained with the wash-in image and the neural
network (test set).

Patient Segmentation method  CorrectnéSl. cond. correctnes<Cl. cond. correctness

S (Nonviable) (Viable)
EW-1  Wash-in parameter 0,9990 0,9983 0,4133
Neural network (4 hid.) 10,9992 0,9998 0,5067
EW-2  Wash-in parameter 0,9966 0,9982 0,6633
Neural network (4 hid.) 0,9984 0,9996 0,7450

The (best) results obtained with the two segmentation techniques are shown in ta-
ble 1. For both patients, the neural network gives a better segmentation than the
wash-in parametric image when computed on voxels that were not included in the
training set. The class-conditional correctness [4] of ‘viable tumor’ is rather low,
0,40-0,66. This is mainly caused by the fact that only the centers of the areas with



viable tumor are highly perfused. The border areas containing also viable tumor cells
have alower wash-in rate for both tumors. Fig. 1 shows a dynamic MR-image before
the arrival of contrast tracer, 200 sec. after arrival of the tracer, the amplitude and
wash-in images.

Figure 1. Shows a dynamic MR-image before the arrival of tracer (a), 200 sec. after arrival of
the tracer (b), the amplitude parametric image (c) and the wash-in parametric image (d).

5 Discussion

The experiments indicate that the neural network gives a dlightly better segmentation
result than pharmacokinetic analysis. The neural network obtains al information
present in the MR-signal whereas segmentation based on the wash-in parametric
image captures solely one single feature of the MR-signal. Surprisingly, an acceptable
distinction can be made between viable and nonviable tumor from the wash-in pa-
rameter alone.

6 Conclusion

In this paper, we investigated two techniques for detecting areas with viable and
nonviable tumor based on dynamic contrast-enhanced MR-imaging. We compared
the performance obtained from a two-compartment pharmacokinetic model with that
obtained from a neural network. Our results indicate that the neural network resultsin
adlightly better segmentation than the wash-in parametric image.
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