
SErvice Reliability and Availability model with Petri

Nets: a new hybrid approach for service availability

L. Palummo
a
*, R. Meriggiola

a
, E. Guidolotti, D. De Luca

+

*System Engineering Department

*Aster S.p.A.

*via Tiburtina 1166, 00156 Rome - Italy
+
 Telespazio Via Tiburtina 965, 00156 Rome - Italy

a - corresponding author: lucrezia.palummo@aster-te.it, rachele.meriggiola@aster-te.it

Copyright © held by the author

Abstract— Most part of the existing analytical models to

predict service reliability and availability assume a static

behavior of the service and do not take into account the

correlation between the invoked system components. In order to

take into account the dynamic aspects of a service as functional

chains, operational processes and logistic support, a hybrid

approach is here introduced: a dynamic SERA (SErvice

Reliability Availability) Model, including a service simulation

model based on hybrid Petri Nets. The main goal of the proposed

model is to determine the reliability/availability of a service

taking into account the characteristics of the service (functional

chains and operative processes), as well as the SW/HW

dependability figures (MTBF, MDT). In the proposed approach

the service and its invoked system components are represented

through Hybrid Petri Nets where the SW/HW failures have been

modeled with stochastic distribution through kinematic Monte-

Carlo time simulations.

In order to refine and validate the proposed model a case

study based on a simple user registration service has been

developed. The results show the feasibility of the proposed

approach along with a set of metrics used to quantify service

performances on a statistical basis and evaluate service quality.

Keywords—RAMS, Availability, Service, Simulation, Petri Nets

I. INTRODUCTION

Service Reliability significantly affects the operational
transitions, the potential users, and the degree of adherence to
requirements can affect the customer satisfaction and
perception of service quality. If a user request it is not
completed on schedule, service is perceived as unreliable,
being the requested output delivered on longer times. Service
unreliability can have a great impact on the system and its
users.

The increasing demand for flexibility and extensibility of
the services has resulted in a wide adoption of web services and
SOA (Service-Oriented Architectures) [1,2,3] applications.
Even if several studies and modeling of services have been
used in the past to estimate and improve reliability and
availability [4,5,6,7], the evaluation of modern systems
remains a challenging problem due to the increased level of
complexity. One of the most commonly applied approaches is
the analytical methodology, which produces accurate results.

Unfortunately, it becomes not applicable due to the size and
complexity of models or due to non-linear nature of the
problem involved.

The Reliability Modeling and Analysis to improve a
Service Reliability have been proposed using the two-state
model or finite state machine, Model–Based approach and also
proper algorithms [8,9,10,11], to reduce the inefficient of the
approximation methods and using a simulation to predict the
behavior of system/service. Various simulation methodologies
such as Monte Carlo simulation, Discrete event (DE)
simulation, Subset simulation, Hybrid subset simulation,
Simulated annealing, Stochastic simulation, Digital
simulation, and Markov System Dynamics (MSD) simulation
can be used in reliability engineering [12], and also a new
method as RAMSAS based on SoS (System of System) Model
using suitable model-driven techniques and simulation
technique to evaluate the Reliability performance of the system
and possibly, compare different design alternatives and
parameters settings [13].

The simulation becomes need to predict the performance of the
Service and drive the design.

II. BASIC CONCEPTS

A. Reliability Definition

Service reliability should not be confused with network
reliability, which is instead related to the overall availability of
the system. For this reason the following definitions are here
introduced:

Reliability - the probability that service will be
continuously available over a given period of time.

Service – an available system function which can be used
by a person or a machine and it is based on a sequence of
operations (called transactions) focused on state transitions.

Service Reliability - the probability that a service
infrastructure will be continuously available in a given time
considering hardware failures, software faults and human
errors and focuses on the state of service execution.

Transactions are instead specific instances of a service use
(e.g listening to the radio station; a user connects pc to the
Internet; a shopper pays for a purchase using a credit card).

On several cases the Service overall of the System is
composed by different services that share HW and some
functions are interlocked between them. A service is evaluated
by a list of success criteria to be fulfilled in order to achieve a
continuous delivery of required outputs and the execution of
transactions. Such a list is defined using the attributes of the
service.
 A figure of merit is any quantitative expression, expressed
by means of a probability or other statistical parameters, used
to describe a specific aspect of the study target. For example,
the expected downtime during one operative year is a figure of
merit for the reliability of a maintained system. A metric is
instead a quantity used to evaluate the degree of adherence to a
requirement (expressed by a figure of merit).

Service Reliability can be measured by several metrics,
related to different aspects:

1. End-User: Service Accessibility, Continuity, Release

2. Internal Metrics: outages, duration, task interruption,
failure distribution, incomplete instance and features not
available.

3. Performances - total delay time during transaction,
delivered products with or without delay.

B. Definitions of Availability

The concept of Availability was originally introduced for
repairable systems, which are required to operate 24/7; in this
case a failure could randomly occur along the operational life
and a maintenance intervention is required to restore operations
in a minimum time. There are several definitions of
Availability on literature. A general definition is:

 TimeTotal

Uptime

TimeTotal

Downtime
Aop

__
1 =−=

 (1)

where the Downtime includes a repair time (corrective and
preventive maintenance time), a management time and a
logistic time. In several cases it is worthwhile also to consider
O&M organization, plans, procedures and tools dedicated to
system management during the operational phase. In this case,
Operational Availability can be defined:

 MDTMTBF

MTBF
op

+

=A
 (2)

 Where MTBF is the Mean Time Between Failure, MDT is the

Mean Down Time, equal to: MDT=MTTR+LDT, where LDT

is the Logistic Delay Time. For some applications, the user-

oriented approach can characterize the system in a “black-

box” manner and specifying availability according to the

number off, for instance, delivered products, services, or

mission data with respect to user demands or nominal scenario

[14]. If the availability is specified by a percentage or number

of successfully delivered products, the Service Availability

(SA) shall be expressed as the ratio between the number Nc of

completed requests and the number Nt of total requests:

 (3)

For availability assessment, the suitable various methods
can be performed:

• Analytical method

• Markov process

• Monte-Carlo simulation

This last numerical technique allows the evaluation of
availability taking into account in a realistic way all aspects
associated with the design, logistics and operations. The main
advantage of Monte-Carlo simulation is the capability to
represent complex system scenarios with deterministic or
probabilistic delays.

III. HYBRID APPROACH TO SERVICE AVAILABILITY

A possibility to determine a Service availability is given by
the combination of the traditional methods to evaluate
Availability (Combinatorial method, Enumeration method,
Simulations method) with the Service attributes. Traditionally
these methods are separately used in the analysis framework,
but in the proposed approach these four assessment kinds are
unified with the goal to achieve a complete prediction analysis.

Fig. 1 – hybrid approach to service availability modeling

The steps of the process to define a hybrid approach model
are listed as follow:

1. Define the estimators of a Figure of Merit of the
Service (Service)

2. Define a flexible model taking into account the use
case of the service and the SW/HW dependability figures
(MTBF, MDT) (Combinatorial Method)

3. Use the representation of a complex system with the
Hybrid Petri Nets (Simulation, Enumeration Method)

4. Model the SW/HW failures with stochastic
distribution through kinematic Monte-Carlo time simulations;
inputs are injected in the model and the delivered outputs are
computed taking into account the functional chains and the
operational processes (Simulation, Service)

To discuss service reliability, the persistence of service
quality over time or the absence of service failures over time, it
is necessary to know what failure means for a service. The key
idea is that service failures are usually traceable to events or
conditions in the infrastructure whose occurrence (or failure to
occur) causes the service failure. That is, service failure
mechanisms are found in the delivery infrastructure for the
service. It is apparent that models for failure of transactions in
a given service will depend heavily on the specific details of
that service. This Section develops ideas for service
reliability/availability modeling for each kind of services,
using the same network topology (nodes & paths) as a way of
illustrating how those details are used in creation and use of
service reliability models.

The process of reliability/availability model is described as
follow:

1. Define the steps of the reference Use Case and the
involved HW/SW to execute the Service, according SE
methodology.

2. Map the steps of the service execution; identify the
nodes and find all possible paths related to the steps of service
execution; the paths represent the connection between HW
nodes, which involves a software function. Transform the paths
into logical equations by applying “&” (AND) operators
between nodes in the same path and the “||” (OR) operator
between parallel paths.

3. Draw the operational workflow of Service.

4. Transform the logical expression of service into a
Reliability Block Diagram (RBD) taking into account possible
redundancy configurations.

5. Collect the system information (e.g. architecture, the
reliability figures of each equipment, and SW application,
maintainability figures as mean time to restore and logistic
delay time).

6. Compute the Service Reliability and Availability
figures according the Prediction models on the RBD base.

7. List the traceable System events or conditions whose
occurrence or failure leads to the service failure and identify
the permanent o transient failures that affecting metrics
(FMECA or FTA can be used).

This method can estimate objectively the Service
reliability/availability starting by the functional chains and
operational processes, according the chronology execution of
the service and considering the architecture needs to fulfill its
performances. Moreover considering the RBD and the support
of techniques such as Failure Modes Effect and Criticality
Analysis and the Fault Tree Analysis, it is possible to identify
which failures and their impact on the Metrics and Figures of
Metrics.

This flexible model above described, is the base on drive
the simulation, without which time evolution and transitions
on the service states can be not considered.

A. Proposed Methodology

Define One of the main goals of the current study was to
prove the effectiveness of the proposed hybrid approach to the
evaluation of Service Reliability and Availability. For this
reason a feasibility study based on a simple test case of an user
registration service was performed. The study allowed to refine
the proposed model and to clarify several aspects of the
Simulation Model. In this Section the proposed methodology
along with details of its application to the study case are
reported.

The purpose of the user registration service is to allow to
the end-user to insert a set of initial parameters to be recorded
on database in order to receive credentials for future login and
access to a system. In the current example the user registration
service is deployed on three different sub-systems, each of
those constituted by a SW and HW component:

1. Client – in charge to provide a Graphical User
Interface to the user for data entry and display

2. Server – deputed to manage the registration requests
and to interrogate the database

3. Database (DB) – deputed to record the registration
requests and to provide the related feedback

Fig. 2 – User Registration Service

The user will access to the Client (e.g. a web page via

browser) and insert into the Client GUI data required for the
user registration; after a data check, the Client will create a
registration request and send it to the central server for request
management and interrogation to database. The database will
provide a feedback to the server about the correct user
registration, and the server will turn it back to the Client in
order to inform the end-user on the accomplished registration
process. (Figure 2).

1) Define the Use Case
In a complex system the definition of a service can be

based on the definition of the correspondent use case of the
System along with the tracing of the involved System
components invoked by the process. This task can be
demanding for all those services invoking several configuration
items or entire sub-systems, and in general it requires a
preliminary analysis of the System and its components. Every
logical step of the use case should be identified and correlated
with the involved hardware and software components. During
this phase it is also mandatory to define the level of abstraction
to apply to the use case definition: for example, in the current
test case HW and SW components are considered as single,
independent units, characterized by its own reliability and
availability, and no further level of detail is required. Fix the

abstraction level is fundamental to determine the level of detail
into the reliability/availability representation of each
component, to be used as input into the SERA computation.
Table 1 reports the use case of the service example (user
registration), along with the involved HW/SW components.

TABLE I STUDY CASE

Step
Use Case of a User Registration Service

Description HW SW

1

The User access to the System

GUI
Client Client

2
The User inserts the registration

parameters and submits them
Client Client

3
The System checks the

registration request
Server Server

4

The System interrogates the

database for a new user

registration

Server Server

5

The System creates an user

account choosing the proper user

profile.

DB DB

6

The System provides the user

with the credentials for

accessing the system.

Server +

Client

Server +

Client

Along with the use case correspondent to the service it is
required also to define the operational workflow of the
analyzed service (e.g. by means of sequence diagrams or
equivalent), in order to fix the sequence of logical operations
that the System must perform to execute the service and in
which order the System components are invoked (Figure 3).

Fig. 3 Operational workflow of a service for the proposed study case

2) Compute the Reliability Block Diagram
Once the use case is defined and the operational workflow

are defined, it is needed to understand how the connections
between the different HW/SW components can affect the
global reliability (and availability) of the functional chain. For
this reason it is required to define the Reliability Block
Diagram (RBD) according to the System HW/SW architecture.
This analysis is generally based on system design
documentation and on RAMS analysis documentation; in the
proposed study case, the RBD is a simple chain (Figure 4),

where no redundancy has been applied. Any occurring failure
will lead to an interruption of the service, which could be
permanent or temporary.

Fig. 4 RBD of the analyzed User Registration Service

3) Compute the HW/SW Availability
After the RBD definition and the detection of the single

points of failure, it is needed to define as input data for the
service availability analysis the availability figures of each
HW/SW component invoked by the service process. Even if
there are several parameters which could be used as availability
metrics, in the current study is focused on the use of most
common and applied parameters:

• Mean Time Between Failure - (MTBF)

• Mean Delay Time - (MDT)

These parameters will be computed according to the
Prediction models on the RBD base. For the current test case,
the following values have been reported on Table 2.

TABLE II COMPONENT MTBF and MDT
 Use Case of a User Registration Service

Sub-System Component

Number of

Failures

(for 30

days)

MTBF

(h)
MDT (h)

Client
SW 3 240 4

HW 1 720 4

Server
SW 2 360 4

HW 1 720 4

Database
SW 3 240 1 or 4

HW 1 720 4

4) Define the Service Failures
Once the model is defined, it is required to analyze and

define the System events/conditions whose occurrence or
failure leads to the service failure. It is possible to define
service failures as Permanent (no recovery of the service) or
transient (temporary failure which causes to the system to not
be available within a predefined time period). In the proposed
example, all failures occurred on HW have been defined as
permanent, as well as failures occurring on Client and Server
SW; failures occurred on Database SW have instead been
defined as transient, assuming that the database is able to
record the registration request and reprocess it later, keeping it
as pending. This definition leads to the concept that a failure
can affect both the functional aspect (the service process is
interrupted) and the performance aspect of a service (the
service process is not interrupted but the service is not in line
within the expected performances).

TABLE III SERVICE FAILURES

Sub-

System

Use Case of a User Registration Service

Component Permanent Transient

Client
SW X

HW X

Server
SW X

HW X

Database
SW X

HW X

5) Define the Service Metrics
In the definition of a SERA model it is fundamental to

define a quantitative approach to evaluate the service
availability along with the metrics to evaluate the robustness
and the performance of the analyzed service. Several figures of
merit can be defined to support such an analysis; here only a
subset of most significant metrics have been taken into
account, according to the study case.

Along with the service availability metrics, the current
study introduced two distinct sets of metrics to evaluate the
analyzed service: the Internal Metrics, used to monitor a
specific aspect of the service related to single system
components and the Performance Metrics used to quantify the
service performances.

• Internal Metrics

o Failure Distribution per Component

• Performance Metrics

o Number of Failed Requests

o Number of Recovered Requests with delay

6) Build the Simulation Model
After the collection of all the required inputs to describe the

service and the invoked components, along with the definition
of the metrics to evaluate the SERA, the final step consists into
build a flexible and robust model capable to represent the
service on the base of all the information provided from the
hybrid approach. This process will be extensively described on
Chapter 4.

IV. SERVICE AVAILABILITY SIMULATION MODEL

A. Introduction

The main advantages to develop dedicated simulations
result into the capability to provide a quantitative evaluation of
SERA and a rigorous representation of a specific Service and
its dependency from the system components interaction. The

proposed approach allows to compute and monitor the SERA
evolution along time, as well as to evaluate its sensitivity to
single system components. SERA simulations allow to perform
feasibility studies, providing a powerful and flexible support to
the system design phase. This aspect proved particularly useful
in order to track and prevent unexpected service failures and/or
system trends at system level.

Nevertheless, there are also some drawbacks to the choice
to perform a SERA simulation w.r.t. a traditional, qualitative
evaluation (e.g. FMEA/FMECA): simulations are time-
consuming, require longer start-up times, and have high
computational costs, which can be minimized by the adoption
of proper computational facilities and by an adequate level of
abstraction into the system components representation.

B. Comparative overview of Simulation Models

The availability of a service will be naturally dependent

from the availability of the involved components; for this

reason any service availability model will be based on the

operational workflow including the involved components. A

service model will have to represent a specific functionality,

always related to an input request (e.g. a number of products

to be released) and to an output generation (the released

products). According to this view, a service availability can

be modeled, among the several possibilities, by three main

approaches:

• Adaptation of System simulators

• System Engineering SysML Models

• Petri Nets

System simulators are quite efficient to represent a system

behavior and they can be adapted to retrieve the information

related to a specific service, but at the price of an increased

level of complexity in its representation, and into a limitation

of the retrieved information (dedicated service modeling).

System Engineering SysML Models are also an efficient

tool to represent system behavior and they can be modeled to

include a service representation; this requires nevertheless the

availability of a refined SysML Model at an enlarged level of

detail, a prerequisite condition that often is not satisfied, for

medium and complex systems.

Petri Nets are a flexible mathematical method used to

represent discrete, continuous and stochastic variables [15].

Historically, Petri nets (PNs) are widely used to model

discrete systems (computer systems, manufacturing systems,

communication systems), but in the latter years, with the

introduction of a representation for continuous and stochastic

variables, their use has been enlarged to other fields (e.g.

biology) [16]. Hybrid Petri Nets allow to represent stochastic

and discrete behavior of system components at the same time

with a good level of flexibility and scalability; this is the

reason why they have been selected to determine the service

availability on a statistical basis (Montecarlo simulations).

C. The Hybrid Petri Nets Model

Petri nets have been used to represent the use case

workflow (see Section III). A Petri net is a mathematical

modeling language used to describe distributed systems. It is

not the purpose of the current paper to describe Petri Nets,

extensively reported on related literature [15]; here only the

basic elements required for the model understanding are

briefly recalled. A Petri net is formed by the following

elements:

• Places/States (P) – circular elements used to describe the

state of a system component at a predefined time t;

• Tokens – black marks describing the data flowing into the

system; at each time step of the simulation the tokens are

added/removed from one place to the other according to

the arc connections and the transition type.

• Transitions (T) – rectangular elements used to describe

the data flow from one place to the other. At each time

step of the simulation transitions can fire and change the

status of the places. The Hybrid Petri Nets Model includes

several transition types, the most used for Service

Availability modeling are:

o Discrete - tokens flow are added/removed as

discrete values;

o Continuous – tokens are managed as continuous

(fractional) values;

o Stochastic – tokens flow is managed according

to a stochastic distribution along the time span of

the simulation.

• Arcs (arrows) – connections between places and

transitions, which describe the token flow conditions and

directions.

Fig. 5 – Detail of a Hybrid Petri Net

On Figure 4 a detail of an Hybrid Petri Net sample model for

the user registration test case is reported. P1 represent the

place of the input user registration requests (250 tokens are the

input data flow). Client HW and SW components are

represented by P2 and P3 places. T1, T3 and T5 are the

discrete transitions that, firing at every time step, allow to the

tokens (input requests) to move to the next place. The chain

T1-T3-T5 represents the nominal sequence of the service: the

input registration request is saved on HW and processed by

Client SW.

T2 and T4 are instead stochastic transitions and

represent the occurrence of a failure, according to an input

distribution. When a failure occurs, the data (token) are

removed from the operational sequence (P2 and P3) and a

failure counter (P4 and P5) is updated. This simple mechanism

allows to model a permanent failure for the Client component,

according to the Service Failure definition reported on 3.1.4.

This means that the data contained on P2 at the

moment of a failure occurring on T2 will not be recovered and

it will be considered as lost. In this very simple example, the

failure is assumed to endure for a time step, but in the final

model the failure time span has been easily expanded to

endure for a specific time. Failure counters are fundamental,

since they allow to monitor the failure trend of each

component along a Montecarlo simulation, and to compute the

internal metrics defined on Section III. On each Montecarlo

simulation run the Service Availability is computed from the

comparison between the number of tokens present at the initial

and final place of the represented chain.

Fig. 6 Failure distribution per component

1) Failure Modeling

The proposed approach allows to model the failure occurrence

for each HW/SW component through the Probability Density

Function (PDF) of a stochastic distribution. For the specific

test case a PDF of an exponential distribution was used:

 (3)

where λ is the Failure Rate, computed as:

 (4)

The adopted Failure rates are derived from MTBF values

reported on Section 3.1.3. On Figure 5 it is possible to observe

the failures distribution in a time interval of 30 days for a

Montecarlo simulation of 50 runs.

2) Maintenance & Recovery
The SERA Model takes into account both permanent and

transient failures; this aspect leaded to the introduction of a
system chronology and a maintenance process. In the current
study case the Petri Net elements have been used to build a
clock to monitor system chronology and a simple maintenance
process to test the effectiveness of the model on real

conditions. For each component affected by transient failures
(Section III) the model verifies the time of the day at which a
failure occurs; if the failure occurs in the time span between the
8:00 AM and the 18:00, it is assumed an immediate
intervention of the maintenance, with a MDT of 4 hours. If
instead the failure occurs in the time span between the 18:00
and the 8:00 of the following day, the intervention is delayed to
the 8:00, with a MDT of 1 hour (nominal process will then be
restored at 9:00). On both cases during the unavailability time
window the received registration requests are collected in a
queue, waiting for the component restoration. The request
queue will then be run out according to the simulated
processing times and remaining input requests to process. The
introduction of this maintenance modeling is fundamental to
reproduce the real conditions of a processing queue and the
related delay into the final request release. It is important
underline the logistic support can also drive the system design
and operation phases; in this study case the Logistic Delay
Times have been choose only to highlight as the failure
recovery can influence the completed requests, fundamental
requirement for service success. Further evaluations, such as
the different logistic scenarios, will affect Service Availability
will be discussed in the next studies.

3) Simulation Scenario
The current study was tested with a series of dedicated

Montecarlo simulations using open-source Snoopy Petri Net
Tool [17]. Snoopy proved to be efficient and adapt to the
feasibility study, with some limitations into the missing
possibility to use timed transition, which limited the modeling
possibilities for the recovery times.

The SERA Petri Net model of the User Registration Service
was implemented and tested on different time windows, from
30 days up to several years, in the case of realistic MTBF
values. Please notice that for the current test case the time
interval of each simulation was set to 30 days (720 h) at a time
step of 1 h, with low MTBF values, with the declared purpose
to put in evidence the method capabilities and limits of the
model. In the model each HW and SW component can be
affected by failures, according to the aforementioned modeling.

V. RESULTS

The results of the SERA Model are reported on Figure 6. A
specific percentage value of Service Availability was computed
for each Montecarlo run, showing the statistical trend due to
the interaction of stochastic failures. The most remarkable
result is that the computed value of SA (average value: 97.94%)
is very far from theoretical predictions (99.99%), based on a
static view of system components. It is also relevant to notice
that it is possible to characterize the SA by its related
distribution, in order to define a trend and derive an expected
value. On the reported study case the SA distribution shows that
a statistically expected value of SA is between 97% and 98%, a
value decreasing if the distribution is computed for the SAr.
These results show how the application of a SERA model
based on Montecarlo simulations can provide a reliable
estimate of the service availability, to be compared to the
results from operational life.

Fig. 7 – Global & restricted Service Availability

The second remarkable result from simulations is the

relevant difference occurring between the SA and the SAr,
especially in two worst cases where the random distribution of
failures had a dramatic impact on the SAr value (<65% and
<25% respectively). This result led to the conclusion that in a
real condition of stochastic distribution of failures there is a
significant probability (>1/50) to have at least a service
availability value far below the commonly accepted standards
(80% or higher). Most of all, this is not due to a failure of a
specific component, but to the way the failures occur and at
which time. On the SAr < 25% case, one failure occurred on
DB-SW at 19:00, generating a large request queue; another
failure occurred at 10:00, giving rise to a unavailability
window of 16 h on a total of 17 h (from 9:00 to 10:00 the
component was available). In other terms, the results show
how, in a real stochastic distribution of failures, the
maintenance policy can have a significant weight on the final
service availability performance. Such a result is fundamental
especially in a system design phase, where the selection and the
RAMS analysis of the single components is not the only
element to take into account for the implementation of reliable
services. The proposed method provided a refined picture of
the reliability and availability of a service at a very reduced
cost (one single Petri Nets), proving its flexibility and its
effectiveness.

CONCLUSIONS

The traditional Prediction Model gives an Availability figure
on steady-state (asymptotic condition) without taking into
account time evolution and transitions on the state of the
service. The proposed SERA Model allows to determine the
failure distribution and the impact on the service outputs,
taking into account the logistic support and the operative
process. By Monte-Carlo runs it is possible to predict the
Availability mean value and its distribution on a statistical
basis, replicating the operational conditions. The proposed
approach proved to be suitable especially as support method
into system design, allowing to detect possible criticalities and
to predict on a statistical basis a reliable value of Service
availability.

ACKNOWLEDGMENTS

The authors thank L. Tirone, S. Sorge and System
Engineering team from ASTER for the provided support and
the constructive comments. The authors are grateful for support
to A. Di Bona from Telespazio for his support into define the
logistic support aspect according the O&M organization

REFERENCES

[1] G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.
(references)

[2] V. Cortellessa, V. Grassi, Reliability modeling and analysis of service-
oriented architectures, in Test and Analysis of Web Services. -2007

[3] M. del Mar Gallardo, J. M. P. Merino, G. Rodrıguez, Integration of
Reliability and Performance Analyses for Active Network Services.
Electronic Notes in Theoretical Computer Science - 2005

[4] M. Rout, P. Bhuyan, A Survey Report on Reliability Models and
Frameworks in SOA, IJARCSSE-2014

[5] C. Xie, B. Li, X. Wang, A Web Service Reliability Model Based on
Birth-Death Process. SEKE, 2011K. Elissa, “Title of paper if known,”
unpublished.

[6] Y. Dai , B. Yang , J. Dongarra , G. Zhang. Cloud Service Reliability:
Modeling and Analysis -2010

[7] Y. Bai, H.Zang, F.Yangzhen, Reliability modeling and analysis of cloud
service based on complex network. Prognostics and System Health
Management Conference- 2016

[8] S. M. Iyer, M. K. Nakayama, and A. V. Gerbessiotis, A markovian
dependability model with cascading failures,” IEEE Transactions on
Computers, vol. 58, pp. 1238–1249, September 2009.

[9] C.A.Ardagna, E. Damiani, R. Jhawar, V.Piuri A Model-Based Approach
to Reliability Certification of Services Digital Ecosystems Technologies
(DEST), 2012 6th IEEE International Conference on

[10] L.Jereb, Efficient Reliability Modeling and Analysis of
Telecommunication Networks (1998)

[11] Thirumaran, M., et al. "Finite State Machine Based Evaluation Model
for Web Service Reliability Analysis." International Journal of Web &
Semantic Technology 2.4 (2011): 125.

[12] M. Srinivasa Rao, V. N Anaikan, Review of Simulation Approaches in
Reliability and Availability Modeling. International Journal of
Performability Engineering, Vol. 12 No. 4, July 2016

[13] A.Garro, A.Tundis. On the Reliability Analysis of Systems and Systems
of Systems: the RAMSAS method and related extensions, IEEE Systems
Journal, 9(1):232-241, 2015, ISSN. 1932-8184, IEEE Systems Council

[14] ECCS-Q-ST-30-09C Availability analysis. 31 July 2008

[15] David, R., & Alla, H. (2010). Discrete, continuous, and hybrid Petri
nets. Springer Science & Business Media.

[16] Goss, P. J., & Peccoud, J. Quantitative modeling of stochastic systems in
molecular biology by using stochastic Petri nets. Proceedings of the
National Academy of Sciences, 95(12), 6750-6755. (1998).

[17] Heiner, M., Herajy, M., Liu, F., Rohr, C., & Schwarick, M. (2012).
Snoopy–a unifying Petri net tool. Application and Theory of Petri Nets

398-407.

.

