
OKKA M: Towards a Solution to the “Identity
Crisis” on the Semantic Web

Paolo Bouquet, Heiko Stoermer, Michele Mancioppi and DanielGiacomuzzi
University of Trento

Dept. of Information and Communication Tech.
Trento, Italy

Email: {bouquet, stoermer, manchioppi, giacomuzzi}@dit.unitn.it

Abstract— One of the pillars of the Semantic Web enterprise is
the idea that if people use standard names for resources (URIs),
then the integration of information from different distributed
sources will happen smoothly and efficiently simply by using
URI identity as a key for merging RDF graphs into a single
(virtual) graph. The question this paper will try to address is:
how do we find and reuse an identifier for an entity on the
(Semantic) Web? In this paper propose a system called OKKA M
that is currently under development; we discuss requirements,
architecture, usage scenarios and services we have developed so
far to tackle this “Identity Crisis” on the Semantic Web.

I. I NTRODUCTION

In the W3C recommendationUniform Resource Identifier
(URI): Generic Syntax[1] , a resource is defined as “anything
that has identity”1. This means that not only web accessible
pages and documents are resources, but also people, cities and
conferences; even the concept of “car” and the property of
“being the owner” of a car are resources, which can be referred
to and described as any other resource (e.g. in an ontology).

Despite the generality of the Semantic Web approach, here
we want to suggest that – in practice – there is an essential dif-
ference between managing and reusing identifiers of resources
which correspond to “things” (in a very broad sense, ranging
from electronic documents to bound books, from people to
cars, from conferences to unicorns) – we will call thementities
–, and identifiers which correspond to abstract objects (like
predicates, relations, assertions) – which we will calllogical
resources. Our thesis is the following:while any attempt of
“forcing” the use of the same URIs forlogical resourcesis
in principle likely to fail (as every application context has
its own peculiarities, and people tend to have different views
even about the same domain2), the same does not hold – or
holds at a level which is philosophically interesting but of
little practical relevance – forentities. On other words, the

1‘A resource can be anything that has identity. Familiar examples include
an electronic document, an image, a source of information with aconsistent
purpose (e.g., “today’s weather report for Los Angeles”), aservice (e.g., an
HTTP-to-SMS gateway), and a collection of other resources.A resource is not
necessarily accessible via the Internet; e.g., human beings, corporations, and
bound books in a library can also be resources. Likewise, abstract concepts can
be resources, such as the operators and operands of a mathematical equation,
the types of a relationship (e.g., “parent” or “employee”), or numeric values
(e.g., zero, one, and infinity)’ [1].

2This is what in [2], which was co-authored by one of the authors of this
paper, was called thedistributed knowledgeargument.

claim is that there are compellingtheoretical reasonswhy the
Semantic Web (and any other semantically driven information
system) should not force people to use shared URIs for logical
resources, but only (or mostly)practical reasonswhy people
do not use shared URIs for entities.

By analogy, our claim can be illustrated by considering the
different difficulty of building white page and yellow page ser-
vices. The former basically requires an efficient mechanismfor
listing entities, retrieving them, and distinguishing entities one
from another; the latter always presupposes some taxonomy,
which is typically either too general (and therefore does not
help in discriminating services), or too specific (and therefore
heavy to master for users), or too complex (not usable).

It should be clear that the problem of unique identifiers for
resources (in its two flavors: logical resources and entities)
is crucial for achieving semantic interoperability and efficient
knowledge integration. However, it is also evident that 99%
of the research effort is on the problem of (i) designing
shared ontologies, or (ii) designing methods for aligning and
integrating heterogeneous ontologies (with special focuson the
T-Box part of the ontology). Perhaps because of its “practical”
flavor, we must recognize that only a very limited effort has
been devoted to address the issue of identity management
for entities. For example, ontology editors, such as Protéǵe,
support the “bad practice” of creating new URIs for any new
instance created in an ontology. In our opinion, this problem is
not only of general interest for the Semantic Web enterprise,
but is one of the most critical gaps in an ideal pipeline from
data to semantic representation: if we do not have a reliable
(and incremental) method for supporting the reuse of URIs
for the new entities that are annotated in new documents (or
any other data source), we risk to produce an archipelago of
“semantic islands” where conceptual knowledge may (or may
not) be integrated (it depends on how we choose the names
of classes and properties, and on the availability of cross-
ontology mappings), but ground knowledge is completely dis-
connected. And since the most valuable knowledge is typically
about individuals, we take this to be an issue that should be
attacked.

In this paper, we introduce the main requirements and a



prototype implementation of OKKA M3, a service for sup-
porting transparent integration of knowledge about entities
through simple identity management support. OKKA M can be
described at two different levels:

• the basic services – which belong to a module called
OKKA MCORE – provide APIs to create and store URIs
for entities, to add/modify/remove informal descriptions
of each entity, to index the resources in which knowledge
about an entity is provided (e.g. ontologies, web pages);

• on top of OKKA MCORE, OKKA M offers a collection of
advanced services, including searching for already ex-
isting entities (using different search criteria), extracting
information about entities, ranking results, supporting the
reuse of URIs for entities in ontology editing, and so on.

The structure of the paper is the following: in Sect. II, we in-
troduce our motivations and the resulting goals for our project
in more detail. After that, in Sect. III the OKKA M system
architecture and design approaches are illustrated. Sect.IV
describes first basic services that have been implemented on
top of OKKA MCORE, whereas Sect. V illustrates two usage
scenarios we have addressed with the system. We conclude
with a discussion of issues and an outlook on the further
development of OKKA M in Sect. VI.

II. GOALS AND MOTIVATIONS

As soon as one starts thinking about the idea of an entity
repository, the temptation of building what Craig Knoblock4

called an EntityBase in one of his recent talks, is very strong.
In short, an EntityBase can be thought of as an entity-
centric knowledge base, where knowledge is organized around
entities instead of schemas (e.g. relational schemas or even
ontologies). In such an approach, any entity type would be
characterized by a collection of attributes (for example, for
entities of type book, some attributes can be “author”, “title”,
“date of publication” “publisher”), whose semantics is known
in advance and explicitly specified.

We called this a temptation, as it is extremely appealing
(we would always know what we know about an entity), but
also very dangerous, as it presupposes a commitment on the
meaning of an attribute which cannot be guaranteed in most
practical situation by a repository which aims at being open,
extensible, global. Therefore, an important requirement for our
service is that it is light and fast, which can’t be confused
with yet another attempt in the direction of CYC [3] or
SUMO [4], as systems of this type offered useful approaches in
certain areas, but have obviously not contributed to a solution
of the identity problem in the Semantic Web. What we are
aiming to provide is anaming servicefor entities anddirectory
containing entity profiles, not a knowledge base.

3The system is named after Occam, a medieval philosopher whose main
principle – known as the “Occam’s razor” – was:entities should not be
multiplied beyond necessity(in Latin: entia non sunt multiplicanda praeter
necessitatem).

4Craig Knoblock’s homepage: http://www.isi.edu/ knoblock/. Unfortu-
nately, at this point no citeable publications about this topic are available.

An Entity Profile storesuntypeddata about entities which
will support the human user or an application using the
OKKA M API to process descriptions about entities, and in
effect enable them to assess whether the entity they want to
store knowledge about in their own local KB already has a URI
in OKKA M, or whether they have to create a new one. We store
untyped data for the reason that typing an entity’s attributes
would require us classify the entity, which would be in contrast
with the abovementioned goal. We do not discriminate types
of entities, because we explicitly want to be able to provide
naming and descriptions forany entity.

Of course at first sight one could think about what types
of entities would be described in OKKA M, such as persons,
artifacts, locations, companies etc.; this could make it appear
sensible to provide a basic set of typed attributes for these
entities. But we envision the system also to provide supportfor
less obvious applications such as Named Entity Recognition
from the field of Natural Language processing, which we will
talk about later, in Section V. In these applications entities
might represent a location or a piece of text in a document, a
document itself or a collection of documents, and we end up
with an unlimited set of potential types of entries, which makes
it impossible to provide a common set of typed attributes
for. Therefore it is our opinion that only untyped descriptive
metadata can provide for the envisioned level of generality.

Fig. 1. Schematic overview of OKKA M, plus external K/I sources

In addition to these untyped data, OKKA M provides for the
management of what we callontology referencesin the Entity
Profile, i.e. a set of URIs to external sources that are known
to store information or knowledge about these entities, as
illustrated in Fig. 1. One of the reasons to go in this direction
was the motivation to make OKKA M provide a possible
solution to integration issues in the Semantic Web. While a
great amount of work has been performed on schema-level
information integration5, the aspect ofentity-level information-
and knowledge integrationstill offers many opportunities for
providing interesting approaches. One possible application

5It is hardly impossible to cite all related work in this field. Specific to
the area of the Semantic Web, the reader is referred e.g. to thepublication
list on http://www.ontologymatching.org for a host of publica-
tions, or the Ontology Alignment Evaluation Initative (http://oaei.
ontologymatching.org/) which performs an alignment contest. For an
overview more related to the database world, we refer e.g. to [6].



we envision to support with OKKA M is an extension-based
equivalence check for classes in an alignment or integration
process. Currently, in a schema-level integration processwith-
out extension check, classes can beestimatedto be equivalent,
but without an extension check the result of this estimation
cannot be proved. Additionally, without a service that provides
strong decision support about whether two individuals withthe
same name are actually identical or not (which is the current
situation in the Semantic Web), an extension check will hardly
deliver very reliable results. With the help of Entity Profiles
in OKKA M we hope to improve this situation, because if we
look at a case where two assumedly equivalent classes show
that the sets of OKKA M-registered individuals associated to
them are identical, we have very strong reason to support this
equivalence assumption.

The last component of the Entity Profile is a set of assertions
of identity between entities. We provide these for the case
where two entities with different URIs in OKKA M are later
discovered to describe the exact same object, and are thus
identical. One possible criticism at this point is certainly the
question how we can know and be certain about identity of
entities. The answer is that we cannot. OKKA M will suffer
from the same garbage-in-garbage-out property as any other
information system. But with OKKA M at least we can provide
a means for the Semantic Web to store and represent such
information, and we hope that by consistent use of OKKA M
in Semantic Web applications we can strongly improve the
current situation by enabling agents to gain a certain level
of confidence that they are actually “talking about” the same
objects.

III. O KKA MCORE: CHARACTERIZING ENTITIES

A. Data Model and API

0..N

1

1

1 1

0..N

0..1

��

��

�
�
�
�

����

2

1

1

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��
��
��
��

��

��
��
��
��

�
�
�
�

��

��

�
�
�
�

1

1

0..N

1

0..N

0..NEntity

has

has

has

has

has

Label

prefix value

Reference
Ontology

value
hasIdentifier

Entity

Identifier
Preferred

Alternative
Identifier Wordnet

Identifier

synset
identifier

wnVersion

has

involves

Assertion
of Identity

Identifier
of Identity
Assertion

Fig. 2. OKKA MCORE’s Entity Relationship Diagram

The OKKA MCORE application manages data describing
entities and assertions of identity between entities. The data
structures we are using to model this are shown in the Entity
Relationship Diagram presented in Figure 2. AnEntity is in

biunivocal relation with anEntity Identifier, which is created
by the system and represents the URI of the entity in OKKA M
with which users can identify entities within their application
or KB. Each Entity may have aPreferred Identifier, provided
by the user who creates the entity, e.g. to mirror an identifier
used in their information system; the relation among Entities
and Preferred Identifiers is labeled as a key because Entities
can not share the Preferred Identifiers. Each Entity may any
number ofAlternative Identifiers; similarly to the Preferred
Identifiers, every Alternative Identifier can belong to only
one Entity at a time. To keep the diagram simple, it does
not address the fact that there can not be overlap among the
different types of identifiers. All the identifiers are namesfor
the Entities on which they are set: then all the identifiers set
on a given Entity are synonyms. Since different Entities have
different names, each identifier can appear on at most one
Entity, no matter if it acts as an Entity Identifier, a Preferred
Identifier or an Alternative Identifier.

Entities can have any number ofLabelsset on them. Each
Label has aprefix and avalue. Label’s prefixes may be left
empty. Different Labels with the same prefix and value can
only belong to different Entities; as illustrated in Figure2, the
triple consisting of the Label’s prefix, the Label’s value and the
Entity on which the Label is set forms a key. EachOntology
Referencehas a value; any number of Ontology References
can be set on an Entity. Similarly to the Labels, Ontology
References with equivalent value can only belong to different
entities.

The Assertions of Identityare uniquely identified by their
Assertion of Identity Identifiers. Each Assertion of Identity
involves exactly two Entities. Different Assertions of Identity
can not involve the same two Entities.

OKKA MCORE provides its users with functionalities to
manage and retrieve entities and assertions of identity. From
a programmatical point of view, two APIs are provided:

• Publication API: enables publishing, modifying and re-
moving of entities and assertions of identity;

• Inquire API: allows retrieval of entities matching a given
set of criteria.

Both APIs offer straightforward functionalities that one would
expect in such a system; for the sake of brevity we will not
describe the full API in this article.

B. Architecture

The currently available implementation of OKKA MCORE

is built on top of the J2EE 1.4 platform. The OKKA MCORE

application is an Enterprise Application exposing the Publi-
cation and Inquire APIs as Web Services. Its architecture, as
presented in Figure 3, follows the classical three-tier model
that subdivides the Presentation Logic (the Web Services),the
Business Logic (carried out by an EJB module), and the Data
Persistence logic. The Web Services framework we adopted is
Apache Axis26. The DataPersistence layer is subdivided into

6Apache Axis 2 Home:http://ws.apache.org/axis2/



Fig. 3. OKKA MCORE Application Architecture

different modules: i) handling the configurations of the appli-
cation, ii) marshalling the internal representation of thedata
to external form, such as XML documents and iii) commu-
nication with the database. Thus, implementations exploiting
different database technologies may be plugged effortlessly.
For this reason, during the development of the OKKA MCORE

application, we implemented two different Data Persistence
modules: one based on a native XML database, and another
one built on top of a relational database.

At first we developed the XML Database based backend be-
cause it allowed us to have a first prototype of OKKA MCORE

running in a very short time. The backend is based on the
Open Source databaseeXist7. Although the flexibility of the
XML native database together with the XQuery expressiveness
enabled us to complete the backend relatively quickly, we
experienced scalability issues. It turned out that the number of
entities that can be managed by this backend ranges in the tens
of thousands, which is way below our desired goal. Although
the XML database based backend performed well for testing
of the rest of the application, and made the OKKA MCORE

application promptly available for tests with the other services
built on top of it, we decided to abandon this approach in favor
of a relational database based backend.

IV. SERVICES

OKKA M can be viewed as a collection of services built on
top of OKKA MCORE. In this section we list the main services
which – in our opinion – should belong to OKKA M, describe
their implementation (if available), or present ideas on how
they could be implemented.

A. Population ofOKKA MCORE

The first important service is the one that supports the
population of OKKA MCORE with new entities. In fact, there
are many issues that must be addressed and solved before new

7eXist Home:http://exist.sourceforge.net/

data is allowed to be stored. In particular, we want to stress
the following:

• first of all, we want to add a new entity only if it is not
already stored in OKKA MCORE. But this means that we
need smart ways for recognizing if a new candidate entity
is already stored, and for deriving when a new entity
which looks like an entity already stored actually is a new
one. These two requirements are crucial: failing to meet
the first would lead to a lack of completeness (failing to
support inferences which in theory are sound based on the
fact that two names refer to the same entity); failing to
meet the second would lead to a lack of correctness (false
conclusions would be supported, based on the fact that
two different entities have been collapsed onto a single
identifier);

• imagine we detect that an entity is already stored, and
that we find a new occurence of that entity in a document
where some information about it is provided. Question:
what if the new information conflicts with the old one?
And, even before, how do we detect that there is such an
inconsistency?

• as it will be clarified in the section on envisaged ap-
plication scenarios, information may be imported in
OKKA MCORE from very different sources, including hu-
mans (who may be carefully making data entry), ad-hoc
wrappers designed to import entities from rich sources
(e.g. lists of entities from Wikipedia), entity recognition
tools (which may be extracting entity descriptions from
free text). These potential sources may provide very
uneven data, including a lot of garbage, which would
undermine the role of OKKA M as a general and reliable
tool;

• finally, a theoretical issue which needs to be addressed
is the following: what does count as an entity? There
is little doubt that people, organizations, cars, computer
files, electronic devices, are entities. But, for example,
is a document an entity? Is it an abstract entity, or it is
identified with its physical realizations? If so, is every
copy of a document a different entity? Another example
is: are logical resources (like concepts, relations, topics)
entities? Or the entity is the linguistic expression used
to express a concept? But then are two linguistic formu-
lations of the same concept different entities? And fur-
thermore: are fictitious entities entities? Should we allow
Pegasus and Spider Man to sneak into OKKA MCORE?
And the list can be made much longer8 . . .

To address these issues, we have developed the following
compontents:

• OkkamListsManager
On the WWW there are many lists of entities and are thus

8We notice that a very practical version of these philosophical questions is
the following: what should be represented as an instance in an OWL ontology?
And what as a class/property? The issue is tricky, and we make only one
example: should “Pizza Margherita” be a class or aan instanceof an Italian
food ontology? If we check e.g. [5], we find that the answer to this type of
questions can be quite disappointing.



a potentially important resource for OKKA M. For exam-
ple Wikipedia provides lists of countries, cities, members
of particulars domains (e.g. Presidents of the United
States, Computer Scientists, etc) that are exactly the types
of entities that we want to store in the system. With the
objective to find a standard mechanism for integrating
these entities into Okkam we developed a language (an
XML Schema) that describes the input that a data source
has to follow to communicate with the population process
of OKKA M. The main elements of the schema follows
the internal structure of Okkam, in fact we have elements
like ”Labels”, ”Label-prefix” or ”Label-value” that are
easy to map with the tables elements of OkkamCore.
This language is used by different wrappers that we
developed and that try to convert the structure of a source
list into the OKKA M input standard. For lists from the
Web (Wikipedia, Yahoo, Google, etc.) the main purpose
of the wrappers is the data cleansing process from HTML
tags. After this step the entity collections is normalized
with the objective to delete duplicates. Entities with the
same annotation label are recognized by the system and
the OKKA M administrative user can check if there exist
conflicts from members of the list that are the same entity
(from a logical point of view). During insertion, for ach
entity the system searches OKKA M if there is already an
entity with the same label/s. If yes, this entity is “frozen”
and included in a set of entities that should be checked by
the administrator before addition to the system, otherwise
it is added immediately.

• OkkamDBManager
Another important information source for OKKA M can
be generic databases, as far as we have access to them.
Examples might include direct database access to in-
formation systems such as extranets, online shops or
publishing houses. In this case the transformation from
the internal structure of the tables into the OKKA M input
language is easier because the main objective of the
process is writing queries that build the link between the
database structure and the okkam data structure. When
the transformation into the input language is completed,
the rows that come from the database follow the same
process that we already describe with web lists. With
database sources the role of the user becomes more
important because, with high numbers of entities, dupli-
cation and redundancy are an increasing problem.

• OkkamManualEntry
Another solution we provide to insert new entities is
the manual case. A Web interface provides easy access
to the insert function. The user can add new entities,
with labels, ontology references, etc., to the system using
a form to specify all the information that he/she want
describe the new entity with. As in the previous case,
if the system finds a possible conflict with entities that
are already in Okkam, it issues a warning message that
informs the user of the possible error. This methodology
of insertion is the slowest that Okkam provides, but it

is the most precise and complete because the user can
provide information that the system can not automatically
discover, and optimize the input in a feedback loop.

• Protege Plugin
We provide a plugin for the ontology editor Protege which
we describe in further detail in Sect. V-A.

B. Searching for URIs

Another critical service is searching for identifier of some
entity which is known either by some description (e.g. name
for people), or by an identifier which was not issued by
OKKA M. This site should be held very simple, like a tra-
ditional search engine, and based on an easy mechanism to
visualize results. In a standard use case the user types in a
keyword associated to an entity and the system searches the
repository for instances that match this label. For example
if a user searches for entities that have the label ”Heiko
Stoermer” the OKKA M Management System will search in the
database the instances that have this keyword and will return
the main information about these. The main data will be the
URI of the entity, the other labels associated to the entity,
in our example can be ”H.Stoermer”, ”Stoermer”, Mr. Heiko
Stoermer” and the classes of the ontologies where the entity
is used. In our example we have different classes as ”Person”
or ”PHD Student”. The information about the classes where
other person use the entity, its URI, are very important because
with this data the user can chose which entity is the correct
URI in the OKKA M.

If we have two URI’s that share the same label ”Roma”, but
one is attached to class like ”City” or ”Capital” and other refers
to ”Person” or ”Customer” or ”Employee”, the user can easyily
understand whether he needs the first URI because he wants
to speak about the capital of Italy or the second one because
he refers to a Person named ”Roma”. The filtering process,
with information about classes, can be performed before the
search step: the submitted query can be a pair of ”keyword -
class”. This means that the system will return only the URI
that fulfil both the terms of the interrogation. Web OKKA M
This first use case is very simple and understandable because
the most difficult process, the filtering task, is delegated to the
user responsible for this operation.

The Web site of the OKKA M is not the only application
built on the URI database. There are many situations where it
is very difficult to believe that users use the web site to search
the URI of the resources that they need. For example, if we
have a large database with all employees of an organization is
impossible that the designers and developers wanting to build
semantic application on this data search in the OKKA M web
site all the URI’s of the persons stored in their database. This
process can be simplified if they can use an automatic service,
in this case a web service, that provide an access point to
the OKKA M that an application can use. The developers can
build an application that extract the data from their database
and send them to the web service which will return some
results, URI, about the information that already are storedin
the OKKA M.



V. TWO USAGE SCENARIOS

A. Runtime support for ontology editing

Another important area for which OKKA M has to provide
services and applications are existing Semantic Web tools.In
particular, ontology editors are applications where usersbuild
a formalization of part of the world by means of classes and
instances of these classes, all identified by URI’s. One of the
most widely used and important editors is Protege, an open
source product that can be extend and modified with ”plug-
ins” added on the core system. For the OKKA M vision it is of
high importance to develop a plug-in for this application which
provides a connection with the URI database when users create
new instances of a class, which we are doing as illustrated in
Fig. 5. If a user creates a new instance of a class, instead of
assigning an arbitrary, meaningless number as ID the plug-in
will search the repository whether an URI already exists that
can be assigned to this new instance. The selection process is
envisioned similar to the web search use case where a list of
URI’s that match the label for the new instance are visualized
to the user.

Important support for all the selection processes comes
from additional tools, as for example WordNet, that provide
information about the meaning of the classes used in the
ontologies where the new instances are created. With this
information the system has more data to try to recognize the
correct URI to return to the users or application that query
OKKA M.

B. Supporting Knowledge Extraction and Representation

One of the scenarios we are currently implementing with
the help of OKKA M is to support Knowledge Extraction (KE)
processes and the resulting Knowledge Representation (KR)
in a Semantic Web project9 that aims at building a large-scale
Knowledge Base (KB) from information stored in distributed
document bases. The architecture comprises a pipeline of
processes that covers all steps from KE to the building of the
KB (the so-calledSemantic Resource Network) for end-user
services, as illustrated in Fig. 5

Within the pipeline there are several points of application
imaginable, two of which we have currently implemented and
are further described here:

• Information Extraction: Named Entity Recognition and
Coreference
Whenever our NLP process recognizes a named entity
in a piece of text, it interacts with OKKA M to analyze
whether this named entity already has a unique URI.
If yes, the NLP process stores locally10 the fact that a
uniquely identified entity has been discovered with addi-
tional information such as its location in the document,
etc. If the entity does not have a URI yet, an Entity

9seehttp://www.vikef.net for further information about the VIKEF
project.

10In fact, the annotations created in this phase are stored in an XML file,
which is later refined and then used as a base for the generation of RDF
annotations that will be fed into a large knowledge base.

Profile is created in OKKA M and the resulting URI is
used accordingly. For subsequent discoveries of the same
named entitiy, the same URI will be used to indicate
that the two discovered entities are in fact the same, just
in different locations of the document. This approach is
equally applicable to discovered coreferences11. If the
NLP process updates the Entity Profiles in OKKA M
correctly, we gain direct access to search situations of the
type “show me all documents that talk about this entity”,
as the respective links would be stored as Ontology
References which we can evaluate and reason about with
a higher-level service.

• Refinement: Identity Discovery
In the refinement phase, as depicted in Fig. 5, we can
address shortcomings of the NLP processes in terms of
discovery of identity. The VIKEF pipeline has dedicated
a whole processing step to this issue, as – at the named
entitiy extraction level – it is not always possible to
detect identity between entities. Obvious examples in this
case are missing correspondences between orthographic
variations hinted at already in Sect. IV-B, e.g. the fact that
within one document there is a certain probability that the
strings “Stoermer”, “H. Stoermer” and “Heiko Stoermer”
denote the exact same individual. With support of the
OKKA M system, we have implemented several heuristics
to address this issue, the simplest performing a substring
query to OKKA M and using a string similarity measure
on the results to choose candidates for establishing an
assertion of identity between them, and thus to cluster
annotations. A higher level process is free to either choose
one single URI for all the annotated entities or to retain
the original URIs, as it is always possible to perform
clustering via analysis of identity assertions in OKKA M.

VI. D ISCUSSION ANDCONCLUSION

OKKA M is the typical example of an application which
is not based on some radically new scientific result, but
aims at filling a gap by using existing technologies in a
new way. In our opinion, without OKKA M (or a similar
service), most Semantic Web promises will never be kept, as
it provides a sort of bottom level for integration which cannot
be achievedex postwhen the ball stops. However, the fact
that the basic technologies are already available should not
lead us to underestimate the critical factors which may affect
the success and adoption of OKKA M. In addition to aspects
already discussed throughout the paper, we identify acceptance
issues in the form that not every party involved in the Semantic
Web may be willing to use a centrally managed service that
is outside of their control. Privacy issues include all the well-
known aspects of data security, access management, privacy
etc. that almost all public information systems share. Last, but
not least there are of course questions of offered features and

11A coreference is a linguistic pattern typically involving pronouns when
talking about an object that has previously been named. Example: “Peter is a
good runner. He does 10k in 45 minutes.” The personal pronounheestablishes
the coreference in this case.



Fig. 4. A Protege plugin for generating individuals registered in OKKA M.

Fig. 5. Knowledge pipeline to be supported by OKKA M

functionality, such as a really efficient and intelligend search
and ranking mechanism for Entity Profiles in OKKA M, as well
as performance and scalability issues which are again common
to most information systems. Our planned next steps are to
address exactly these issues in the form of further researchand
by developing additional services on top of OKKA MCORE.

We conclude with the statement that currently, when creat-
ing ontologies, people actually perform two different tasks:
they specify a conceptualization, and then “populate” such
a conceptualization with instances by assigning instancesto
some class and specifying the values for properties (if any). It
is a trivial observation that the same domain (set of entities)
may be used to populate different ontologies (e.g. we may have
two different conceptualizations of Italian wines&food),and
that any two ontologies (e.g. an ontology about semantic web
researchers and another about people living in Italy) may have
overlapping domains. Creating a conceptual schema and then
populating it with instances address two different issues:the
first is anepistemologicalissue (it has to do with knowledge
about the world), the second is anontological issue (it has to

do with existence).
From a design perspective, what we propose is to keep these

two tasks separated: on the one hand, we need a universal and
non ambiguous way to refer to the entities about which an
agent may have some knowledge; on the other hand, we need a
way to specify knowledge about these entities. We believe that
the help of OKKA M this goal can be achieved more cleanly
for the Semantic Web, as to existing methods of specifying
knowledge in the form of ontologies and knowledge bases
we add an identity and reference architecture with a central
character that enables systems and agents to ensure that they
“talk” and store knowledge about the same entities, if these
objects share the same identifier.

VII. A CKNOWLEDGMENTS

This research was partially funded by the European Com-
mission under the 6th Framework Programme IST Integrated
Project VIKEF - Virtual Information and Knowledge Envi-
ronment Framework (Contract no. 507173, Priority 2.3.1.7
Semantic-based Knowledge Systems; more information at



http://www.vikef.net)

REFERENCES

[1] T. Berners-Lee, R. Fielding, and L. Masinter.RFC 3986: Uniform
Resource Identifier (URI): Generic Syntax. IETF (Internet Engineering
Task Force), 2005. http://www.ietf.org/rfc/rfc3986.txt.

[2] Matteo Bonifacio, Paolo Bouquet, and Paolo Traverso. Enabling dis-
tributed knowledge management: Managerial and technological implica-
tions. Informatik - Zeitschrift der schweizerischen Informatikorganisatio-
nen, 1:23–29, 2002.

[3] Douglas B. Lenat. Cyc: A large-scale investment in knowledge infras-
tructure. Commun. ACM, 38(11):32–38, 1995.

[4] Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS,
pages 2–9, 2001.

[5] Natalya F. Noy and Deborah L. McGuinness.Ontology Development
101: A Guide to Creating Your First Ontology. Stanford University.
http://protege.stanford.edu/publications/ontologydevelopment/ontology101.html.

[6] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching.VLDB Journal: Very Large Data Bases,
10(4):334–350, 2001.


