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Abstract

English. Machine learning offers two ba-
sic strategies for morphology induction:
lexical segmentation and surface word re-
lation. The first one assumes that words
can be segmented into morphemes. Induc-
ing a novel inflected form requires iden-
tification of morphemic constituents and
a strategy for their recombination. The
second approach dispenses with segmen-
tation: lexical representations form part
of a network of associatively related in-
flected forms. Production of a novel form
consists in filling in one empty node in
the network. Here, we present the re-
sults of a recurrent LSTM network that
learns to fill in paradigm cells of incom-
plete verb paradigms. Although the pro-
cess is not based on morpheme segmenta-
tion, the model shows sensitivity to stem
selection and stem-ending boundaries.

Italiano. La letteratura offre due strategie
di base per l’induzione morfologica. La
prima presuppone la segmentazione delle
forme lessicali in morfemi e genera parole
nuove ricombinando morfemi conosciuti;
la seconda si basa sulle relazioni di una
forma con le altre forme del suo paradig-
ma, e genera una parola sconosciuta riem-
piendo una cella vuota del paradigma. In
questo articolo, presentiamo i risultati di
una rete LSTM ricorrente, capace di impa-
rare a generare nuove forme verbali a par-
tire da forme giï¿œ note non segmentate.
Ciononostante, la rete acquisisce una co-
noscenza implicita del tema verbale e del
confine con la terminazione flessionale.

1 Introduction

Morphological induction can be defined as the task
of singling out morphological formatives from
fully inflected word forms. These formatives are
understood to be part of the morphological lexi-
con, where they are accessed and retrieved, to be
recombined and spelled out in word production.
The view requires that a word form be segmented
into meaningful morphemes, each contributing a
separable piece of morpho-lexical content. Typ-
ically, this holds for regularly inflected forms, as
with Italian cred-ut-o ’believed’ (past participle,
from CREDERE), where cred- conveys the lexi-
cal meaning, and -ut-o is associated with morpho-
syntactic features. A further assumption is that
there always exists an underlying base form upon
which all other forms are spelled out. In an irreg-
ular verb form like Italian appes-o ’hung’ (from
APPENDERE), however, it soon becomes difficult
to separate morpholexical information (the verb
stem) from morpho-syntactic information.

A different formulation of the same task as-
sumes that the lexicon consists of fully-inflected
word forms and that morphology induction is
the result of finding out implicative relations be-
tween them. Unknown forms are generated by
redundant analogy-based patterns between known
forms, along the lines of an analogical propor-
tion such as: rendere ‘make’ :: reso ‘made’ =
appendere ‘hang’ :: appeso ‘hung’. Support
to this view comes from developmental psychol-
ogy, where words are understood as the foun-
dational elements of language acquisition, from
which early grammar rules emerge epiphenoma-
lly (Tomasello, 2000; Goldberg, 2003). After all,
children appear to be extremely sensitive to sub-
regularities holding between inflectionally-related
forms (Bittner et al., 2003; Colombo et al., 2004;



Dąbrowska, 2004; Orsolini and Marslen-Wilson,
1997; Orsolini et al., 1998). Further support is
lent by neurobiologically inspired computer mod-
els of language, blurring the traditional dichotomy
between processing and storage (Elman, 2009;
Marzi et al., 2016). In particular we will con-
sider here the consequences of this view on issues
of word inflection by recurrent Long Short Term
Memory (LSTM) networks (Malouf, in press).

2 The cell-filling problem

To understand how word inflection can be con-
ceptualised as a word relation task, it is useful to
think of this task as a cell-filling problem (Blevins
et al., 2017; Ackerman and Malouf, 2013; Acker-
man et al., 2009). Inflected forms are tradition-
ally arranged in so-called paradigms. The full
paradigm of CREDERE ’believe’ is a labelled set of
all its inflected forms: credere, credendo, creduto,
credo etc. In most cases, these forms take one and
only one cell, defined as a specific combination
of tense, mood, person and number features: e.g.
crede, PRES IND, 3S. In all languages, words hap-
pen to follow a Zipfian distribution, with very few
high-frequency words, and a vast majority of ex-
ceedingly rare words (Blevins et al., 2017). As a
result, even high-frequency paradigms happen to
be attested partially, and learners must then be able
to generalise incomplete paradigmatic knowledge.
This is the cell-filling problem: given a set of at-
tested forms in a paradigm, the learner has to guess
other missing forms in the same paradigm.

The task can be simulated by training a learn-
ing model on a number of partial paradigms, to
then complete them by generating missing forms.
Training consists of <lemma_paradigm cell, in-
flected form> pairs. A lemma is not a form (e.g.
credere), but a symbolic proxy of its lexical con-
tent (e.g. CREDERE). Word inflection consists of
producing a fully inflected form given a known
lemma and an empty paradigm cell.

2.1 Methods and materials
Following Malouf (in press), our LSTM net-
work (Figure 1) is designed to take as input
a lemma (e.g. CREDERE), a set of morpho-
syntactic features (e.g. PRES_IND, 3, S) and
a sequence of symbols (<crede>)1 one symbol
st at a time, to output a probability distribution

1‘<’ and ‘>’ are respectively the start-of-word and the
end-of-word symbols
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Figure 1: The network architecture. The input
vector dimension is shown in brackets. Trainable
dense projection matrices are shown as 1 : n, and
concatenation as 1 : 1.

over the upcoming symbol st+1 in the sequence:
p(st+1|st,CREDERE, PRES_IND, 3, S). To pro-
duce the form <crede>, we take the start symbol
‘<’ as s1, use s1 to predict s2, then use the pre-
dicted symbol to predict s3 and so on, until ‘>’ is
predicted. Input symbols are encoded as mutually
orthogonal one-hot vectors with as many dimen-
sions as the overall number of different symbols
used to encode all inflected forms. The morpho-
syntactic features of tense, person and number are
given different one-hot vectors, whose dimensions
equal the number of different values each fea-
ture can take.2 All input vectors are encoded by
trainable dense matrices whose outputs are con-
catenated into the projection layer z(t), which is
in turn input to a layer of LSTM blocks (Figure
1). The layer takes as input both the informa-
tion of z(t), and its own output at t–1. Recur-
rent LSTM blocks are known to be able to capture
long-distance relations in time series of symbols
(Bengio et al., 1994; Hochreiter and Schmidhuber,
1997; Jozefowicz et al., 2015), avoiding classical
problems with training gradients of Simple Recur-
rent Networks (Jordan, 1986; Elman, 1990).

We tested our model on two comparable sets
of Italian and German inflected verb forms (Ta-
ble 1), where paradigms are selected by sampling
the highest-frequency fifty paradigms in two ref-
erence corpora (Baayen et al., 1995; Lyding et al.,
2014). For both languages, a fixed set of cells was

2Note that an extra dimension is added when a feature can
be left uninstatiated in particular forms, as is the case with
person and number features in the infinitive.



alphabet max reg / irreg

language size len cells paradigms forms

German 27 13 15 16 / 34 750

Italian 21 14 15 23 / 27 750

Table 1: The German and Italian datasets.

chosen from each paradigm: all present indicative
forms (n=6), all past tense forms (n=6), infinitive
(n=1), past participle (n=1), German present par-
ticiple/Italian gerund (n=1).3 The two sets are in-
flectionally complex: they exhibit extensive stem
allomorphy and a rich set of affixations, includ-
ing circumfixation (German ge-mach-t ’made’,
past participle). Most importantly, the distribu-
tion of stem allomorphs is entirely accountable in
terms of equivalence classes of cells, forming mor-
phologically heterogenous, phonologically poorly
predictable, but fairly stable sub-paradigms (Pir-
relli, 2000). Selection of the contextually appro-
priate stem allomorph for a given cell thus requires
knowledge of the form of the allomorph and of its
distribution within the paradigm.

3 Results and discussion

To meaningfully assess the relative computa-
tional difficulty of the cell-filling task, we cal-
culated a simple baseline performance, with 695
forms of our original datasets selected for train-
ing, and 55 for testing.4For this purpose, we used
the baseline system for Task 1 of the CoNLL-
SIGMORPHON-2017 Universal Morphological
Reinflection shared task.5The model changes the
infinitive into its inflected forms through rewrite
rules of increasing specificity: e.g. two Italian
forms such as badare ‘to look after’ and bado ‘I
look after’ stand in a BASE :: PRES_IND_3S re-
lation. The most general rule changing the for-
mer into the latter is -are -> -o, but more specific
rewrite rules can be extracted from the same pair:

3The full data set is available at http://www.
comphyslab.it/redirect/?id=clic2017_data.
Each training form is administered once per epoch, and the
number of epochs is a function of a “patience” threshold.
Although a uniform distribution is admittedly not realistic,
it increases the entropy of the cell-filling problem, to define
some sort of upper bound on the complexity of the task.

4Test forms were selected to constitute a benchmark for
evaluation. We made it sure that a representative sample of
German and Italian irregulars were included for evaluation,
provided that they could be generalised on the basis of the
training data available.

5https://github.com/sigmorphon/
conll2017(written by Mans Hulden).

German test all regs irregs

CoNLL baseline 0.4 0.81 0.23

128-blocks 0.68 0.79 0.64

256-blocks 0.75 0.89 0.69
512-blocks 0.71 0.84 0.66

Italian test all regs irregs

baseline 0.65 0.9 0.5

128-blocks 0.61 0.84 0.47

256-blocks 0.63 0.83 0.51

512-blocks 0.69 0.92 0.54

Table 2: Per-word accuracy in German and Italian.
Overall scores for the three word classes are aver-
aged across 10 repetitions of each LSTM type.

-dare -> -do, -adare -> -ado, -badare -> -bado.
The algorithm then generates the PRES_IND_3S of
- say - diradare ’thin out’, by using the rewrite rule
with the longest left-hand side matching diradare
(namely -adare > -ado). If there is no matching
rule, the base is used as a default output.

The algorithm proves to be effective for regu-
lar forms in both languages (Table 2). However,
per-word accuracy drops dramatically on German
irregulars (0.23), and Italian irregulars (0.5). The
same table shows accuracy scores on test data ob-
tained by running 128, 256 and 512 LSTM blocks.
Each model instance was run 10 times, and overall
per-word scores are averaged across repetitions.6

The CoNLL baseline is reminiscent of Al-
bright and Hayes’ (2003) Minimal Generalization
Learner, inferring Italian infinitives from first sin-
gular present indicative forms (Albright, 2002). In
the present case, however, the inference goes from
the infinitive (base) to other paradigm cells. The
inference is much weaker in German, where stem
allomorphy is more consistently distributed within
each paradigm. In Appendix, Table 3 contains
a list of all German forms wrongly produced by
the CoNLL baseline, together with per-word ac-
curacy of our models. Most wrong forms are in-
flected forms requiring ablaut, which turn out to
be over-regularised by the CoNLL baseline (e.g.
*stehtet for standet, *beginntet for begannt). It
appears that, in German, a purely syntagmatic ap-
proach to word production, deriving all inflected
forms from an underlying base, has a strong bias
towards over-regularisation. Simply put, the or-
thotactic/phonotactic structure of the German stem

6The per-word score is 1 (correct), or 0 (wrong).
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Figure 2: Marginal plots of the interac-
tion between distance to morpheme boundary,
stem/inflectional ending, inflectional regularity,
stem length and suffix length (fixed effects) in a
LME model fitting per-symbol accuracy by a 256-
block (left) and a 512-block (right) RNN on train-
ing (top) and test (bottom) Italian data. Random
effects are model repetitions and word forms.

is less criterial for stem allomorphy than the Ital-
ian one. LSTMs are considerably more robust in
this respect. Memory resources allowing, they
can keep track of local syntagmatic constraints
as well as more global, paradigmatic constraints,
whereby all paradigmatically-related forms con-
tribute to fill in gaps in the same paradigm. For ex-
ample, knowledge that a paradigm contains a few
stem allomorphs is good reason for an LSTM to
produce a stem allomorph in other (empty) cells.
The more systematic the distribution of stem al-
ternants is across the paradigm, the easier for the
learner to fill in empty cells. German conjugation
proves to be paradigmatically well-behaved.

An LSTM recurrent network has no information
about the morphological structure of input forms.
Due to the predictive nature of the production task
and the LSTM re-entrant layer, however, the net-
work develops a left-to-right sensitivity to upcom-
ing symbols, with per-symbol accuracy being a
function of the network confidence about the next
output symbol. To assess the correlation between
per-symbol accuracy and “perception” of the mor-
phological structure, we used a Linear Mixed Ef-
fects (LME) model of how well structural features
of German and Italian verb forms interpolate the
“average” network accuracy in producing an up-

coming symbol (1 for a hit, 0 for a miss) in both
training and test. The marginal plots of Figure 2
show that there is a clear structural effect of the
distance to the stem-ending boundary of the sym-
bol currently being produced, over and above the
length of the input string. Besides, stems and suf-
fixes of regulars exhibit different accuracy slopes
compared with stems and suffixes of irregulars.
Intuitively, production of an inflected form by a
LSTM network is fairly easy at the beginning of
the stem, but it soon gets more difficult when ap-
proaching the morpheme boundary, particularly
with irregulars. Accuracy reaches the minimum
value on the first symbol of the inflectional end-
ing, which marks a point of structural discontinu-
ity in an inflected verb form. From that position,
accuracy starts increasing again, showing a char-
acteristically V-shaped trend. Clearly, this trend
is more apparent with test words (Figure 2, bot-
tom), where stems and endings are recombined in
novel ways. The same results hold for German.
On the other hand, no evidence of structure sensi-
tivity was found in a LME model of the baseline
output for both German and Italian.

The cell-filling problem is an ecological, devel-
opmentally motivated task, based on evidence of
fully inflected forms. Although other (simpler)
models have been proposed to account for form-
meaning mapping in Morphology (Baayen et al.,
2011; Plaut and Gonnerman, 2000, among oth-
ers), we do not know of any other artificial neu-
ral networks that can simulate word inflection as
a cell-filling task. Unlike more traditional con-
nectionist architectures (Rumelhart and McClel-
land, 1986), recurrent LSTMs do not presuppose
the existence of underlying base forms, but they
learn possibly alternating stems upon exposure
to full forms. Admittedly, the use of orthogo-
nal one-hot vectors for lemmas, unigram temporal
series for inflected forms, and abstract morpho-
syntactic features as a proxy of context-sensitive
functional agreement effects, are crude represen-
tational short-hands. Nonetheless, in tackling
the task, LSTMs prove to be able to orchestrate
“deep” knowledge about word structure, well be-
yond pure surface word relations: namely stem-
affix boundaries, paradigm organisation and de-
grees of regularity in stem formation. Acquisition
of different inflectional systems may require a dif-
ferent balance of all these pieces of knowledge.
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Appendix A. Comparative test results

base form target CoNNL LSTM LSTM LSTM

baseline 128 256 512
bleiben bliebt blieb 0 0 0

dï¿œrfen gedurft gedï¿œrfen 0.2 0.2 0
sein seiend seind 0 0 0

mï¿œssen gemusst gemï¿œssen 0.2 0.1 0.1
bestehen bestandet bestehtet 0.5 0.6 0.2
sprechen spricht sprecht 0 0.5 0.2

geben gibt gebt 0 0.3 0.3
sehen siehst sehst 0 0 0.3
tun tatet tut 0.3 0 0.3

stehen standet stehtet 0.2 0.1 0.4
fahren fï¿œhrst fahrst 0.2 0.6 0.5
finden fandet findet 0.8 0.6 0.6

dï¿œrfen darf dï¿œrfe 0.5 0.7 0.7
fahren fuhrst fahrtest 0.4 0.4 0.7

beginnen begannt beginntet 0.6 0.9 0.8
kommen kamst kommst 1 1 0.8

liegen lagt liechtet 0.5 0.9 0.8
sehen saht sehtet 0.9 0.8 0.8

bringen brachtet brinchtet 1 1 0.9
fragen fragtet frugt 1 1 0.9
gehen gingt gehtet 0.9 1 0.9
haben hattet habt 1 1 0.9

nehmen nahmt neht 0.9 1 0.9
nennen nanntet nenntet 0.8 1 0.9
sagen sagtet sugt 1 1 0.9
tragen trï¿œgst tragst 0.9 0.9 0.9
bitten baten bitten 1 1 1

denken dachtest denkest 1 1 1
geben gabst gebst 1 1 1

scheinen schienst scheintest 0.8 1 1
setzen setztet setzet 1 1 1

sprechen sprachst sprechtest 0.8 1 1
werden wurdet werdet 0.9 1 1

Table 3: Comparative results for the 33 German verb forms that are wrongly inflected by the CoNNL
baseline (highlighted in bold). In most cases, forms are over-regularised. Results are ordered by increas-
ing accuracy of the 512-block LSTM model. Accuracy scores are given per word, and averaged across
repetitions of each LSTM model in the [0, 1] range: ‘0’ means that the output is wrong in all model
repetitions, ‘1’ that it is always correct. The most accurate results are provided by the 256-block LSTM
model.


