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Abstract. Two problems of guaranteed closed-loop control under in-
complete information are considered for a linear stochastic differential
equation (SDE) from the viewpoint of the constructive method of open-
loop control packages worked out and realized as a software earlier for
the guidance of a linear control system of ordinary differential equa-
tions (ODEs) to a convex target set. The problems consist in designing
a deterministic control providing (irrespective of a realized initial state
from a given finite set) prescribed properties of the solution (being a
random process) by a terminal point in time (A) or at this time (B).
It is assumed that a linear signal on some number of realizations is ob-
served. By the equations of the method of moments, the problems for the
SDE are reduced to equivalent problems for systems of ODEs describing
the mathematical expectation and covariance matrix of the original pro-
cess. The emphasis is on designing computer-oriented solving algorithms
based on feasible finite-dimensional optimization procedures. The solv-
ability conditions for the problems are written. An illustrative example
is presented.

Keywords: guidance problem, computer-oriented algorithm, linear stochas-
tic differential equation

1 Introduction

In mathematical control theory and its applications, the problem of construct-
ing optimal strategies of guaranteed feedback control under conditions of uncer-
tainty is evidently actual. We follow the theory of closed-loop control developed
by N.N. Krasovskii’s school [1] and apply the approach based on the so-called
method of open-loop control packages originating from the technique of nonan-
ticipating strategies [2] to solving the guidance problem for a linear SDE. The
method tested on the guidance problems for linear controlled systems of ODEs
consists in reducing the problems of guaranteed control formulated in the class
of closed-loop strategies to equivalent problems in the class of open-loop control
packages. The latter class contains the families of open-loop controls parameter-
ized by admissible initial states and possessing the property of nonanticipation
with respect to the dynamics of observations, see [3], [4], and [5].
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This paper is devoted to the study of the problem of guiding (with a proba-
bility close to 1) a trajectory of a linear SDE to some target set. The statements
mean that we should form a deterministic control providing (irrespective of the
realized initial state from a specified finite set) prescribed properties of the so-
lution (being a random process) by a terminal point in time (A) or at this time
(B). Here, we observe a linear signal on some number of realizations. Similar
problems arise in practical situations, when it is possible to observe the behav-
ior of a large number of identical objects described by a stochastic dynamics. By
the equations of the method of moments [6], the problems for the SDE are re-
duced to equivalent problems for systems of ODEs describing the mathematical
expectation and covariance matrix of the original process. The technique of the
method of open-loop control packages developed in [3], [4], and [5] is applied to
the systems obtained. A similar reduction procedure was used, for example, in [7]
for solving the problem of dynamic reconstruction of an unknown disturbance
characterizing the level of random noise in a linear SDE.

2 Statement of the problems

Consider a system of linear SDEs of the following form:

dx(t, ω) = (A(t)x(t, ω) +B1(t)u1(t) + f(t)) dt+B2(t)U2(t) dξ(t, ω). (1)

Here, x(t0, ω) = x0, t ∈ T = [t0, ϑ], x = (x1, x2, . . . , xn) ∈ IRn,
ξ = (ξ1, ξ2, . . . , ξk) ∈ IRk; ω ∈ Ω, (Ω,F, P ) is a probability space; ξ(t, ω) is
a standard Wiener process (i.e., a process starting from zero with zero mathe-
matical expectation and covariance matrix equal to It, I is the unit matrix from
IRk×k); f(t) is a continuous vector function with values in IRn; A(t) = {aij(t)},
B1(t) = {b1ij(t)}, and B2(t) = {b2ij(t)} are continuous matrix functions of
dimensions n× n, n× r, and n× k, respectively.

Two controls act in the system: a vector u1(t) = (u11(t), u12(t), . . . , u1r(t)) ∈
IRr and a diagonal matrix U2(t) = {u21(t), u22(t), . . . , u2k(t)} ∈ IRk×k, which are
Lebesgue measurable on T and take values from specified instantaneous control
resources Su1 and Su2 being convex compact sets in the corresponding spaces.
The control u1 enters the deterministic component and influences the mathemat-
ical expectation of the desired process. Since U2dξ = (u21dξ1, u22dξ2, . . . , u2kdξk),
we can assume that the vector u2 = (u21, u22, . . . , u2k) characterizes the diffusion
of the process (the amplitude of random noises).

The initial state x0 belongs to a finite set of admissible initial statesX0, which
consists of normally distributed random variables with numerical parameters
(m0, D0), where m0 = Mx0 is the mathematical expectation, m0 ∈ M0 =
{m1

0,m
2
0, . . . ,m

n1
0 }, D0 = M(x0 −m0)(x0 −m0)∗ is the covariance matrix (the

asterisk means transposition), D0 ∈ D0 = {D1
0, D

2
0, . . . , D

n2
0 }. Thus, the set X0

contains n1n2 elements. We assume that the system’s initial state belongs to X0

but is unknown.
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Equation (1) is a symbolic notation for the integral identity (ω is omitted)

x(t) = x0 +

t∫
t0

(A(s)x(s) +B1(s)u1(s) + f(s)) ds+

t∫
t0

B2(s)U2(s) dξ(s). (2)

The latter integral on the right-hand side of equality (2) is stochastic and is
understood in the sense of Ito. A solution of equation (1) is defined as a stochastic
process satisfying integral identity (2) for any t with probability 1. Under the
assumptions above, there exists a unique solution, which is a normal Markov
process with continuous realizations [8].

The problems in question consist in the following. Let a nonempty finite set
St ⊂ T of admissible guidance times and nonempty convex closed target sets
M(t) ∈ IRn and D(t) ∈ IRn×n for any moment t ∈ St as well as a continuous
matrix observation function Q(t) of dimension q × n be given. At any time, it
is possible to receive the information on some number N of realizations of the
stochastic process x(t). The following signal is available:

y(t) = Q(t)x(t). (3)

Assume that, for a finite set of some specified times τi ∈ T , i ∈ [1 : l], we
can construct, using N realizations of the process x(t), a statistical estimate
mN
i of the mathematical expectation m(τi) and a statistical estimate DN

i of the
covariance matrix D(τi) such that

P
(

max
i∈[1:l]

{∥∥mN
i −m(τi)

∥∥
IRn ,

∥∥DN
i −D(τi)

∥∥
IRn×n

}
≤ h(N)

)
= 1− g(N), (4)

where h(N) and g(N) → 0 as N → ∞. Standard procedures of obtaining the
estimates mN

i and DN
i admit modifications providing the validity of relation (4)

and the specified convergences.
The problems of guaranteed closed-loop ε-guidance consist in forming con-

trols (u1(·), u2(·)) guaranteeing, whatever the initial state x0 from the set X0,
prescribed properties of the process x by or at the terminal time ϑ. Here, we
mean that, for an arbitrary small (in advance specified) ε > 0, the mathemati-
cal expectation m(ϑ) and the covariance matrix D(ϑ) reach at some admissible
guidance time t ∈ St the ε-neighborhoods of the target sets M(t) and D(t), re-
spectively. This is Problem A1. If St = {ϑ}, we have Problem B1. In the motion
process, the sought controls are formed using the information on N realizations
of the signal (3). By virtue of estimate (4), it is reasonable to require that the
probability of the desired event should be close to 1 for sufficiently large N and
algorithm’s parameters concordant with N in a special way. For ODEs, Prob-
lems A1 and B1 were considered in detail in [4] and [5], respectively.

3 Reduction of the original problems

Let us reduce the guidance problems for the SDE to problems for systems of
ODEs. By virtue of the linearity of the original system, the mathematical ex-
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pectation m(t) depends only on u1(t); its dynamics is described by the equation

ṁ(t) = A(t)m(t)+B1(t)u1(t)+f(t), t ∈ T = [t0, ϑ], m(t0) = m0 ∈M0. (5)

We assume that N (N > 1) trajectories xr(t), r ∈ [1 : N ], of the original
SDE are measured; then, we know values of signal (3), i.e., yr(t) = Q(t)xr(t).

The signal on the trajectory of equation (5) is denoted by ym(t) = Qm(t)m(t);
its estimate formed by the information on yr, r ∈ [1 : N ], by yNm(t):

yNm(t) =
1

N

N∑
r=1

yr(t) = Q(t)mN (t), mN (t) =
1

N

N∑
r=1

xr(t). (6)

Obviously, Qm(t) = Q(t) and, for the finite set of times τi ∈ T , i ∈ [1 : l], in
view of relation (4), it holds that

P
(
∀i ∈ [1 : l]

∥∥yNm(τi)− ym(τi)
∥∥
IRq ≤ C1h(N)

)
= 1− g(N). (7)

Here and below, constants Ci can be written explicitly.
The covariance matrix D(t) depends only on U2(t); its dynamics is described

by the so-called equation of the method of moments [6] in the following form:

Ḋ(t) = A(t)D(t) +D(t)A∗(t) + B2(t)U2(t)U∗2 (t)B∗2(t), t ∈ T = [t0, ϑ],

D(t0) = D0 ∈ D0. (8)

For our purposes, matrix equation (8) is conveniently rewritten in the form
of a vector equation, which is more traditional for such problems. By virtue of
the symmetry of the matrix D(t), its dimension is defined as nd = (n2 + n)/2.
Let us introduce the vector d(t) = {ds(t)}, s ∈ [1 : nd], consisting of successively
written and enumerated elements of the matrix D(t), taken line by line starting
with the element located at the main diagonal. Performing standard matrix
operations over A(t) and B2(t), we form continuous matrices Ā(t):T → IRnd×nd

and B̄(t):T → IRnd×k and use them to rewrite system (8) in the form

ḋ(t) = Ā(t)d(t) + B̄(t)v(t), t ∈ T = [t0, ϑ], d(t0) = d0 ∈ D0. (9)

The initial state d0 is obtained from D0; the notation for the set D0 is the
same. The multiplication of the diagonal matrices U2(t)U∗2 (t) results in the ap-
pearance of the control vector v(t) = (u221(t), u222(t), . . . , u22k(t)) whose elements

take values from some convex compact set Sv ∈ IRk for all t ∈ T .
The signal on the trajectory of equation (9) is denoted by yd(t) = Qd(t)d(t);

its estimate formed by the information on yr, r ∈ [1 : N ], by yNd (t). The latter
is constructed as follows:

1

N − 1

N∑
r=1

(yr(t)− yNm(t))(yr(t)− yNm(t))∗ = Q(t)
1

N − 1

N∑
r=1

(xr(t)−mN (t))(xr(t)−mN (t))∗Q∗(t) = Q(t)DN (t)Q∗(t), (10)
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where DN (t) = {dNij (t)}, i, j ∈ [1 : n] is the standard estimate of the covariance

matrix D(t) for an unknown (estimated by mN (t)) mathematical expectation
m(t). By means of algebraic transformations using the symmetry of matrix (10),
the expression Q(t)DN (t)Q∗(t) is transformed into yNd (t) = Qd(t)d

N (t), where
Qd(t) is a continuous matrix of dimension nq × nd, nq = (q2 + q)/2, and dN (t)
is the vector of dimension nd extracted from DN (t). Obviously, for the finite set
of times τi ∈ T , i ∈ [1 : l], we have the relation of type (4)

P
(
∀i ∈ [1 : l]

∥∥yNd (τi)− yd(τi)
∥∥
IRnq ≤ C2h(N)

)
= 1− g(N). (11)

Original problems of guaranteed closed-loop ε-guidance for the SDE can be
reformulated as follows. For an arbitrary small (in advance specified) ε > 0, it
is required to choose controls u1(·) in equation (5) and v(·) in equation (9) such
that, whatever the initial states m0 ∈ M0 and d0 ∈ D0, the trajectories of (5)
and (9) reach at some admissible guidance time t ∈ St the ε-neighborhoods of
the target sets M(t) and D(t), respectively (Problem A2). If St = {ϑ}, we have
Problem B2. It is important that the probability of the desired event should be
close to 1. The required controls are formed through the estimates of the signals
ym and yd satisfying relations (7) and (11); actually, these controls define the
control in SDE (1). The dependence of the number N of measurable trajectories
on the value ε is given below. The next theorem follows from the aforesaid.

Theorem 1. Problems A1 (B1) and A2 (B2) are equivalent.

Thus, to solve the original problems, one should establish some conditions of
consistent solvability of the problems of ε-guidance for ODEs (5) and (9) and
should find the form of concordance of parameters N and ε as well.

4 The method of open-loop control packages: a brief
review of results for ODE

Let us present briefly the approach by A.V. Kryazhimskii and Yu.S. Osipov to
solving the problem of closed-loop guidance for a linear ODE [3], [5].

Consider a dynamical control system

ẋ(t) = A(t)x(t) +B(t)u(t) + f(t), t ∈ T = [t0, ϑ], x(t0) = x0 ∈ X0,

where x(t) ∈ IRn, u(t) ∈ P ⊂ IRm (P is a convex compact set); A(·), B(·),
and f(·) are continuous matrix functions of dimensions n×n, n×m, and n× 1,
respectively; X0 is a finite set of possible initial states. The real initial state of the
system is assumed to be unknown. A nonempty finite set St ⊂ T of admissible
guidance times and nonempty convex closed target sets M(t) ∈ IRn, t ∈ St, as
well as a continuous observation function Q(t) of dimension q × n are given.

The problem of guaranteed closed-loop ε-guidance consists in forming by
the signal y(t) = Q(t)x(t) a control guaranteeing that the system’s state x(t)
reaches at some admissible guidance time t ∈ St the ε-neighborhood of the
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target set M(t). This is Problem A. If St = {ϑ}, we have Problem B. The
solution of the problem is sought in the class of closed-loop control strategies with
memory. The correction of the values of a control u(·) is possible at in advance
specified times. In [3], the equivalence of the formulated problem of closed-loop
control to the so-called problem of package guidance is established. Let us briefly
present basic notions of the latter problem. Consider the homogeneous system
ẋ(t) = A(t)x(t), t ∈ T = [t0, ϑ], x(t0) = x0 ∈ X0; its fundamental matrix
is denoted by F (·, ·). For any x0 ∈ X0, the homogeneous signal corresponding
to x0 is the function gx0

(t) = Q(t)F (t, t0)x0, t ∈ [t0, ϑ]. The set of all admissible
initial states x0 corresponding to a homogeneous signal g(·) till a time τ is
denoted by X0(τ |g(·)) = {x0 ∈ X0: gx0

(·)|[t0,τ ] = g(·)|[t0,τ ]}, where g(·)|[t0,τ ] is
the restriction of the homogeneous signal g(·) onto the interval [t0, τ ].

A family (ux0
(·))x0∈X0

of open-loop controls is called an open-loop control
package if it satisfies the condition of nonanticipation: for any homogeneous sig-
nal g(·), time τ ∈ (t0, ϑ], and admissible initial states x′0, x

′′
0 ∈ X0(τ |g(·)), the

equality ux′0(t) = ux′′0 (t) holds for all t ∈ [t0, τ ]. Any family st = (sx0)x0∈X0

of elements of St is called a family of admissible guidance times. An open-loop
control package (ux0

(·))x0∈X0
is guiding with a family of admissible guidance

times st if for any x0 ∈ X0, the motion from x0 corresponding to ux0
(·) takes a

value exactly in the target setM(sx0). If there exists an open-loop control pack-
age that is guiding with a family of admissible guidance times st, we say that the
idealized problem of package guidance corresponding to the original problem of
guaranteed closed-loop control is solvable with the family of admissible guidance
times st. These constructions suit for both Problems A and B.

Let G be the set of all homogeneous signals. We introduce the set G0(g(·))
of all homogeneous signals coinciding with g(·) in a right-sided neighborhood of
the initial time t0. The first splitting moment of the homogeneous signal g(·) is

the time τ1(g(·)) = max
{
τ ∈ [t0, ϑ]: max

g′(·)∈G0(g(·))
max
t∈[t0,τ ]

‖g′(t)− g(t)‖IRq = 0
}
.

If τ1(g(·)) < ϑ, then, by analogy with G0(g(·)), we introduce the set G1(g(·))
of all homogeneous signals from G0(g(·)) coinciding with g(·) in a right-sided
neighborhood of the splitting moment τ1(g(·)). By analogy with τ1(g(·)), we
define the second splitting moment of the homogeneous signal g(·) and so on.
Finally, we introduce the set of all the splitting moments of the homogeneous
signal g(·): T (g(·)) = {τj(g(·)): j = 1, . . . , kg}, kg ≥ 1, τkg (g(·)) = ϑ. Then,
we consider the set (in ascending order) of all the splitting moments of all the
homogeneous signals (possible switching moments for the “ideal” guiding open-
loop control): T =

⋃
g(·)∈G T (g(·)), T = {τ1, . . . , τK}, K ≤

∑
g(·)∈G kg(·) is

the number of elements of the set T . Obviously, the sets T (g(·)) and T are
finite due to the finiteness of the sets X0 and G. For any k = 1, . . . ,K, the set
X0(τk) = {X0(τk|g(·)): g(·) ∈ G} is called the cluster position at the time τk;
each of its elements X0k is called the cluster of initial states at this moment.

The constructions above were used for designing rather cumbersome criteria
for the solvability of the original problems (A and B) mathematically based on
solving finite-dimensional optimization problems; see [4] and [5] for details.
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5 Properties of the statistical estimates

Lemma 1. For a finite set of some specified times τi ∈ T , i ∈ [1 : l], the stan-
dard estimates mN

i of the mathematical expectation m(τi) and DN
i of the covari-

ance matrix D(τi) constructed through N (N > 1) realizations x1(τi), . . . , x
N (τi)

of the random variables x(τi) by the following rules [9]:

mN
i =

1

N

N∑
r=1

xr(τi), DN
i =

1

N − 1

N∑
r=1

(xr(τi)−mN
i )(xr(τi)−mN

i )∗, (12)

provide the validness of relation (4) (consequently, (7) and (11)).

The proof of the lemma is presented in [10]. Here, we restrict ourselves by
the citation that it is possible to choose the same parameters in relations (4),
(7), and (11), namely,

h(N) = ChN
γ−1/2, g(N) = CgN

max{−1,−1/2−3γ}, (13)

where 0 < γ < 1/2, Ch and Cg are constants. For example, if γ → +0, h(N) and
g(N) have the power exponents of the value 1/N asymptotically equal to 1/2.

6 Criteria for the solvability of the problems

Let us define additional notions for ODEs (5) and (9). Let G1 = {g1(·)} and
G2 = {g2(·)} be the sets of all homogeneous signals for (5) and (9), respectively.
The sets of all splitting moments of all homogeneous signals for (5) and (9) are
denoted by T 1 = {τ11 , . . . , τ1K1

} and T 2 = {τ21 , . . . , τ2K2
}; the cluster positions

and clusters of initial states at the times τ1k and τ2k , byM0(τ1k ) and M0k, D0(τ2k )
and D0k. Recall that τ1K1

= τ2K2
= ϑ and assume that τ10 = τ20 = t0. Let us

introduce the sets of pairs of homogeneous signals splitted at the moments τ1k ,
k ∈ [0 : K1 − 1] and τ2k , k ∈ [0 : K2 − 1]: G1∗

k = {(g1i (τ1k ), g1j (τ1k ))}, G2∗
k =

{(g2i (τ2k ), g2j (τ2k ))}, i 6= j. A moment from the interval (τ1k , τ
1
k + Cε] (τ1k + Cε <

τ1k+1, C is a constant), at which all the pairs from G1∗
k are distinguishable, is

denoted by τ1∗k and is called a distinguishing moment for all the signals splitted
at the time τ1k . Similarly, we define a distinguishing moment τ2∗k . For all τ1k ∈ T 1,
k ∈ [0 : K1 − 1] and τ2k ∈ T 2, k ∈ [0 : K2 − 1], the corresponding moments τ1∗k
and τ2∗k are defined uniquely; at these moments, the signal’s values differ in all
the pairs from G1∗

k and G2∗
k [10]. The set of all such moments for (5) and (9)

T ∗ = T 1∗ ∪ T 2∗, T 1∗ = {τ1∗0 , . . . , τ1∗K1−1}, T 2∗ = {τ2∗0 , . . . , τ2∗K2−1}, (14)

determines both the aforesaid set of l (l < K1 + K2) times, at which the N
trajectories of the original process are measured, and the set of times, which are
possible for switching the closed-loop control. As an example, we formulate the
solvability conditions for problem B2 [5]:

sup
(lm0

)m0∈M0
∈S1

γ1((lm0
)m0∈M0

) ≤ 0, γ1((lm0
)m0∈M0

) =
∑

m0∈M0

〈lm0
, F1(ϑ, t0)m0〉
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+

K1∑
k=1

τ1
k∫

τ1
k−1

∑
M0k∈M0(τ1

k
)

ρ−
( ∑
m0∈M0k

B∗1(s)F ∗1 (ϑ, s)lm0

∣∣Su1)ds

+

ϑ∫
t0

〈 ∑
m0∈M0

lm0 , F1(ϑ, s)f(s)
〉
ds−

∑
m0∈M0

ρ+(lm0 |M(ϑ)), (15)

sup
(ld0 )d0∈D0

∈S2
γ2((ld0)d0∈D0

) ≤ 0, γ2((ld0)d0∈D0
) =

∑
d0∈D0

〈ld0 , F2(ϑ, t0)d0〉

+

K2∑
k=1

τ2
k∫

τ2
k−1

∑
D0k∈D0(τ2

k
)

ρ−
( ∑
d0∈D0k

B̄∗(s)F ∗2 (ϑ, s)ld0
∣∣Sv) ds− ∑

d0∈D0

ρ+(ld0 |D(ϑ)).

Here, (lm0)m0∈M0 and (ld0)d0∈D0 are families of vectors parameterized by the
corresponding initial states; S1 and S2 are the sets of families (lm0)m0∈M0 ,∑
‖lm0
‖2IRn = 1 and (ld0)d0∈D0

,
∑
‖ld0‖2IRnd = 1; F1(·, ·) and F2(·, ·) are the

fundamental matrices of systems (5) and (9). We present the key result of [10].

Theorem 2. Let conditions (15) be fulfilled, let the information on N trajec-
tories of SDE (1) be received at the times composing the set T ∗ (14), let the
constants Ch, Cg, and γ be taken from Lemma 1 (see (13)) and

N > (2Ch/ρ(ε))
2/(1−2γ)

, (16)

ρ(ε) = min
{

min
τ1∗
k
∈T 1∗, (g1

i
,g1

j
)∈G1∗

k

‖g1i (τ1∗k )− g1j (τ1∗k )‖IRq ,

min
τ2∗
k
∈T 2∗, (g2

i
,g2

j
)∈G2∗

k

‖g2i (τ2∗k )− g2j (τ2∗k )‖IRnq

}
.

Then, problem B1 is solvable with the probability 1 − CgNmax{−1,−1/2−3γ} and
there exists an ε-guiding control in equation (1) based on open-loop control pack-
ages for systems (5) and (9).

7 Illustrative example

Consider the linear SDE of the first order:

dx(t) = −x(t)dt+ u1(t)dt+ u2(t)dξ(t), t ∈ T = [0, 2], u1, u2 ∈ [0, 1], (17)

with the unknown initial state x0 ∈ X0, X0 consists of four normally distributed
random variables with numerical parameters (m0, d0), where the mathematical
expectation m0 ∈ M0 = {m1

0,m
2
0}, m1

0 = (3− e)e, m2
0 = e2, and the dispersion

d0 ∈ D0 = {d10, d20}, d10 = e2/2, d20 = e4. We use the signal

y(t) = Q(t)x(t), Q(t) =

{
0, t ∈ [0, 1]
t− 1, t ∈ (1, 2]

. (18)
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Let us write ODEs for the mathematical expectation and dispersion, as well as
the observed signals, using the formulas from Section 3:

ṁ(t) = −m(t) + u1(t), m(0) = m0 ∈ {m1
0,m

2
0}, ym(t) = Q(t)m(t); (19)

ḋ(t) = −2d(t) + u22(t), d(0) = d0 ∈ {d10, d20}, yd(t) = Q2(t)d(t). (20)

Let the set of admissible guidance times St = {3/2, 2} and the target sets
M(3/2) = [1 + 2/

√
e −
√
e, 1], M(2) = {1}, D(3/2) = [1/2, 1], D(2) = {1}

be given. The control aim consists in forming, for an arbitrary small ε > 0, an
open-loop control (u1, u2) guaranteeing, whatever the initial states m0 ∈ M0

and d0 ∈ D0, by the information on N trajectories of equation (17), the attain-
ability (with a probability close to 1) of ε-neighborhoods of the target setsM(t)
and D(t) by the mathematical expectation m and the dispersion d, respectively,
at the moment t = 2 (Problem B2) and by the moment t = 2, i.e., at one of the
moments of the set St (Problem A2). The example reflects the natural fact that
Problem B2 is not solved, whereas Problem A2 is solvable.

The splitting moments of the homogeneous signals for equations (19) and (20)
coincide, K = 2, τ1 = 1 (then it is possible to distinguish different homogeneous
signals), τ2 = 2. In the case when the controls u1 and u22 are piecewise constant
functions (u[0,1], u(1,2] and v[0,1], v(1,2], respectively), we obtain m(2) = e−2m0 +
(1 − e−1)(e−1u[0,1] + u(1,2]), d(2) = e−4d0 + (1 − e−2)(e−2v[0,1] + v(1,2])/2. It
follows from the form of m(2) that the solution of equation (19), starting from
the greater initial state m2

0 = e2, reaches (at t = 2) the setM(2) only under the
action of zero control u1 on the whole interval [0, 2], i.e., u[0,1] = u(1,2] = 0. Note
that this boundary cannot be reached before the time t = 2; so the set M(3/2)
is not attainable in case of the action of zero control u1. At the same time, if the
real initial state coincides with the smaller possible value m1

0 = (3 − e)e, then,
after the necessary action of zero control till the splitting moment t = 1, the
choice of u(1,2] = 1 cannot already force the trajectory to reach the set M(2).
However, it is easily seen that the lower boundary of the set M(3/2) can be
reached at the time t = 3/2. A similar argument is applicable to equation (20).
The open-loop controls for equations (19), (20) solving Problem B2 are unique.

We pass to constructing the closed-loop control using the open-loop control
package. Note that, since the splitting moments for equations (19) and (20)
coincide, it is sufficient to perform measurements of N (N > 1) trajectories
x1(τ∗), . . . , x

N (τ∗) of the original SDE at the unique distinguishing moment τ∗ =
1 + ε; the zero controls are fed onto equations (19) and (20) till this time. Then,
we construct by (12) the estimates yNm(τ∗) and yNd (τ∗) of the signals ym(τ∗) and
yd(τ∗) satisfying the relations like (7), (11), and (13):

P
(
max

{∣∣yNm(τ∗)− ym(τ∗)
∣∣ , ∣∣yNd (τ∗)− yd(τ∗)

∣∣} ≤ h(N)
)

= 1− g(N).

Let us derive the condition providing the detection at the time τ∗ of the real
initial states of equations (19) and (20) (m1

0 or m2
0 and d10 or d20) and, conse-

quently, of equation (17). Actually, taking into account that u1(t) = 0, u22(t) =
0, t ∈ [0, 1 + ε], and the form of Q, we should distinguish the values y1m(τ∗) =
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εe−(1+ε)m1
0 and y2m(τ∗) = εe−(1+ε)m2

0, as well as y1d(τ∗) = ε2e−2(1+ε)d10 and
y2d(τ∗) = ε2e−2(1+ε)d20. Therefore, N must be such that

h(N) < min
{

(εe−(1+ε)|m1
0 −m2

0|)/2, (ε2e−2(1+ε)|d10 − d20|)/2
}
. (21)

Then, only one of the inequalities
∣∣yNm(τ∗)− yim(τ∗)

∣∣ ≤ h(N), i = 1, 2, holds with

the probability 1−g(N); the same is valid for the inequalities
∣∣yNd (τ∗)− yid(τ∗)

∣∣ ≤
h(N), i = 1, 2. In case equation (19) starts from the initial state m1

0, we decide
to apply the control u1(t) = 1 on the interval (1 + ε, 3/2); otherwise (from the
state m2

0), the control u1(t) = 0, t ∈ (1 + ε, 2). In the first variant, in view of
the time delay in switching the control to optimal, m(3/2) takes a value at the
ε-neighborhood of the set M(3/2). In the second variant, as a result, we have
exactly m(2) = 1. By analogy, we proceed with equation (20): if the real initial
state is d10, then we apply the control u22(t) = 1 on the interval (1 + ε, 3/2); if
d20, then u22(t) = 0, t ∈ (1 + ε, 2). In the first case, d(3/2) takes a value at the
ε-neighborhood of the set D(3/2). In the second case, we have exactly d(2) = 1.

Thus, the closed-loop control method described above solves the original
ε-guidance problem: it guarantees the attaintment of the solution of equation
(19) to the ε-neighborhood of the target set M(t), t ∈ St, and the attaintment
of the solution of equation (20) to the ε-neighborhood of the target set D(t),
t ∈ St, with a probability close to 1. The computations by formulas (13) and
(21) showed that N = 103 guarantees the guidance accuracy ε = 0.1 with a
probability P ≥ 0.95, whereas N = 105 guarantees ε = 0.01 with P ≥ 0.995.
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