
Classical Planning in Deep Latent Space:
From Unlabeled Images to PDDL (and back)

Masataro Asai, Alex Fukunaga

guicho2.71828α©gmail.com

Graduate School of Arts and Sciences
University of Tokyo

Abstract. Current domain-independent, classical planners require sym-
bolic models of the problem domain and instance as input, resulting in
a knowledge acquisition bottleneck. Meanwhile, although recent work in
deep learning has achieved impressive results in many fields, the knowl-
edge is encoded in a subsymbolic representation which cannot be directly
used by symbolic systems such as planners. We propose LatPlan, an in-
tegrated architecture combining deep learning and a classical planner.
Given a set of unlabeled training image pairs showing allowed actions
in the problem domain, and a pair of images representing the start and
goal states, LatPlan uses a Variational Autoencoder to generate a dis-
crete latent vector from the images, based on which a PDDL model can
be constructed and then solved by an off-the-shelf planner. We evalu-
ate LatPlan using image-based versions of 3 planning domains: 8-puzzle,
LightsOut, and Towers of Hanoi.

1 Introduction

Recent advances in domain-independent planning have greatly enhanced their
capabilities. However, planning problems need to be provided to the planner in
a structured, symbolic representation such as PDDL [22], and in general, such
symbolic models need to be provided by a human, either directly in PDDL, or via
a compiler which transforms some other symbolic problem representation into
PDDL. This results in the knowledge-acquisition bottleneck, where the modeling
step is sometimes the bottleneck in the problem solving cycle. In addition, the
requirement for symbolic input poses a significant obstacle to applying planning
in new, unforeseen situations where no human is available to create such a model,
e.g., autonomous spacecraft exploration. This first requires generating symbols
from raw sensor input, i.e., the symbol grounding problem [30].

Recently, significant advances have been made in neural network (NN) ap-
proaches for cognitive tasks including image classification [8], object recognition
[26], speech recognition [9], machine translation as well as NN-based problem-
solving systems [23, 10]. However, the current state-of-the-art in pure NN-based
systems do not yet provide guarantees provided by symbolic planning systems,
such as deterministic completeness and solution optimality.

Copyright © 2017 for this paper by its authors. Copying permitted for private and academic purposes.



2

Original
Mandrill image

Goal state image
(black/white)

Initial state
image

?

Fig. 1. An image-based 8-puzzle.

Using a NN-based perceptual system to automatically provide input mod-
els for domain-independent planners could greatly expand the applicability of
planning technology and offer the benefits of both paradigms. We consider the
problem of robustly, automatically bridging the gap between such symbolic and
subsymbolic representations.

Fig. 1 (left) shows a scrambled, 3x3 tiled version of the the photograph on
the right, i.e., an image-based instance of the 8-puzzle. We seek a domain-
independent system which, given only a set of unlabeled images showing the
valid moves for this image-based puzzle, finds an optimal solution to the puz-
zle. Although the 8-puzzle is trivial for symbolic planners, solving this image-
based problem with a domain-independent system which has no prior assump-
tions/knowledge (e.g., “sliding objects”, “tile arrangement”, “a grid-like struc-
ture”) is nontrivial. The only assumption allowed about the nature of the task
is that it can be modeled and solved as a classical planning problem.

We propose Latent-space Planner (LatPlan), a hybrid architecture which
uses NN-based image processing to completely automatically generate a propo-
sitional, symbolic problem representation which can be used as the input for a
classical planner. LatPlan consists of 3 components: (1) a NN-based State Au-
toencoder (SAE), which provides a bidirectional mapping between the raw input
of the world states and its symbolic/categorical representation, (2) an action
model generator which generates a PDDL model using the symbolic represen-
tation acquired by the SAE, and (3) a symbolic planner. Given only a set of
unlabeled images from the domain as input, we train (unsupervised) the SAE
and use it to generate D, a PDDL representation of the image-based domain.
Then, given a planning problem instance as a pair of initial and goal images such
as Fig. 1, LatPlan uses the SAE to map the problem to a symbolic planning in-
stance in D, and uses the planner to solve the problem.

2 LatPlan: System Architecture

This section describes the LatPlan architecture and the current implementation,
LatPlanα. LatPlan works in 3 phases. In Phase 1 (symbol-grounding), a State
AutoEncoder providing a bidirectional mapping between raw data (e.g., images)
and symbols is learned (unsupervised) from a set of unlabeled images of repre-
sentative states. In Phase 2 (action model generation), the operators available
in the domain is generated from a set of pairs of unlabeled images, and a PDDL
domain model is generated. In Phase 3 (planning), a planning problem instance



3

The output converges
to the input

The latent layer
converges to the categorical distrib.

Fig. 2. Step 1: Train the State Autoencoder by minimizing the sum of the reconstruc-
tion loss (binary cross-entropy) and the variational loss of Gumbel-Softmax.

is input as a pair of images (i, g) where i shows an initial state and g shows a goal
state. These are converted to symbolic form using the SAE, and the problem is
solved by the symbolic planner. For example, an 8-puzzle problem instance in our
system consists of an image of the start (scrambled) configuration of the puzzle
(i), and an image of the solved state (g). Finally, the symbolic, latent-space plan
is converted to a human-comprehensible visualization of the plan.

Symbol Grounding with a State Autoencoder The State Autoencoder
(SAE) provides a bidirectional mapping between images and a symbolic repre-
sentation.

First, note that a direct 1-to-1 mapping between images and discrete objects
can be trivially obtained simply by using the array of discretized pixel values as
a “symbol”. However, such a trivial SAE lacks the crucial properties of gener-
alization – ability to encode/decode unforeseen world states to symbols – and
robustness – two similar images that represent “the same world state” should
map to the same symbolic representation. Thus, we need a mapping where the
symbolic representation captures the “essence” of the image, not merely the raw
pixel vector. The main technical contribution of this paper is the proposal of a
SAE which is implemented as a Variational Autoencoder [16] with a Gumbel-
Softmax (GS) activation function [14].

Gumbel-Softmax (GS) activation is a recently proposed reparametrization
trick [14] for categorical distribution. Using GS in the network in place of stan-
dard activation functions (Sigmoid, Softmax, ReLU) forces the activation to
converge to a discrete one-hot vector. GS has a “temperature” parameter τ
which controls the magnitude of approximation. τ is annealed by a schedule
τ ← max(0.1, exp(−rt)) where t is the current training epoch and r is an an-
nealing ratio [14]. We chose r so that τ = 0.1 when the training finishes.

In our implementation, the SAE is comprised of multilayer perceptrons com-
bined with Dropouts and Batch Normalization in both the encoder and the
decoder networks, with a GS layer in between. The input to the GS layer is the
flat, last layer of the encoder network. The output is an (N,M) matrix where
N is the number of categorical variables and M is the number of categories.

Our key observation is that these categorical variables can be used directly as
propositional symbols by a symbolic reasoning system, i.e., this provides a solu-
tion to the symbol grounding problem in our architecture. We specify M = 2,
effectively obtaining N propositional state variables. It is possible to specify



4

Initial State

Goal State

Domain-
independent

Classical Planner

Plan

Action definitions
in PDDL/SAS

Symbolic

Encode

Decode

Solution Plan as images

Encode Subsymbolic

Action1
Action2
Action3

Intermediate
states

PDDL Plan 
Simulator

Input 1: (a) Training images for training 
the State AutoEncoder and (b) image 

pairs representing valid actions 

Input 2:
Initial state
& goal state 

image

Fig. 3. Classical planning in latent space: We use the learned State AutoEncoder to
convert pairs of images (pre, post) first to symbolic ground actions and then to a PDDL
domain. We also encode initial and goal state images into a symbolic ground actions and
then a PDDL problem. A classical planner finds the symbolic solution plan. Finally,
intermediate states in the plan are decoded back to a human-comprehensible image
sequence.

different M for each variable and represent the world using multi-valued repre-
sentation as in SAS+ [3] but we always use M = 2 for simplicity.

The trained SAE provides bidirectional mapping between the raw inputs
(subsymbolic representation) to and from their symbolic representations:

– b = Encode(r) maps an image r to a boolean vector b.
– r̃ = Decode(b) maps a boolean vector b to an image r̃.

Encode(r) maps raw input r to a symbolic representation by feeding the raw
input to the encoder network, extract the activation in the GS layer, and take
the first row in the N × 2 matrix, resulting in a binary vector of length N .
Similarly, Decode(b) maps a binary vector b back to an image by concatenating
b and its complement b̄ to obtain a N × 2 matrix and feeding it to the decoder.

It is not sufficient to use traditional activation functions such as softmax and
round the activation values to obtain discrete 0/1 values because we need to map
the symbolic plan back to images. We need a decoding network trained for 0/1
values approximated by a smooth function, e.g., GS or similar approach such
as [21]. A rounding-based scheme would be unable to restore the images from
discrete values because the decoder is trained using continuous values. Also,
the rounding operation cannot be part of a backpropagated network because
rounding is non-differentiable.

An SAE trained on a small fraction of the possible states successfully gen-
eralizes so that it can Encode and Decode every possible state in that domain.
In all our experiments below, we train the SAE using randomly selected images
from the domain. For example, on the 8-puzzle, the SAE trained on 12000 ran-
domly generated configurations out of 362880 possible configurations is used by
the domain model generator to Encode every 8-puzzle state.

Domain Model Generation The model generator takes as input a trained



5

SAE, and a set R contains pairs of raw images. In each image pair (prei, posti) ∈
R, prei and posti are images representing the state of the world before and after
some action ai is executed, respectively. In each ground action image pair, the
“action” is implied by the difference between prei and posti. The output of
the model generator is a PDDL domain file for a grounded unit-cost STRIPS
planning problem. For each (prei, posti) ∈ R we apply the learned SAE to prei
and posti to obtain (Encode(prei), Encode(posti)), the symbolic representations
(latent space vectors) of the state before and after action ai is executed. This
results in a set of symbolic ground action instances A.

Ideally, a model generation component would induce a complete action model
from a limited set of symbolic ground action instances. However, action model
learning from a limited set of action instances is a nontrivial area of active
research [7, 11, 18, 24, 32, 6]. Since the focus of this paper is on the overall LatPlan
architecture and the SAE, we leave model induction for future work. Instead,
the current implementation LatPlanα uses a trivial, baseline strategy which
generates a model based on all ground actions, which are supposed to be easily
replaced by existing off-the-shelf action model learner. In this baseline method,
R contains image pairs representing all ground actions that are possible in this
domain, so A = {Encode(r)|r ∈ R} contains all symbolic ground actions possible
in the domain. In Sec. 5, we further discuss the implication and the impact of
this model. In the experiments (Sec. 3), we generate image pairs for all ground
actions using an external image generator. It is important to note that while R
contains all possible actions, R is not used for training the SAE. As explained
before, the SAE is trained using at most 12000 images while the entire state
space is much larger.

LatPlanα compiles A directly into a PDDL model as follows. For each action
(Encode(prei), Encode(posti)) ∈ A, each bit bj(1 ≤ j ≤ N) in these boolean
vectors is mapped to propositions (bj-true) and (bj-false) when the encoded
value is 1 and 0 (resp.). Encode(prei) is directly used as the preconditions of
action ai. The add/delete effects of action i are computed by taking the bit-
wise difference between Encode(prei) and Encode(posti). For example, when
bj changes from 1 to 0, it compiles into (and (bj-false) (not (bj-true))).
The initial and the goal states are similarly created by applying the SAE to the
initial and goal images.

Planning with an Off-the-Shelf Planner The PDDL instance generated
in the previous step can be solved by an off-the-shelf planner. LatPlanα uses the
Fast Downward planner [12]. However, on the models generated by LatPlanα,
the invariant detection routines in the Fast Downward PDDL-SAS converter
became a bottleneck, so we wrote a trivial, replacement PDDL-SAS converter
without the invariant detection.

LatPlan inherits all of the search-related properties of the planner which is
used. For example, if the planner is complete and optimal, LatPlan will find an
optimal plan for the given problem (if one exists), with respect to the portion
of the state-space graph captured by the acquired model. Domain-independent
heuristics developed in the planning literature are designed to exploit structure



6

in the domain model. Although the structure in models acquired by LatPlan
may not directly correspond to those in hand-coded models, intuitively, there
should be some exploitable structure. The search results in Sec. 3 suggest that
the domain-independent heuristics can reduce the search effort.

Visualizing/Executing the Plans Since the actions comprising the plan
are SAE-generated latent bit vectors, the “meaning” of each symbol (and thus
the plan) is not necessarily clear to a human observer. However, we can obtain
a step-by-step visualization of the world (images) as the plan is executed (e.g.
Fig. 4) by starting with the latent state representation of the initial state, apply-
ing (simulating) actions step-by-step (according to the PDDL model acquired
above) and Decode’ing the latent bit vectors for each intermediate state to im-
ages using the SAE. In this paper, a “mental image” of the solution (i.e., the
image sequence visualization) is sufficient. In a less simplified setting, mapping
the actions found by LatPlan (transitions between latent bit vector pairs) to
lower-level actuation would be necessary (future work).

3 Experimental Evaluation

All of the SAE networks used in the evaluation have the same network topology
except the input layer which should fit the size of the input images. The net-
work consists of the following layers: [Input, GaussianNoise(0.1), fc(4000), relu,
bn, dropout(0.4), fc(4000), relu, bn, dropout(0.4), fc(49x2), GumbelSoftmax,
dropout(0.4), fc(4000), relu, bn, dropout(0.4), fc(4000), relu, bn, dropout(0.4),
fc(input), sigmoid]. Here, fc = fully connected layer, bn = Batch Normaliza-
tion, and tensors are reshaped accordingly. The last layers can be replaced with
[fc(input × 2), GumbelSoftmax, TakeFirstRow] for better reconstruction when
we can assume that the input image is binarized. The network is trained using
Adam optimizer (lr:0.001) for 1000 epochs.

The latent layer has 49 bits, which sufficiently covers the total number of
states in any of the problems that are used in the following experiments. This
could be reduced for each domain (made more compact) with further engineering.

MNIST 8-puzzle This is an image-based version of the 8-puzzle, where tiles
contain hand-written digits (0-9) from the MNIST database [20]. Each digit is
shrunk to 14x14 pixels, so each state of the puzzle is a 42x42 image. Valid moves
in this domain swap the “0” tile with a neighboring tile, i.e., the “0” serves as
the “blank” tile in the classic 8-puzzle. The entire state space consists of 362880
states (9!). Note that the same image is used for each digit in all states, e.g., the
“1” digit is the same image in all states.

Out of 362880 images, 12000 randomly selected images are used for training
the SAE. This set is further divided into a training set (11000) and a validation
set (1000). Training takes 40 minutes/1000 epochs on a NVIDIA GTX-1070.

Scrambled Photograph 8-puzzle The above MNIST 8-puzzle described
above consists of images where each digit is cleanly separated from the black
region. To show that LatPlan does not rely on cleanly separated objects, we
solve 8-puzzles generated by cutting and scrambling real photographs (similar to



7

0-tile corresponds to the blank
 tile in standard 8-puzzle

Right-eye tile corresponds
 to the blank tile in
standard 8-puzzle

Original
Mandrill
image:

Fig. 4. (Left) Output of solving the MNIST 8-puzzle instance with the longest (31
steps) optimal plan. [Reinefeld 1993] (Right) Output of solving a photograph-based
8-puzzle (Mandrill). We emphasize that LatPlan has no built-in notion of “sliding
object”, or “tile arrangement”; furthermore, the SAE is being trained completely from
scratch when LatPlan is applied to this scrambled photograph puzzle – there is no
transfer/reuse of knowledge from the SAE learned for the MNIST 8-puzzle.

↑Result of solving 3-disk Tower of Hanoi with the default network parameters. 

↑4-disk ToH with
 tuned parameters

 (optimal plan for the
 correct model)

↑4-disk ToH with the default parameters
(optimal plan wrto the flawed model by a confused SAE) 

Binarized results of the last steps→

Fig. 5. Output of solving ToH with 3 and 4 disks. The third picture is the result of
SAE with different parameters.

sliding tile puzzle toys sold in stores). We used the “Mandrill” image, a standard
benchmark in the image processing literature. The image was first converted to
greyscale and then rounded to black/white (0/1) values. The same number of
images as in the MNIST-8puzzle experiments are used.

Towers of Hanoi (ToH) Disks of various sizes must be moved from one
peg to another, with the constraint that a larger disk can never be placed on top
of a smaller disk. Due to the smaller number of states (3d states for d disks), we
used images of all states as the set of images for training SAE. This is further
divided into the training set (90%) and the validation set (10%), and we verified
that the network has learned a generalized model without overfitting.

3-disk ToH is solved successfully and optimally using the default hyperpa-
rameters (Fig. 5, top). However, on 4-disks, the SAE trained with the default
hyperparameters (Fig. 5, middle) is confused, resulting in a flawed model which
causes the planner to choose suboptimal moves (dashed box). Sometimes, the
size/existence of disks is confused (red box). Tuning the hyperparameters to re-
duce the SAE loss corrects this problem. After increasing the training epochs
(10000) and tuning the network shape (fc(6000), N = 29), the SAE generated a
correct model, resulting in the optimal 15-step plan (Fig. 5, bottom).



8

Fig. 6. Output of solving 4x4 LightsOut (left) and its binarized result (right). Although
the goal state shows two blurred switches, they have low values (around 0.3) and
disappear after rounding.

Fig. 7. Output of solving 3x3 Twisted LightsOut.

LightsOut A video game where a grid of lights is in some on/off config-
uration (+: On), and pressing a light toggles its state (On/Off) as well as the
state of all of its neighbors. The goal is all lights Off. Unlike the 8-puzzle where
each move affects only two adjacent tiles, a single operator in 4x4 LightsOut can
simultaneously flip 5/16 locations. Also, unlike 8-puzzle and ToH, the Light-
sOut game allows some “objects” (lights) to disappear. This demonstrates that
LatPlan is not limited to domains with highly local effects and static objects.

Twisted LightsOut In all of the above domains, the “objects” correspond
to rectangles. To show that LatPlan does not rely on rectangular regions, we
demonstrate its result on “Twisted LightsOut”, a distorted version of the game
where the original LightsOut image is twisted around the center. Unlike previous
domains, the input images are not binarized.

Robustness to Noisy Input We show the robustness of the system against
the input noise. We corrupted the initial/goal state inputs by adding Gaussian
or salt noise, as shown in Fig. 8. The system is robust enough to successfully
solve the problem, because our SAE is a Denoising Autoencoder [31] which has
an internal GaussianNoise layer which adds a Gaussian noise to the inputs (only
during training) and learn to reconstruct the original image from a corrupted
version of the image.

8puzzle
+N(0,0.3)

Twisted LightsOut
+N(0,0.3)

Twisted LightsOut
+salt(0.06)

Fig. 8. SAE robustness vs noise: Corrupted initial state image r and its reconstruction
Decode(Encode(r)) by SAE on MNIST 8-puzzle and Twisted LightsOut. Images are
corrupted by Gaussian noise of σ up to 0.3 for both problems, and by salt noise up to
p = 0.06 for Twisted LightsOut. LatPlanα successfully solved the problems. The SAE
maps the noisy image to the correct symbolic vector b = Encode(r), conduct planning,
then map b back to the de-noised image Decode(b).



9

Are Domain-Independent Heuristics Effective in Latent Space? We
compare the numbers of nodes expanded by a search using a greedy merging PDB
[28] and blind heuristics (i.e., breadth-first search) in Fast Downward:

– MNIST 8-puzzle (6 instances, mean(StdDev)): Blind 176658(25226), PDB
77811(32978)

– Mandrill 8-puzzle (1 instance with 31-step optimal solution, corresponding
to the 8-puzzle instance [25]): Blind 335378, PDB 88851

– ToH (4 disks, 1 instance): Blind 55, PDB 17,
– 4x4 LightsOut (1 instance): Blind 952, PDB 27,
– 3x3 Twisted LightsOut (1 instance): Blind 522, PDB 214

The domain-independent PDB heuristic significantly reduced node expan-
sions. Search times (< 3 seconds for all instances) were also faster for all in-
stances with the PDB. Although total runtimes including heuristic initialization
is slightly slower than blind search, in domains where goal states and operators
are the same for all instances (e.g., 8-puzzle) PDBs can be reused [19], and PDB
generation time can be amortized across many instances. Although these results
show that existing heuristics for classical planning are able to reduce search effort
compared to blind search, much more work is required in order to understand
how the features in latent space interact with existing heuristics.

4 Related Work

[18] propose a method for generating PDDL from a low-level, sensor actuator
space of an agent characterized as a semi-MDP. The inputs to their system
are 33 variables representing accurate structured input (e.g., x/y distances) or
categorical states (the on/off state of a button etc.) while LatPlan takes noisy
unstructured images (e.g., for 8-puzzle, 42x42=1764-dimensional arrays).

Compared to learning from observation (LfO) in the robotics literature [2],
(1) LatPlan is trained based on image pairs showing individual actions, not
plan executions (sequence of actions); (2) LatPlan focuses on PDDL for high-
level (puzzle-like) tasks, not on motion planning tasks. This significantly affects
the data collection scheme: While LfO has action segmentation issue because it
does not know when an action starts/ends in the plan traces (e.g. video clip),
LatPlan does not, because it assumes that a robot can explore the world by itself,
initiating/terminating its own action and taking pictures by a camera. The robot
can perform a random walk under physical constraints and supervision, which
ensure the legal moves (e.g., the physical tile in 8-puzzle). If we further assume
that it can “reset” the world (e.g., into a random configuration), then, the robot
could eventually obtain images of the entire state space.

A closely related line of work in LfO is learning of board game play from
videos [4, 15, 17]. Unlike LatPlan, these works make relatively strong assumptions
about the environment, e.g., that there is a grid-like environment.

There is a large body of previous work using neural networks to directly solve
combinatorial tasks, such as TSP [13] or Tower of Hanoi [5]. Although they use



10

NNs to solve search problems, they assume a fully symbolic representation of
the problem as input. Other line of hybrid systems embed NNs inside a search
algorithm to provide search control knowledge [29, 1, 27]. In contrast, we use a
NN-based SAE for symbol grounding, not for search control.

Deep Reinforcement Learning (DRL) has solved complex image-based prob-
lems [23]. For unit-action-cost planning, LatPlan does not require a reinforce-
ment signal (reward function). Also, it can provide guarantees of completeness
and solution cost optimality.

5 Discussion and Conclusion

We proposed LatPlan, an integrated architecture for planning which, given only
a set of unlabeled images and no prior knowledge, generates a classical planning
problem model, solves it with a symbolic planner, and presents the resulting plan
as a human-comprehensible sequence of images. We demonstrated its feasibility
using image-based versions of planning/state-space-search problems (8-puzzle,
Towers of Hanoi, Lights Out). The key technical contribution is the SAE, which
leverages the Gumbel-Softmax reparametrization technique [14] and learns (un-
supervised) a bidirectional mapping between raw images and a propositional rep-
resentation usable by symbolic planners. Aside from the key assumptions about
the deterministic environment and the sufficient training images, we avoid as-
sumptions about the input domain. Thus, we have shown that domains with
different characteristics can all be solved by the same system. In other words,
LatPlan is a domain-independent, image-based classical planner.

To our knowledge, LatPlan is the first completely automated system of the
kind. However, as a proof-of-concept, it has significant limitations to be ad-
dressed in future work. In particular, the domain model generator in LatPlanα
does not perform action model learning from a small set of sample actions be-
cause the focus of this paper is not on action learning. Thus the current generator
requires the entire set of latent states, transitions and in turn images. While this
is obviously impractical, this is not a fundamental limitation of the LatPlan ar-
chitecture. The primitive generator is merely a placeholder for investigating the
overall feasibility of an SAE-based end-to-end planning system (our major con-
tribution) and is supposed to be easily replaced by the more sophisticated ones
[7, 18, 24, 32]. To our knowledge, all previous domain learning methods require
the structured (e.g., propositional) representations of states.

A related topic is how to specify a partial goal specification for LatPlan as
in IPC domains (e.g. “having tiles 0,1,2 in the correct places is the goal” in a
8-puzzle), rather than assuming a single goal state, is an interesting future work.

Finally, we do not claim that the specific implementation of SAE in this paper
works robustly on all images. Making a robust autoencoder is not a problem
unique to LatPlan, but rather, a fundamental problem in deep learning. Out
contribution is the demonstration that it is possible to leverage some existing
deep learning techniques quite effectively in an planning system, and future work
will continue leveraging further improvements in image processing techniques.



11

References

1. Arfaee, S.J., Zilles, S., Holte, R.C.: Learning Heuristic Functions for
Large State Spaces. Artificial Intelligence 175(16-17), 2075–2098 (2011),
http://dx.doi.org/10.1016/j.artint.2011.08.001;http://dblp.uni-trier.

de/rec/bib/journals/ai/ArfaeeZH11

2. Argall, B., Chernova, S., Veloso, M.M., Browning, B.: A Survey of Robot Learning
from Demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009),
http://dx.doi.org/10.1016/j.robot.2008.10.024

3. Bäckström, C., Nebel, B.: Complexity Results for SAS+ Planning. Computational
Intelligence 11(4), 625–655 (1995)

4. Barbu, A., Narayanaswamy, S., Siskind, J.M.: Learning Physically-Instantiated
Game Play through Visual Observation. In: ICRA. pp. 1879–1886 (2010), http:
//dx.doi.org/10.1109/ROBOT.2010.5509925

5. Bieszczad, A., Kuchar, S.: Neurosolver Learning to Solve Towers of Hanoi Puzzles.
In: IJCCI. vol. 3, pp. 28–38 (2015)

6. Celorrio, S.J., de la Rosa, T., Fernández, S., Fernández, F., Borrajo, D.: A Review
of Machine Learning for Automated Planning. Knowledge Eng. Review 27(4), 433–
467 (2012), http://dx.doi.org/10.1017/S026988891200001X

7. Cresswell, S., McCluskey, T.L., West, M.M.: Acquiring planning domain models
using LOCM. Knowledge Eng. Review 28(2), 195–213 (2013)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR. pp. 248–255. IEEE (2009)

9. Deng, L., Hinton, G., Kingsbury, B.: New Types of Deep Neural Network Learning
for Speech Recognition and Related Applications: An Overview. In: ICASSP. pp.
8599–8603. IEEE (2013)

10. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-
Barwińska, A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J.,
et al.: Hybrid Computing using a Neural Network with Dynamic External Mem-
ory. Nature 538(7626), 471–476 (2016)

11. Gregory, P., Cresswell, S.: Domain model acquisition in the presence of static re-
lations in the LOP system. In: ICAPS. pp. 97–105 (2015), http://www.aaai.org/
ocs/index.php/ICAPS/ICAPS15/paper/view/10621

12. Helmert, M.: The Fast Downward Planning System. J. Artif. Intell. Res.(JAIR)
26, 191–246 (2006), http://www.aaai.org/Papers/JAIR/Vol26/JAIR-2606.pdf

13. Hopfield, J.J., Tank, D.W.: ”Neural” Computation of Decisions in Optimization
Problems. Biological cybernetics 52(3), 141–152 (1985)

14. Jang, E., Gu, S., Poole, B.: Categorical Reparameterization with Gumbel-Softmax.
In: ICLR (2017)

15. Kaiser, L.: Learning Games from Videos Guided by Descriptive Complexity. In:
AAAI (2012), http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/

5091;http://dblp.uni-trier.de/rec/bib/conf/aaai/Kaiser12

16. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning
with deep generative models. In: NIPS. pp. 3581–3589 (2014)

17. Kirk, J.R., Laird, J.E.: Learning General and Efficient Representations of Novel
Games Through Interactive Instruction. Advances in Cognitive Systems 4 (2016)

18. Konidaris, G., Kaelbling, L.P., Lozano-Pérez, T.: Constructing Symbolic Rep-
resentations for High-Level Planning. In: AAAI. pp. 1932–1938 (2014), http:

//www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8424



12

19. Korf, R.E., Felner, A.: Disjoint Pattern Database Heuristics. Artificial In-
telligence 134(1-2), 9–22 (2002), http://dx.doi.org/10.1016/S0004-3702(01)

00092-3;http://dblp.uni-trier.de/rec/bib/journals/ai/KorfF02

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied
to Document Recognition. Proc. of the IEEE 86(11), 2278–2324 (1998)

21. Maddison, C.J., Mnih, A., Teh, Y.W.: The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. In: ICLR (2017)

22. McDermott, D.V.: The 1998 AI Planning Systems Competition. AI Mag-
azine 21(2), 35–55 (2000), http://www.aaai.org/ojs/index.php/aimagazine/

article/view/1506

23. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-Level
Control through Deep Reinforcement Learning. Nature 518(7540), 529–533 (2015)

24. Mourão, K., Zettlemoyer, L.S., Petrick, R.P.A., Steedman, M.: Learning
STRIPS Operators from Noisy and Incomplete Observations. In: UAI. pp.
614–623 (2012), https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1&smnu=2&article_id=2322&proceeding_id=28

25. Reinefeld, A.: Complete Solution of the Eight-Puzzle and the Benefit of Node
Ordering in IDA. In: IJCAI. pp. 248–253 (1993), http://ijcai.org/Proceedings/
93-1/Papers/035.pdf

26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-time Object
Detection with Region Proposal Networks. In: NIPS. pp. 91–99 (2015)

27. Satzger, B., Kramer, O.: Goal Distance Estimation for Automated Planning using
Neural Networks and Support Vector Machines. Natural Computing 12(1), 87–100
(2013), http://dx.doi.org/10.1007/s11047-012-9332-y

28. Sievers, S., Ortlieb, M., Helmert, M.: Efficient Implementation of Pattern Database
Heuristics for Classical Planning. In: SOCS (2012)

29. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the Game of Go with Deep Neural Networks and Tree Search. Nature 529(7587),
484–489 (2016)

30. Steels, L.: The Symbol Grounding Problem has been solved. So what’s next? In:
de Vega, M., Glenberg, A., Graesser, A. (eds.) Symbols and Embodiment. Oxford
University Press (2008)

31. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and Composing
Robust Features with Denoising Autoencoders. In: ICML. pp. 1096–1103. ACM
(2008)

32. Yang, Q., Wu, K., Jiang, Y.: Learning Action Models from Plan Ex-
amples using Weighted MAX-SAT. Artificial Intelligence 171(2-3), 107–
143 (2007), http://dx.doi.org/10.1016/j.artint.2006.11.005;http://dblp.

uni-trier.de/rec/bib/journals/ai/YangWJ07




