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Abstract

English. Neural machine translation
(NMT) recently redefined the state of the
art in machine translation, by introduc-
ing deep learning architecture that can
be trained end-to-end. One limitation of
NMT is the difficulty to learn represen-
tations of rare words. The most com-
mon solution is to segment words into sub-
words, in order to allow for shared rep-
resentations of infrequent words. In this
paper we present ways to directly feed
a NMT network with external word em-
beddings trained on monolingual source
data, thus enabling a virtually infinite
source vocabulary. Our preliminary re-
sults show that while our methods do
not seem effective under large-data train-
ing conditions (WMT En-De), they in-
stead show great potential for the typical
low-resourced data scenario (IWSLT En-
Fr). By leveraging external embeddings
learned on Web crawled English texts, we
were able to improve a word-level En-Fr
baseline trained on 200,000 sentence pairs
by up to 4 BLEU points.

Italiano. La traduzione automatica con
reti neurali (neural machine translation,
NMT) ha ridefinito recentemente lo stato
dell’arte nella traduzione automatica in-
troducendo un’architettura di deep learn-
ing che può essere addestrata interamente,
dall’input all’output. Una limitazione
della NMT è comunque la difficoltà di ap-
prendere rappresentazioni di parole poco
frequenti. La soluzione più adottata con-
siste nel segmentare le parole in sotto-
parole, in modo da consentire rappre-
sentazioni condivise per parole poco fre-
quenti. In questo lavoro presentiamo dei

metodi per fornire ad una rete word em-
bedding esterni addestrati su testi nella
lingua sorgente, consentendo quindi un
vocabolario virtualmente illimitato sulla
lingua di input. I nostri risultati prelim-
inari mostrano che i nostri metodi, pur
non sembrando efficaci sotto condizioni di
addestramento con molti dati (WMT En-
De), risultano invece promettenti per sce-
nari di addestramento con poche risorse
(IWSLT En-Fr). Sfruttando word embed-
ding appresi da testi inglesi estratti dal
Web, siamo riusciti a migliorare un sis-
tema NMT basato a parole e addestrato
su 200.000 coppie di frasi fino a 4 punti
BLEU.

1 Introduction

The latest developments of machine translation
have been led by the neural approach (Sutskever et
al., 2014; Bahdanau et al., 2014), a deep-learning
based technique that has shown to outperform the
previous methods in all the recent evaluation cam-
paigns (Bojar et al., 2016; Cettolo et al., 2016).
NMT mainly relies on parallel data, which are ex-
pensive to produce as they involve human transla-
tion. Recently, back-translation (Sennrich et al.,
2015a) has been proposed to leverage target lan-
guage data. This consists in enriching the training
data with synthetic translations produced with a
reverse MT system (Bertoldi and Federico, 2009).
Unfortunately, this method introduces noise and
seems really effective only when the synthetic par-
allel sentences are only a fraction of the true ones.
Hence, this approach does not allow to leverage
huge quantities of monolingual data.
One consequence of the scarcity of parallel data
is the occurrence of out-of-vocabulary (OOV) and
rare words. In fact, being NMT a statistical ap-
proach, it cannot learn meaningful representations



Figure 1: Merging external embeddings with the normal NMT embeddings in the encoder side. The
tokens ”The” and ”car” are used to extract the two kinds of embeddings that are merged before being
used as input for the encoder RNN.

for rare words and no representation at all for
OOV words. The solution up to this moment is
to segment words into sub-words (Sennrich et
al., 2015b; Wu et al., 2016) in order to have a
better representation of rare and OOV words, as
parts of their representation will be ideally shared
with other words. The drawback of this approach
is that it generates longer input sequences, thus
exacerbates the handling of long-term dependen-
cies (Bentivogli et al., 2016). In this paper, we pro-
pose to keep the source input at a word level while
alleviating the problem of rare and OOV words.
We do it by integrating the usual word indexes
with word embeddings that have been pre-trained
on huge monolingual data. The intuition is that
the network should learn to use the provided rep-
resentations, which should be possibly more reli-
able for the rare words. This should be true par-
ticularly for the low-resource settings, where pa-
rameter transfer has shown to be an effective ap-
proach (Zoph et al., 2016). Because of the softmax
layer, the same idea cannot be applied straightfor-
wardly to the target side, hence we continue to
use sub-words there. We show that the network
is capable to learn how to translate from the input
embeddings while replacing the source embedding
layer with a much smaller feed-forward layer. Our
results show that this method seems effective in a
small training data setting, while it does not seem
to help under large training data conditions. In the
following section we briefly describe the state-of-
the-art NMT architecture. Then, we introduce our
modification to enable the use of external word
embeddings. In Section 4, we introduce the ex-
perimental setup and show our results, while in
Section 5 we discuss our solution. Finally, in Sec-
tion 6 we presents our conclusions and the future
work.

2 State of the art

Neural machine translation is based on the
encoder-decoder-attention architecture (Bahdanau
et al., 2014) which jointly learns the transla-
tion and alignment models with a sequence-to-
sequence process. A sequence of source words
f1, f2, . . . , fm is mapped to sequence of embed-
ding vectors x1,x2, . . . ,xm, via a look-up table
X ∈ R|V |×d, where |V | is the vocabulary size and
d is the dimensionality of the embedding vectors.
Hence, the memory occupied by the vocabulary is
linear in both the vocabulary size and the embed-
dings size.
The embedding sequence is then processed by a
bi-directional RNN (Schuster and Paliwal, 1997):

−→
h j = g(xj ,

−→
h j−1), j = 1, ..m

←−
h j = g(xj ,

←−
h j+1), j = m, .., 1

where g is the LSTM (Hochreiter and Schmidhu-
ber, 1997) or the GRU (Cho et al., 2014) func-
tion, and the two directions are merged with func-
tions like the vector concatenation or the point-
wise sum. The sequence of vectors produced by
the bidirectional RNN is the encoded representa-
tion of the source sentence.
The decoder takes as input the encoder outputs (or
states) and produces a sequence of target words
e1, e2, . . . , el. The decoder works by progres-
sively predicting the probability of the next tar-
get word ei given the previously generated target
words and the source context vector ci. At each
step, the decoder computes a word embeddings
yi−1 of the previous target word, applies one or
more recurrent layers, an attention model function
and a softmax layer. The recurrent layers produce
an hidden state si

si = g(yi−1, si−1)



where, g can be computed with one or more LSTM
or GRU layers. The output of the RNN is then
used by the attention model (Luong et al., 2015a)
to weight the source vectors according to their
similarity with it.

αij =
exp(score(si,hj))∑m
k=1 exp(score(si,hk))

The weights are used to compute a weighted av-
erage of the encoder outputs, which represents the
source context

ci =
m∑
j=1

αijhj

The source context vector is then combined with
the output of the last RNN layer in a new vector
zi that is passed as input to the softmax layer to
compute the probability for each word in the vo-
cabulary to be the next word, such that:

p(e | ei−1, ci) ∝ exp(o>zi)

where zi is a column of Z, a matrix with the same
size of the target-side embedding matrix. Let Θ
be the set of all the network parameters, then the
objective of the training is to find parameter values
maximizing the likelihood of the training set S,
i.e.: ∑

(f ,e)∈S

|e|∑
i=1

log p(ei|e<i, ci; Θ)

In order to achieve open-vocabulary translation
with a limited vocabulary size, the words are seg-
mented into sub-words, and the words with shared
sub-words share part of their representation. The
most common segmenting approach was intro-
duced by Sennrich et al. (2015b) and exploits only
statistical information, but there are promising re-
search lines trying to use linguistically motivated
segmentations (Ataman et al., 2017)

3 Using external word embeddings

The method we propose is based on the training of
word embeddings from source-language monolin-
gual data. We use these embeddings as an input to
the network, and we remove the source-side em-
bedding matrix. As the external embeddings have
been learned for a task that is not machine transla-
tion, we introduce a feed-forward layer to map the

embeddings into a new space that is more useful
for the translation task:

x̃j = tanh(x̄>j W + b) for j = 1, . . . ,m

where x̄j is the external embedding for the word j
and the vectors x̃i are used merged with the inter-
nal embeddings.
In this work we experimented three different set-
tings: (1) only external, (2) mix sum, (3) mix gate.
While only external is the setting we have just de-
scribed above, the other two settings combine the
external embeddings with the internal NMT em-
beddings. The mix sum setting inserts a vector sum
between the embeddings and the RNN which sim-
ply sums the internal embedding for the word fj
and the mapped external embedding for the same
word:

x̂j = xj + x̃j

In the mix gate setting, we let the network learn
parameters to combine the internal and the exter-
nal embeddings. A gate is a function that produces
a vector of the same dimensionality of the input,
with all elements between 0 and 1 to represent the
proportion of the corresponding input element that
is propagated to the following layer:

zj = σ([xj ; x̃j ]
>Wz + bz)

where zj is the output of the gate and σ is the
sigmoid function. The new vector is produced
by combining linear transformations of the inputs
with the gate zj :

x̂j = tanh(zj � ff1(xj) + (1− zj)� ff2(x̃j))

Where ff is a feed-forward layer. In this setting
the network has more parameters to learn for com-
bining the internal and external embeddings in an
effective way.

4 Experimental setup

Model TED-14
Baseline 25.37
Only External Crawl 26.13
Mix Sum Crawl 29.45
Mix Gate Crawl 27.10

Table 1: Small data condition: BLEU score on
IWSLT TED Talk Task En-Fr.

We performed our experiments on two tasks
representing two different training conditions:



Model NEWS-15 NEWS-16
Baseline 16.67 20.07
Only External Crawl 12.73 15.58
Mix Sum Crawl 15.59 18.72
Mix Gate Crawl 16.20 19.44
Only External news 13.36 16.40
Mix sum news 16.01 19.15
Mix gate news 16.45 19.35

Table 2: Large data condition: BLEU scores on
WMT News Task En-De.

large data and small data. The first task is the
2017 WMT News translation task, from English to
German, which provides a substantial amount of
parallel data. For this experiment, we use all the
available training data, about 5 million sentence
pairs1, newstest2013 and 2014 as a validation set
and newstest2015 (NEWS-15) and newstest 2016
(NEWS-16) as test sets. The second task in the
2016 IWSLT TED Talk translation task, from En-
glish to French, for which we only deployed a
small in-domain data set consisting of 200,000
sentence pairs, dev and test sets from 2010 to 2013
as a validation sets and the test set 2014 as test set
(TED-14) 2.
We used two sets of pre-trained English word-
embeddings. The first is the Common Crawl set
available from the GloVe website3, which con-
tains 1.9M word embeddings (dim=300) trained
with Glove (Pennington et al., 2014). The sec-
ond set was instead created by us with fast-
Text (Bojanowski et al., 2016) from the newscrawl
2015 and 2016 corpora (also available from the
WMT 2017 website), which can be considered in-
domain for the wmt task. We selected only words
appearing at least 5 times in the corpus, and did
not use any character n-gram information. This
process produced embedding vectors (dim=500)
of about 640K words in the news domain.
For all the experiments we used an NMT with 500
dimensions in the embeddings and in the hidden
sizes of RNN. With the WMT dataset we used
vocabularies of size 40, 000 in both sides. They
are words in the source side and sub-words in the
target side. For IWSLT we used 80, 000 words
vocabularies, which cover more than 99% of the
training set vocabulary. For the training we ap-

1http://www.statmt.org/wmt17/translation-task.html
2https://wit3.fbk.eu/mt.php?release=2016-01
3https://nlp.stanford.edu/projects/glove/

Table 3: Out-of-vocabulary words in internal and
external vocabularies

TED News15 News16
Int 289 556 738

Ext Crawl 1581 4460 6532
Ext News - 487 394

Both Crawl 176 477 625
Both News - 352 285

NEWS15 NEWS16 TED
Baseline 14 15 337
Only Ext. Crawl 10 8 687
Mix Sum Crawl 64 77 672
Mix Gate Crawl 102 337 689
Only Ext. News 10 7 -
Mix Sum News 132 335 -
Mix Gate News 85 117 -

Table 4: Numbers of generated unknown words in
the translations.

plied Adam (Kingma and Ba, 2014) with initial
learning rate 0.0003 until convergence. As a code-
base we used Nematus (Sennrich et al., 2017)
for all of our experiments. The reported BLEU
scores (Papineni et al., 2002) are computed with
multi-blue.pl from the Moses suite on detokenized
texts. The results are presented in Tables 2 and 1.

5 Results and Discussion

Results show that our approach is greatly benefi-
cial in our small data condition (table 1), improv-
ing up to 4 bleu scores with the simple strategy
of summing the external and internal word em-
beddings. For the large-data condition (table 2)
the picture is instead very different, as none of the
settings using external embeddings reaches the re-
sults of the baseline.

In order to verify our hypothesis that external
embeddings help to extend the vocabulary, we
firstly counted the number of OOV words with re-
spect to the internal and external vocabularies for
each test set, and also the number of words that are
unknown in both of them. The results listed in ta-
ble 3 show that in the case of TED, the number of
OOVs in both vocabularies is 39% smaller than in
the internal vocabulary, but at the same time in the
external vocabulary it is more than 5 times larger.
In all the experiments, the embeddings trained on
Gigacrawl have many more OOVs than the inter-



src so I was trained to become a gymnast for two years in Hunan , China in the 1970s .

ref J’ai été entraı̂née pour devenir gymnaste pendant 2 ans , dans la province d’ Hunan en Chine dans les années 1970 .

baseline J’ai été formée pour devenir gymnaste , pendant deux ans au Texas, en Chine dans les années 1970 .

mix-gate J’ai donc été formé pour devenir une gymnaste pendant deux ans en UNK, en Chine dans les années 70.

src Egyptologists have always known the site of Itjtawy was located somewhere near the pyramids of the two kings [...] .

ref les égyptologues avaient toujours présumé qu’ Itjtawy se trouvait quelque part entre les pyramides des deux rois [...] .

baseline Nous avons toujours connu le site de Londres , situé quelque part prés des pyramides des deux rois [...]

mix-gate Et on sait toujours que le site de UNK était situé quelque part près des pyramides des deux rois [...].

Table 5: Example translations with words that are out of one of the two vocabularies. In the first sentence
“China” is not in the external vocabulary, but it is still trained properly. In the second sentence “Egyp-
tologists” is not in the internal vocabulary. It cannot be translated at all, but the network finds a way to
come around the problem.

nal counterpart, and the difference is particularly
large in newstest15 and 16. This can be a reason
for degradation of representations, unless the net-
work learns to correct the noise coming from the
external side.
To have a glimpse of the degradation, we also
counted the number of generated unknown words
for each test set. The results are listed in table 4.
What we can observe is a slightly reduced number
of unknown tokens in newstest when using only
the external embeddings, but in a setting where the
target side uses subwords. In all the other cases,
the number of unknown words during translations
increases dramatically. The increase is from 5 to
22 times in WMT and about 2 times in TED. Now
we want to understand if this is due to a corrupted
representation of words, which mixes good em-
beddings with the external embedding for the un-
known token, or the reason is to find somewhere
else. This is particularly true because of the con-
temporary improvement in BLEU score.
To verify the correction capabilities of the net-
work, we check some translations where one word
is missing in one of the two vocabularies. Two ex-
ample translations are shown in table 5. In the first
example, the word “China” exists only in the in-
ternal vocabulary, but it’s correctly translated also
by the mix-gate system. Furthermore, the baseline
translates the OOV word “Hunan” with “Texas”,
while our system translates it with an unknown to-
ken. The second behavior is surely one of the main
reasons of the increased number of generated un-
known words using external embeddings, and it is
also preferable as there are methods for replacing
the unknown tokens in a postprocessing step. (Lu-
ong et al., 2015b).
In the second example, “Egyptologists” is OOV

for the internal vocabulary. Lacking the subject,
the baseline resorts to the first person plural, and
it also adds a subordinate sentence that change s
the meaning with respect to the source. Moreover,
again an unknown word for a location is translated
with another word that is related with the source
only because it is another location (in this case
the system translates with “Londres”, which is the
French word for “London”). By contrast, in ab-
sence of more information about the subject, the
mix-gate uses the impersonal form and the gram-
mar of its translation is better in general.
In the large-data setting, the best system using ex-

ternal embeddings is the mix-gate with data from
the news domain. From table 3, we can relate the
improvement also to the reduced number of exter-
nal OOV words, but the improvement is so small
that we suppose that using better corpora is not
a path to follow. Moreover, our results lower than
the baseline are an empirical proof that pre-trained
embeddings are not useful when there are large
parallel data available.

6 Conclusions

In this paper we propose three methods to extend
the input word embeddings to an NMT network
in order to leverage a word representation coming
from a big monolingual corpus. Our results show
that this approach greatly improves over an NMT
baseline in a low-resource scenario, while it is not
helpful for better-resourced tasks.
Using monolingual data for improving NMT is
a problem also in the latter case, thus our future
work will focus on how to integrate models larger
than word embeddings, and trained on monolin-
gual data, to improve word and sentence represen-
tations.
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