
1

Evaluation of Data Transfer Methods for
Block-based Realtime Audio Processing with

CUDA
Christoph Kuhr∗, Alexander Carôt† Department of Computer Sciences and Languages, Anhalt University of

Applied Sciences
Köthen

Email: ∗christoph.kuhr@hs-anhalt.de, †alexander.carot@hs-anhalt.de

Abstract—Realtime audio production environments generally
do not use GPUs, as long as they are not involved in 3D rendering
or video production processes. Thus, the GPU is idle most of
the time and can be utilized as an audio co-processor. The
block-based streaming nature and floating point representation
of computer audio hardware are very well suited for GPGPU
programming techniques. In this paper we line out the data
transfers as the most expensive part in the processing of realtime
audio data and evaluate different data transfer methods and
positively evaluate different data transfer methods with respect
to future audio DSP applications.

I. INTRODUCTION

Modern computer systems are equipped with a CPU and
a GPU. CPUs control the peripheral hardware and perform
calculations unrelated to 3D graphics or video decoding. A
GPU in contrast is concerned with rendering 3D graphics or
utilizing special hardware codecs to decode nowadays video
codes like H264 [1].
If a computer system is used for any kind of audio production,
that excludes 3D rendering and video decoding, the GPU
is mostly idle. Additionally, GPUs are designed to handle
multiple floating point operations at the same time in a
threaded fashion.
These considerations promote the idea to use a GPU as an
audio co-processor for signal processing purposes.
Computation intensive audio signal processing of realtime data
has already been done, e.g. Wefers and Berg have used a GPU
to process FIR and IIR filters [2], Jedrzejewski and Marasek
have used the GPU to do impulse response computations for
virtual room acoustics [3].

In this paper we will investigate the lower limit for the
usage of a GPU for such signal processing tasks in a realtime
audio production environment. The limit is given as the
combination of channel count and sample buffer size in use.
The bottlenecks in the communication between CPU and GPU
are evaluated and discussed. Further, possible workarounds
to increase the performance aspects under investigation are
proposed and evaluated.

CUDA (Compute Unified Device Architecture) is a
programming langauge designed for high-performance
computing [4]. The idea is to make use of thousands of
threads running in parallel, which is not possible with

Figure 1: CUDA Computing Grids [5]

x86/x86 64 CPUs. Such parallel programs are called kernel
in the CUDA domain.
When a kernel is executed on the GPU, the kernel launches a
grid of several blocks, the limit is depending on GPU features.
Inside each block on the grid, multiple threads execute the
actual computations at runtime. The same computation runs
on each thread, but with different data. Threads can be
handled in a synchronous or an asynchronous way. The latter
requires the concept of streams for a destinct mapping of the
data shared between the threads of one block. The structure
of CUDA computing grids is shown in fig. 1.

The concept of CUDA streams [6] is very convenient for
the problem at hand.

71

2

Different audio streams can be treated asynchronously, which
is a better representation of their orthogonal nature then a
matrix with an appropriate amount of rows and columns. This
way the orthogonality may also be represented appropriately,
but access to the matrix would be centralized and would
experience possible racing conditions. Beyond, using a
dimension (x, y or z) for the representation of the different
audio channels, reduces the available dimensionality that is
useable for calculations at runtime.

This paper is part of the research project fast-music [7]. The
project has the goal to enable symphonic orchestras to rehearse
via the public internet, by using the realtime communication
software Soundjack [8] [9]. Research in the field of packet loss
concealtment will use GPUs for complex signal processing
based on machine learning algorithms.

II. ARCHITECTURE

The work of Wefers and Berg [2] has also shown, that
realtime processing of audio data with a GPU is possible.
The communication between CPU and GPU is realized via
driver calls and shared memory, either DMA, GPU or CPU
RAM. The CPU is also referred to as host and the GPU as
device. Nowadays, system architectures where CPU and GPU
share the same cache are used increasingly, albeit mainly in
embedded systems. This architecture completely eleminates
memory copies, since the memory is coherently accessible
by the CPU and the GPU. In conventional systems which
communicate via the PCIe bus, data has to be copied from
CPU RAM to GPU RAM and back.
Since the API calls copying data between CPU and GPU have
much overhead, it is more efficient to copy huge amounts of
data. Thus, it is even more interesting to investigate the use
case of small amounts of data, as generated and processed in
the audio domain.

Figure 2: Legend Data Transfer Method Measurements

Realtime audio data is represented as a two dimensional
vector field. At any sample point in time some analog digital
converter process generates a sample, with typical bit depths

of 16, 24 or 32 bits, either encoded as integer or floating
point [10].
Computer audio hardware manages data by using buffers that
consist of a predefined amount of samples. The audio driver
repeatedly accesses the memory of the audio hardware and
copies the sample buffers to the CPU RAM for further usage.
The responsivness of such an audio system depends on the
size of the sample buffers, while the response time reduces
with an increasing sample buffer size. Typical sample buffer
sizes are 64, 128, 256, 512, 1024 samples [11].

AudioDataBlock =
SampleDepth · SampleBufferSize · ChannelCount

AudioDataBlock =

32bit · {64, 128, 512, 1024}Samples
s

· {2, 8, 16, 32, 64}

Due to this block-based streaming nature, the data transfer
and processing of audio data between CPU and GPU might
reduce the impact of the data copying overhead, particularly
if multiple audio channels are used.
The audio data, that we will transfer and process with the
GPU, is provided by a professional audio driver and server
combination called Jack Audio Connection Kit [12]. On
top of a Linux ALSA [13] driver, Jack provides the means
to interconnecting jack-aware audio software to the audio
interface with 32 bit floating point precision. The floating
point format requires the development of a prototype, because
the Soundjack clients use an integer format instead of floating
point and would require additional conversion.

Figure 3: Device to Device Copy Duration Synchronous Data
Transfer Method

We developed a most simple Jack client for testing purposes
with varying channel counts and sample buffer sizes. The Jack
client is linked against a shared library that provides the CUDA
Kernel [4]. This way CUDA computations can be integrated
in arbitrary C programs. The Jack Server configures the audio
interface by utilizing the ALSA driver infrastructure. The most

Evaluation of Data Transfer Methods for Block-based Realtime Audio Processing with CUDA

72

3

important configuration parameters for our investigations are
the channel count and sample buffer size, called frame or
period in the Jack domain. At runtime, the Jack Server requests
our Jack client to process a frame with a callback function.
If the callback function is not done with its computations in
time, the Jack Server reports a buffer underrun, also called
xrun in the Jack domain.

Figure 4: Kernel Execution Duration Managed Memory Data
Transfer Method

A Nvidia Geforce GT940mx GPU with 2 GB of DDR3
RAM is connected to an Intel i7-6870 4-Core CPU with 16
GB DDR3 RAM via a PCIe x16 2.0 bus [14], in the system
under test. Thus, the transfer rate between CPU and GPU is
limited to the bus bandwidth of 8 GBps simplex.
The Nvidia Geforce GT940mx has a compute capability of
5.0 (≥ 2.0), which allows it to use managed memory.

Figure 5: Host to Device Transfer Duration Data Transfer
Method

III. CUDA MEMORY ORGANIZATION AND MANAGEMENT

The data structure and data transfer between CPU and
GPU are the bottlenecks for the entire signal processing.
Three different data transfer methods can be used:

1) Synchronous data transfer

A synchronous data transfer returns as soon as the
memory operation on the GPU memory is done, with
a success or failure result. For the GPU integration
of synchronous data transfers, it is irrelevant whether
the memory is pagable or pinned. Either type can be
accessed. Pagable memory is memory from the virtual
address space of CPU or the operating system.

2) Asynchronous data transfer

An asynchronous data transfer returns immediately
after invoking the data transfer, regardless of the result.
The result of the operation has to be checked seperately.
It requires the additional concept of streams for the
integration on the GPU. Further, the host memory has
to be pinned. Pinned memory addresses are allocated in
the DMA address space of the host system.

3) Managed memory with coherent caches on CPU and GPU

With managed memory, the requirement of memory
copy operations is eliminated. The GPU driver allocates
memory on the CPU and GPU respectively, manages any
data access onto these memory segments implicitly and
thus keeps the data in both memory locations coherent
by small caching operations.

Figure 6: Device to Host Transfer Duration Data Transfer
Method

Evaluation of Data Transfer Methods for Block-based Realtime Audio Processing with CUDA

73

4

The direction for data transfers is crucial as well. Three
different directions are distinguished:

1) HostToDevice (HtoD or H2D)

The HostToDevice mode utilizes the Direct Memory
Access (DMA) memory of the host system. This enables
the CPU to offload the data transfer operations to the
GPU without waiting for the completion or result.

Figure 7: Kernel Execution Duration Asynchronous Data
Transfer Method

2) DeviceToDevice (DtoD or D2D)

Invoking CUDA memcpy between two GPUs uses
memory copy operations between the RAM of both
GPUs. If a D2D memory copy operation is issued on a
single device however, the GPUs’ internal cache is used
for the data transfer.

Figure 8: Host to Device Transfer Duration Asynchronous
Data Transfer Method

3) DeviceToHost (DtoH or D2H)

Although the DeviceToHost mode does not utilize
the DMA memory it may also operate asynchronously,
but slower since it is copied from GPU to CPU RAM.

IV. EXPERIMENTS

We investigated the influence that the sample buffer size
and channel count had on the data transfer rates. The audio
channel count was varied between 2, 8, 16 and 32 channels,
while each channel count was tested with each common
sample buffer size of 64, 128, 256, 512 and 1024 samples per
buffer. The samples were formatted as 32 bit floating point.
A simple CUDA kernel is provided for an exemplary
computation. Each thread in a block handles exactly one
sample, copies it from the input to the output buffer. This
way 64 up to 1024 threads run in parallel in a single block.
The worstcase for the data transfer times, is given by the
Jack servers buffersize and sample rate, which in this case is
48kHz (Sample Duration = 1

48kHz = 20.833µs):

Sample Worst
Buffer Case

Size Latency
64 1.334ms

128 2.667ms
256 5.334ms
512 10.667ms

1024 21.334ms

Table I: Tolerable Worst Cast Latencies for Realtime Audio

The profiling overhead of the NVidia Visual Profiler
(NVVP) for 32 channels with 64 samples per buffer pushed
the host machine to its limits. Thus, tests with 64 audio
channels were omitted.

Figure 10: Device to Host Transfer Duration Asynchronous
Data Transfer Method

Evaluation of Data Transfer Methods for Block-based Realtime Audio Processing with CUDA

74

5

Figure 9: NVVP Screenshot showing CUDA API Overhead

V. DISCUSSION

All combinations of transfer methods and modes, sample
buffer sizes and channel counts take in average less then
10µs and show peaks of up to 46µs, as visualized in fig. 4 to
fig. 10. The visualized durations neglect the CUDA API and
driver calls, they represent the execution on hardware only.
The legend in fig. 2 is common for all figures.

A comparisson of fig. 5 and fig. 8 shows that the memory
mapped H2D mode takes less time, at minimum, average and
maximum then the asynchronous copy mode.
The kernel execution times for the two other transfer methods
shown in fig. 4 and fig. 7, exhibit no significant difference.
In fig. 3 only the device to device copy operation is shown,
which does not involve any kernel launch. These findings
suggest that the synchronous memory transfer method
would also be suitable for the H2D copy mode. Since a
kernel has to wait until all data is present in the GPU
memory, it is of no consequence at this point, if the data is
transfered synchronously or asynchronously. In contrast to
the D2H mode, where a non blocking data transfer allows
the processing chain to finish sooner. The magnitude of these
savings is much lower then of the overhead introduced by
the CUDA API and driver calls. This is observable in the
rows below the CUDA Context in fig. 9, the three smaller
gaps (≈ 7ms) on the right side and a larger gap (≈ 28ms)
on the left side relate to the small chunks in the rows for
the respective streams. These chunks are the hardware based
memory operations as mentioned above and take only a few
micorseconds in average.

All three memory organization modes exhibit a common
problem of cyclic nature. At a given interval (≈ 11s for
pagable memory, ≈ 5s for pinned memory and ≈ 2.5s for

managed memory) memory operations last approximately
four times longer, resulting in the larger gap on the left side
in fig. 9. These API and driver calls introduce jitter to the
tested audio signal.

The turning point from where the CUDA API overhead is
neglectable, can be quantified:

Channel Sample
Count Buffer

Size
2 512
4 512
8 1024

16 1024
32 1024

Table II: Channel Count and Sample Buffersize Limit for
Realtime Audio Processing

VI. CONCLUSIONS

All three memory transfer methods are able to operate
on realtime audio data. Managed memory however is most
convenient, because host and device pointers do not require
any special handling and integrate smoothly into C code
as well as CUDA code. For the usage with Jack however,
two memory copy operations are still required, because Jack
provides preallocated pointers to its buffer interface.
Low sample buffer sizes increase jitter, but no buffer
underruns were detected. Although the duration of the CUDA
API and driver calls suggest that underruns should occur with
sample buffer sizes below 512 samples.

Evaluation of Data Transfer Methods for Block-based Realtime Audio Processing with CUDA

75

6

VII. FUTURE WORK

The evaluation of the data transfer method has been a
feasability study for further goals. In the future, machine
learning algorithms will be investigated in this environment
as well as common signal processing algorithms, with respect
to error concealment techniques and the generation of audio
effects.

VIII. ACKNOWLEDGEMENTS

fast-music is part of the fast-project cluster (fast actuators
sensors & transceivers), which is funded by the BMBF (Bun-
desministerium für Bildung und Forschung).

REFERENCES

[1] H.264: Advanced video coding for generic audiovisual services, ITU-T
Std. H.264, 2003.

[2] F. Wefers and J. Berg, “High-performance real-time fir-filtering using
fast convolution on graphics hardware,” in Proc. of the 13th Int.
Conference on Digital Audio Effects (DAFx-10). Graz, Austria: Institute
of Technical Acoustics, RWTH Aachen University, Sep. 6–10, 2010, pp.
DAFX–1 – DAFX–8.

[3] M. Jedrzejewski and K. Marasek, “Computation of room acoustics
using programmable video hardware,” in Computer Vision and Graphics,
Springer-Verlag Netherlands. PJWSTK, 2006.

[4] Getting Started with CUDA, NVidia Corporation, 2008.
[5] CUDA C PROGRAMMING GUIDE, NVidia Corporation, 2013.
[6] CUDA Streams, Best Practices and Common Pitfalls, NVidia Corpora-

tion, Year unknown.
[7] (2017, Jun.) fast actuators, sensors and transceivers. [Online]. Available:

https://de.fast-zwanzig20.de/
[8] (2017, Jun.) Soundjack - a realtime communication solution. [Online].

Available: http://http://www.soundjack.eu
[9] A. Carôt, “Musical telepresence - a comprehensive analysis towards new

cognitive and technical approaches,” Ph.D. dissertation, University of
Lübeck, Germany, May 2009.

[10] A. V. Oppenheim and R. W. Schaefer, Discrete-time signal processing,
2nd ed. Englewood Cliffs, NJ: Prentice Hall, Inc., 1989.

[11] K. C. Pohlmann, Principles of Digital Audio, 5th ed. The Mcgraw-Hill
Companies, 2005.

[12] (2017, Jun.) Jack audio connection kit. [Online]. Available:
https://jackaudio.org

[13] (2017, Jun.) Advanced linux sound architecture. [Online]. Available:
https://alsa-project.org/main/index.php/Main Page/

[14] (2006, Dec.) Pci express base specification revision 2.0.
PCI-SIG. [Online]. Available: https://members.pcisig.com/wg/PCI-
SIG/document/download/8246

Evaluation of Data Transfer Methods for Block-based Realtime Audio Processing with CUDA

76

	Keynotes & Capstone
	Stops in Motion – Animation as Meta-cinematographic Concept Franziska Bruckner
	Collaborative Data Experiences: Novel designs for visualizing and exploring data together Hans-Christian Jetter
	Pervasive Technologies to Enrich People Experience in Visiting Cultural Heritage sites Andreas Jakl

	Session 1: Computer Vision
	Towards Automated Real Estate Assessment from Satellite Images with CNNs (F) Valentin Muhr, Miroslav Despotovic, David Koch, Mario Döller, Matthias Zeppelzauer
	Fashion and Apparel Classification using Convolutional Neural Networks (S) Alexander Schindler, Thomas Lidy, Stephan Karner, Matthias Hecker

	Session 2: Research Design and Digital Healthcare
	Gendergerechtes Forschungsdesign für Digitale Medien (F) Dorothea Erharter
	RegionAAL – The Styrian AAL-test-region in Graz, Deutschlandsberg and Leibnitz (S) Kurt Majcen, Kerstin Löffler
	LifeStream: Prototype Implementation of Monitoring System for Dispatch Life Support (S) Florian Grassinger, Jakob Doppler, Markus Wagner, Wolfgang Aigner

	Session 3: Interactive Session - Poster
	Enabling Decision-Making for Situation-Aware Adaptations of Interactive Systems (P) Christian Märtin, Christian Herdin
	HoloMuse – A Concept for Augmented Learning in Museums (P) Kasra Seirafi, Florian Wiencek
	Innovative and Intuitive Hands-on Interaction with RFIDto Enhance Digital Media Experience of Exhibits (P) Sandra Schadenbauer, Alexander Nischelwitzer, Robert Strohmaier, Gerhard Sprung
	Isidor – Ein auditiver HCI-Prototyp (P) Josefine Riedel, Thomas Böck, Julian Fischer, Felix Rauchwarter
	Evaluation of Data Transfer Methods for Block-based Realtime Audio Processing with CUDA (P) Christoph Kuhr, Alexander Carôt

	Session 3: Interactive Session - Special Track GLAMhack17
	KuKoNö – KulturKontext Niederösterreich (P) Kerstin Blumenstein, Barbara Margarethe Eggert, Maria Grandl, Elisabeth Kasser-Höpfner, Kathrin Kratzer, Johannes A. Löcker-Herschkowitz, Georg Neubauer, Florian Wiencek
	Communities in biographischen Netzwerken (P) Ágoston Zénó Bernád, Maximilian Kaiser, Sebastian M. Mair, Alexander Rind

	Session 4: Visualization
	Interaction Concepts for Collaborative Visual Analysis of Scatterplots on Large Vertically-Mounted High-Resolution Multi-Touch Displays (F) Mohammad Chegini, Shao Lin, Dirk Joachim Lehmann, Keith Andrews, Tobias Schreck
	Evaluation of the User Experience of Interactive Infographics in Online Newspapers (F) Julia Langer, Michael Zeiller
	A Bigram Supported Generic Knowledge-Assisted Malware Analysis System: BiG2-KAMAS (F) Niklas Thür, Markus Wagner, Johannes Schick, Christina Niederer, Jürgen Eckel, Robert Luh, Wolfgang Aigner
	Rule Creation in a Knowledge-assisted Visual Analytics Prototype for Malware Analysis (F) Johannes Schick, Markus Wagner, Niklas Thür, Christina Niederer, Gernot Rottermanner, Paul Tavolato, Wolfgang Aigner

	Session 5: HCI
	A Variable Low-cost Platform for Conducting Work Design Experiments (S) Hendrik Stern, Till Becker
	Comic Experience: Narrative & Collaborative Drawing on a Multi-Touch Table in an Art Museum (F) Christina Niederer, Stefanie Größbacher, Wolfgang Aigner, Markus Seidl, Peter Judmaier
	HoloKeys – An Augmented Reality Application for Learning the Piano (S) Dominik Hackl, Christoph Anthes
	Browser Application for Virtual Audio Walkthrough (F) Thomas Deppisch, Alois Sontacchi

	All Around Audio Symposium
	Ultrasonic Communication: Risks and Chances of a Novel Technology Matthias Zeppelzauer
	Modular Synthesizer Ensemble gammon
	On Models and Pragmatic Features in Digital Musical Instruments Cornelius Pöpel
	3D Audio: Sculpting with Sound - Report on an Artistic Research Project Sabine Breitsameter
	Acoustic holograms: Artistic approach to 3D-Audio Natascha Rehberg
	Steps Toward an A/R/Tography of Sound Hans Ulrich Werner
	Situating Performance in the Performing of Situation: The Effect of Situational Context on Performer Expressivity Hans-Peter Gasselseder, Maria Kallionpää
	When More is More: How to Supersize Musical Expression Maria Kallionpaa, Hans-Peter Gasselseder
	Breaking The (Imaginary) Wall between Performers and their Audience in Live Music Oliver Hödl
	Line & Hemisphere – A Hybrid Studio Setup for Immersive Experiments in Spatial Audio and Music Paul Modler
	AudioAllAround: Immersive Audio – Evolution of Techniques and Tools Martin Mayer, Diana Mayer
	MED-EL Hearing Implants and the Science Center AUDIOVERSUM in Innsbruck Eckhard Schulz, Ewald Thurner
	Heart Sound – how sound and radio can help to improve the relationship between people with dementia and their carers Christine Schön
	Philology of electronic music - New methods, strategies, falsifications and historic cleansing: Stockhausen, Xenakis, KRAFTWERK Reinhold Friedl
	<<cresc>>Worte werden Raum Eva Paulitsch
	DaVinci Head project: The best price/performance binaural head Vytenis Gadliauskas

