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Abstract. A method for the phase unwrapping in interferometric syn-
thetic aperture radars (InSAR) and an algorithm for its implementation
are proposed, which localizes an unwrapping error in a neighborhood of a
point of discontinuity. The method includes the iterative phase disconti-
nuity correction by implementation of the phase pseudo discontinuities of
opposite directions. Application of the algorithm allows one to obtain a
continuous phase function, which can then be converted into an absolute
by the simple unwrapping by a linear path. The method was tested on
models of typical discontinuities (isolated phase gap, phase dipole, phase
aliasing) and on the interferogram obtained by the ALOS PALSAR. The
method demonstrated the best results in comparison with traditional
unwrapping methods, i.e. SHAPHU (MCF) and Region Growing ones.
It is also shown that the method can be easily implemented in parallel
processing systems.
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1 Introduction

Digital elevation models (DEM) and displacement maps are widely used in var-
ious scientific and technical areas, i.e. cartography, geodesy, geology, environ-
mental monitoring of mining areas, monitoring the transport communications,
etc. [1–5]. Radar remote sensing is performed by interferometric SAR techniques
(InSAR and DInSAR) that allows one to obtain both types of elevation data
with semi-automatic data processing, which makes it very attractive for use in
these tasks. However, the phase unwrapping stage of interferometric processing,
which converts a relative phase defined on the interval [−π, π], into an absolute
phase, which is approximately proportionally related to the surface topography
(for InSAR) or the relief displacement (DInSAR), is the obvious “bottleneck” of
the whole radar interferometry. Existing algorithms for its solving are generally
based on utilization of the optimization techniques (Minimal Cost Flow, Integer
optimization), on search for the optimal integration path (Goldstein residue cut),
on solution of large systems of equations (least square method), etc. Such tech-
niques have low computational efficiency (typically quadratic complexity) and
are difficult for parallel execution. Also, the most part of the existing methods
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is aimed to building the field absolute phase, which is congruent to the relative
phase field. But it is actually useless in terms of side-looking radar geometry,
which causes an irreversible damage to the local data parts.

Phase discontinuity is an element of the relative (wrapped) interferometric
phase, which leads to dependence of the absolute (unwrapped) phase on the inte-
gration contour shape, and, so, the absolute phase cannot be restored uniquely.
It is possible to identify the following elements of the discontinuity: two dis-
continuity points (so-called residues), where the cumulative sum on elementary
path (4 adjacent elements) of the phase gradient is not equal to zero, and a dis-
continuity line, which virtually connects these points (Fig. 1a). It is possible to
allocate all discontinuity points by calculating the residue function for the whole
interferogram, but not the discontinuity line. This fact makes the solution of un-
wrapping problem ambiguous. Analysis of different interferogram types allows
one to distinguish, at least, 3 types of phase discontinuities that may request
different unwrapping techniques.

1. An elementary discontinuity is the phase discontinuity, which is caused
by phase noise peaks. Such discontinuity covers two adjacent elements of the
interferogram, and the their phase difference exceeds π. A simple unwrapping
procedure (phase unwrapping by linear paths) passing through both these ele-
ments will result in the absolute phase error of the value 2π.

2. Phase discontinuity caused by layover. The echo signals layover occurs
when the terrain slope angle exceeds the elevation angle of the SAR carrier, and
the SAR echoes from the different surface elements return simultaneously and
can not be resolved.

3. Phase discontinuity caused by aliasing. It occurs in high-slope terrain due
to the discrete nature of the interferogram. In such scene elements, the adjacent
interferometric fringes disappear that leads to a significant unwrapping error.

2 An ambiguity resolving method for phase
discontinuities

The layover discontinuity (type 2 in the classification above) is the most frequent
and complex discontinuity type, and, so, it’s reasonable to explore it closely. Such
discontinuity may be easily simulated in a complex domain as a function like

İ(zm,n) = exp

{
j arg

[
zm,n − z01
zm,n − zp1

]}
, (1)

where z01 and zp1 are coordinates of the discontinuity points on the interfero-
gram, zm,n = m+ jn is a complex coordinate variable.

Its structure may be better shown on a three-dimensional phase image. In
the case of single discontinuity point (Fig. 1b), the phase acquires a form of the
vortex evenly gluing the branches 3D-phase; and for two discontinuity points
the superposition of two distant oncoming vortices takes place, which forms a
jumper between unambiguous 3D-phase branches (Fig. 1c).



129

a b c

Fig. 1. A typical phase discontinuity caused by layover; a) interferogram; b) 3D-phase
for a single discontinuity point; c) 3D-phase branches for the whole discontinuity

Let’s use the circumstance that in the case of type 2 discontinuity the pair
of opposite-signed residues in points z01 and zp1 it remains localized in some
neighborhood of these points. Such discontinuity forms two artificial phase vor-
tices Ċ0(zm,n) and Ċp(zm,n) (pseudo-discontinuities) with centers at the points
z01 and zp1 that have inverse directions

Ċ0(zm,n) = exp

{
j · arg

[
1

zm,n − z0

]}
Ċp(zm,n) = exp {j · arg [zm,n − zp]} ,

, (2)

where Ċ0(zm,n) and Ċp(zm,n) are the inverse phase vortices. Then form a new
interferogram

İc(zm,n) = İ(zm,n)Ċ0(zm,n)Ċp(zm,n). (3)

The 3D-phase corresponding to the interferogram İc will not contain jumpers,
and its branches will be unambiguous (Fig. 2). Thus, the vortices formed at the
discontinuity points were destroyed by operation (3).

a b

Fig. 2. A 3D-phase ambiguity removal under the influence of two inverse phase vortices;
a) original 3D-phase; b) 3D-phase after inverse vortices application

The SAR interferograms usually contains multiple chaotic located disconti-
nuities, and, so, it is essential, at first, to localize them by the residues function,
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and then form the product of the complex images of inverse vortices for each
point

Ṗ (zm,n) = Ċ01(zm,n)Ċ02(zm,n) · ... · Ċ0M · Ċp1(zm,n)Ċp2(zm,n) · ... · ĊpN . (4)

Let us call Ṗ (zm,n) the inverse vortex phase field. A dot product of complex
interferogram and inverse vortex phase field

İc(zm,n) = İ(zm,n)Ṗ (zm,n) (5)

forms the corrected interferogram İc(zm,n), where the phase ambiguity is not
obligatory fully resolved because the inverse vortices may lead to occurrence of
new phase discontinuities or to moving it into a new position. So, the procedure
of application of the inverse vortex phase field should be iteratively repeated until
all ambiguities to be fully resolved. Thereafter, a simple unwrapping procedure
may be applied to restore the absolute phase completely. For elementary dis-
continuities, such correction is unwanted because they do not produce jumpers
between 3D-phase, but the application of inverse vortex will here lead to addi-
tional distortion of the unwrapped phase. On the other hand, a simple zeroing
of such discontinuities instead of inverse vortex correction does not produce an
unwrapping error and allows one to increase the computational speed.

On the basis of proposed phase ambiguity resolving technique, let us formu-
late an algorithm for the phase unwrapping, which would include the following
steps:

1. generation of interferogram residues function — Rm,n.
If Rm,n = 0 ∀(m,n), then go to step 7;

2. detection of elementary discontinuities {We(m,n)} according to the crite-
rion of 8-neibourhood of two opposite-signed residues, and their correction by
phase zeroing;

3. regeneration of interferogram residues function — Rcm,n.
If Rcm,n = 0 ∀(m,n), then go to step 7;

4. generation inverse vortex phase field for remaining residues points
{z01, z02, ..., z0M} and {zp1, zp2, ..., zpN}

Ṗ (zm,n) = exp

(
j · arg

(zm,n − zp1) · (zm,n − zp2) · ... · (zm,n − zpn)

(zm,n − z01) · (zm,n − z02) · ... · (zm,n − z0n)

)
; (6)

5. interferogram correction with inverse vortex phase field

İ(zm,n)→ İ(zm,n) · Ṗ (zm,n); (7)

6. regeneration of the interferogram residues function — Rc
′′

m,n;

If Rc
′′

m,n 6= 0 ∀(m,n), then go to step 4, else go to step 7;
7. simple phase unwrapping by the linear path.
Steps 4–5 have the most computational complexity, but their performance

may be improved by the following measures.
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1. Multiplication of the complex functions İ(zm,n) and Ṗ (zm,n) may be un-
ambiguously replaced by summation of their arguments, and the arguments can
be evaluated once before the first iteration.

2. The inversed vortex P 1(zm,n) for a single point can be computed once for
the field of 3M × 3N size and saved into the processing device memory, and at,
step 4, the vortex fragment of M×N size with center at the point corresponding
to the zero z0i or the pole zpi can be simply read from the memory.

3. Despite the algorithm is global, the inverse vortex phase field is constructed
by independent repeated complex multiplications (or additions in the relative
phase domain) of the deterministic function, and, so, it can be easily imple-
mented through a parallel execution of computing devices (within one iteration).
Computations of residues function on step 1–3 and 6 are local and, so, can be
distributed by different computational devices; computations for steps 4–5 must
be made on the interferogram of the original size, but discontinuities may be
passed in any order by different computational devices, and the partial results
may be summarized.

The proposed unwrapping technique will further be called the inverse vortex
phase field method (IVPF). The proof of the algorithm convergence is not in the
scope of this paper, but it should be noted that the algorithm does not diverge
in any of the following cases. A similar approach to phase unwrapping in laser
interferometry applications in a simplified form was previously proposed Aoki et
al. [6] and further studied by Tomioka [8]. However, it does not obtain noticeable
development due to higher complexity of shapes in the interferometry of the
“small forms”; but it seems to be more applicable to the radar interferometry
with its peculiarities [9].

3 An efficiency analysis of phase unwrapping by the
IVPF algorithm

Let us use the following models of interferometric phase for comparative analysis
of the IVPF algorithm efficiency.

1. A “lake” model, which simulates an uncorrelated SAR interferogram of
M × N size and includes an area with uniformly distributed phase (Fig. 3a).
Such model simulates numerous elementary discontinuities.

2. A “Gauss hill” model (Fig. 3b), which simulates the phase discontinuity
caused by layover.

3. A “steep slope” model (Fig. 3c), which simulates the phase discontinuity
caused by aliasing.
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Fig. 3. Phase discontinuity models: a) numerous elementary discontinuities (“lake”);
b) layover discontinuity (“Gauss hill”); c) aliasing discontinuity (“steep slope”)

Efficiency is estimated by accuracy of the absolute phase restoration and by
the required computer time. The major evaluation of the restoration accuracy
is performed by the standard deviation of the simulated absolute phase and
restored absolute phase

σΨ =

√
1

MN − 1

∑
m,n

(
Ψ̂m,n − Ψm,n

)2
. (8)

However, the accuracy estimation based on the standard deviation criterion
is insufficient, because in presence of propagating unwrapping error, the devi-
ation becomes strongly dependent on the size of the interferogram. For larger
interferogram sizes, the standard deviation may be small despite the fact that the
restored absolute phase can have an obvious and significant damage. Therefore,
let us introduce two additional accuracy criteria for the unwrapped phase:

— stripe coefficient of the propagating error, which is equal to proportion of
incorrectly unwrapped elements to the linear interferogram size

∆0 = lim
M→∞
N→∞

Nπ(M,N)√
MN

, (9)

where Nπ is the number of incorrectly unwrapped elements. If the propagating
error is localized in a stripe of constant width, limit of (9) will converge to the
value in the interval (0; 0.5]; if the error stripe width grows, the limit will be
infinite; and if the error stripe is tightened, the limit will tend to zero;

— linear divergence coefficient of the propagating error

∆1 = lim
M→∞
N→∞

Nπ(M,N)

MN
. (10)

If the error stripe diverges linearly, then ∆1 will take value in the interval (0; 0.5];
if the limit value tends to zero, the error stripe has a constant width or it is
tightened; if the stripe has a nonlinear form, the limit will be infinite.

The following phase unwrapping algorithms were researched:



133

— Simple unwrapping algorithm, SU;

— Region Growing algorithm, RG;

— Minimum cost flow algorithm, MCF (SNAPHU) [7].

Experiments were conducted on square form simulated phase models (M =
N). The results for 3 models are presented in Tables 1—5 and Fig. 4; the results
for “lake” model were calculated for the scene part lying outside the damaged
area. The following notes should be done according to the experiment results.

1. For model 1 (“lake”), the damaged area was unwrapped correctly only by
two algorithms: the MCF and IVPF. The other two algorithms generate prop-
agating error, and in the case of Region Growing algorithm, the error diverges
with a ∆1=0.14. For the IVPF, a phase error around the damaged area occurs,
which is rapidly decreasing with a distance from the center of the damaged area.
The MCF algorithm in the majority of cases doesn’t produce any error, but in
one experiment a propagating error with ∆1=0.21 has appeared (Fig. 4b).

2. For model 2 (“Gauss hill”), none of the algorithms has recovered the
absolute phase accurately. However the MCF and IVPF algorithms do not lead
to the propagating errors. The IVPF algorithm distorts the neighborhood of the
discontinuity such that the phase inside it tends to a zero mean value (Fig. 4c).
The MCF algorithm connects the edges of the discontinuity region by the strips
with approximately constant phase.

3. For model 3 (“steep slope”), none of the algorithm does not recover the
absolute phase accurately. The MCF algorithm generates an unwrapping error;
the IVPF distorts the discontinuity neighborhood, but demonstrates the lowest
phase error.

4. The speed of the IVPF and MCF algorithms is determined not only by the
interferogram size, but, also, by the number of discontinuities (“lake” model).
For the size of 1500× 1500 elements the IVPF wins the MCF in performance by
24%.

Table 1. An accuracy (σΨ ) and computational time (Tp) results of the unwrap-
ping algorithms for the “lake” model with different model sizes (M ×N) and a
damaged area of radius R

500× 500, R = 100 1000× 1000, R = 300 1500× 1500, R = 600
Algorithm

σΨ , rad Tp, sec σΨ , rad Tp, sec σΨ , rad Tp, sec

SU 2.5 ∼ 0 3.9 ∼ 0 4.3 0.3

RG 2.1 1.1 3.2 4.9 4.1 12.3

MCF 0.0 4.7 0.0 27.4 2.7 197

IVPF 0.2 17.8 0.1 19.0 0.1 158
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Table 2. An accuracy (σΨ ) and computational time (Tp) results of the
unwrapping algorithms for the “Gauss hill” model (500× 500 elements)
with different numbers of the hills Nh and their widths ∆H

∆H = 50, Nh = 1 ∆H = 250, Nh = 1 ∆H = 50, Nh = 5
Algorithm

σΨ , rad Tp, sec σΨ , rad Tp, sec σΨ , rad Tp, sec

SU 17.2 ∼ 0 39.8 ∼ 0 21.1 ∼ 0

RG 15.7 3.1 33.3 3.8 14.9 2.3

MCF 9.8 2.3 22.6 2.7 6.4 2.8

IVPF 10.2 3.0 20.4 3.0 6.3 0.6

Table 3. Propagating error
coefficients calculated by the
“lake” model

Algorithm ∆0 ∆1

SU 0.14 0

RG ∞ 0.14

MCF 0 (0.21) 0

IVPF 0 0

Table 4. Propagating
error coefficients calcu-
lated by the “Gauss hill”
model with ∆H = 50,
Nh = 1

Algorithm ∆0 ∆1

SU 0.13 0

RG ∞ 0.14

MCF 0 0

IVPF 0 0

Table 5. An accuracy (σΨ ), computa-
tional time (Tp) and propagating error
coefficients for the “steep slope” model
(500 × 500 elements) with area width
∆H = 250

Algorithm σΨ , rad Tp, sec ∆0 ∆1

SU 16.9 ∼ 0 0.39 0

RG 16.1 3.8 0.36 0

MCF 9.8 5.3 0 0

IVPF 7.2 2.2 0 0

An experiment with ALOS PALSAR interferogram phase unwrapping was
conducted with application of the MCF and IVPF algorithms (Simple unwrap-
ping and Region Growing were useless here). The interferogram (Fig. 5a) has
13072 × 3600 elements and it was previously filtered by the Goldstein-Baran
spectral filter. An accuracy estimation was performed by the inverse transfor-
mation of the reference DEM [10]. Both algorithms show comparable results in
accuracy of the absolute phase restoration: 7.99 m for the MCF and 7.19 m for
the IVPF, and the computational time is 923 sec for the IVPF and 3140 sec for
the MCF.
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Fig. 4. Different unwrapping errors; a) the RG unwrapping error for “lake”; b) the
MCF unwrapping error for “lake” ; c) the IVPF unwrapping error for “Gauss hill”; d)
the RG unwrapping error for “Gauss hill”; d) the MCF unwrapping error for “steep
hill”; f) the IVPF unwrapping error for “steep hill”

4 Conclusions

The Inverse vortex phase field method (IVPF) and an algorithm for its imple-
mentation are proposed for the phase unwrapping in interferometric synthetic
aperture radars (InSAR/DInSAR) data processing. Three test phase models for
typical phase discontinuities were simulated, and the analysis of the algorithm
efficiency was performed. Also, two additional criteria for accuracy estimation
of the unwrapped phase were proposed taking into account the influence of the
propagating unwrapping error, which can’t be estimated correctly by the stan-
dard deviation. It is shown that application of the IVPF algorithm does not
lead to appearance of the propagating errors, and its accuracy is slight better
than the same of the Minimum cost flow method (MCF/SNAPHU); but the
computational speed is faster up to 3 times for the large scenes with numerous
discontinuities. It is also shown that the algorithm allows parallel executing on
multiple computing devices (within one iteration) for the further performance
improvement.
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Fig. 5. An ALOS PALSAR interferogram unwrapping results by the IVPF algorithm;
a) original filtered interferogram; b) IVPF-processed absolute phase
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