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Abstract— The human unreliability is the main cause of 

industrial accidents. In the petrochemical field, about 90% of 

accidents are due to human errors. Over the years, several 

models of Human Reliability Analysis have been developed. The 

major limitation of these models is due to their static nature. 

Thus, the present research aims to propose a new  innovative 

approach to evaluate the variability of the human error 

probability  between related activities in complex systems using a 

resilience engineering approach.. Research integrates an HRA 

evaluation model with a resilience engineering model called 

Functional Resonance Analysis Model to assess the human error 

variability. The methodology is applied in a real case study for 

the emergency management in a petrochemical company.  

Keywords — Resilience Engineering, FRAM, System 

Engineering, HRA, Emergency Management. 

I.  INTRODUCTION 

In recent years, many organizations have been studied for 
their high level of safety (nuclear, aeronautical, chemical and 
petrochemicals, etc.); many of the results obtained are 
shocking. The success in terms of safety of these organizations 
is due to risks limitation, errors reduction, but, especially to 
the capacity to anticipate and plan “the unexpected” [1]. The 
heart of the culture of these organizations is the 
comprehension of the human factor. If human error comes 
from unsafe, it is equally true that most of the incidents are 
avoided due to the ability of operators to handle the 
unexpected and adapt to the dangers of life by identifying 
alternative solutions. We speak of “Resilience Engineering” to 
indicate “a non-event dynamic” [2]. Resilience is the ability of 
an organization to develop robust and flexible processes, to 
monitor and revise the risk models adopted and to proactively 
use available resources, in the face of a break in production or 
at greater economic pressure [3]. System analysis is the 
fundamental element of continuous improvement. It must 
understand the functioning of a system to prevent any failures. 
Of course, it is necessary to understand the functioning of the 
systems, also considering external factors that could affect the 
system, such as pressure, temperature, weathering and 
behavior over time (aging and degradation). The analysis of 
the environmental factors influencing the system allows to 
develop a dynamic analysis [4]. To carry out a dynamic 

analysis, it is also necessary to analyze all components, their 
dependencies, energy, information, and so on. All these 
elements create a high degree of dependence and a high level 
of possible combinations in which the system can be found. 
When analyzing accidents, it is rare to have all the necessary 
information and those few information obtained are influenced 
by secondary aspects such as prejudices and practical 
constraints [5]. An important development in safety 
management practices has been with the emergence of the 
human reliability analysis (HRA). HRA techniques allow to 
calculate the human error probability in relation to a specific 
task handled by the operator. HRA analyzes linearly events 
and does not identify a cause-effect relationship [6]. To work 
around this problem, it needs to use resilience engineering 
methods. The Functional Resonance Analysis Model (FRAM) 
[7] in particular allows to manage systems considering the 
order between the various activities that make them and 
considering how a single upstream activity can affect 
downstream activities. The most important limitation of the 
FRAM methodology is its purely qualitative character [8]. The 
aim of this paper is to present an integrated framework in 
order to develop an HRA analysis using a FRAM model to 
identify the error variability considering the cause-effect 
connections between the activities. The rest of the paper is 
organized as follows. Section 2 presents a literature review on 
HRA models and FRAM; Section 3 explains the proposed 
methodological approach; in Section 4 a real case study is 
analyzed. Finally, Section 5 presents the conclusions and 
future developments of this research.  

II. LITERATURE REVIEW 

HRA analyzes human reliability and measures the human 
error probability, considering the physical conditions of the 
operator and the environmental conditions in which it works 
[9]. There are three different generations of the HRA 
methodologies: 

The First generation (1970 - 1990) study the human error 
probability and it is not very sensitive to the causes of 
behaviors [10]. The most important first-generation HRA 
techniques are: Systematic Human Action Reliability 
(SHARP) which considers the integration between man and 
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machine, The Empirical technique to estimate the operator’s 
error (TESEO) which calculates human error probability 
considering five influential factors, Technique for human error 
rate prediction (THERP), which builds a tree of events and it 
quantifies the related scenarios, Success likelihood index 
method (SLIM) which assess the error probability considering 
the indicators defined by the experts, Human error assessment 
and reduction technique (HEART) which considers all factors 
that adversely affect the activity performance and finally 
Probabilistic Cognitive Simulator (PROCOS) which returns a 
quantitative results of human error probability; 

The second generation (1990 – 2005) integrate internal and 
external factors affecting human performance and cognitive 
processes [11]. The most important second-generation HRA 
techniques are: Cognitive reliability and error analysis method 
(CREAM) which evaluates the effect of the context of risk of 
error, Standardized plant analysis risk-human (SPAR-H) 
which divides causes of error in diagnosis and action and it 
underlines the external influencing factors and finally 
Simulator for human error probability analysis (SHERPA) 
which calculates human error probability considering internal 
and external factors which influence human error and it 
calculates the quantitative value of error probability. 

The third generation (Since 2005) consider the dependence of 
various factors of human performance. The third-generation 
models are now only applied in nuclear plants and try to 
incorporate aspects of variability in analytical models [12]. 

HRA models are still very much used today. In fact, the 

evolution and growing complexity of industrial plants makes it 

necessary to review the HRA analysis practices, for the 

management of socio-technical systems engineering 

management. From the development of these new 

requirements was born a new analysis concept called 

“Resilience engineering”. Resilience engineering has become 

a recognized alternative to traditional approaches to safety 

management. Whereas these have focused on the risks and 

failures as the result of a degradation of normal performance, 

resilience engineering sees failures and successes as two sides 

of the same coin – as different outcomes of how people and 

organizations cope with a complex, underspecified and 

therefore partly unpredictable environment [3]. All 

performances require people, technologies, and organizations. 

Since resources (information, time, etc.) are always limited, 

the performance can vary. This variation is not necessarily 

negative, in some cases it can generate benefits, in other cases 

it can lead to unexpected effects [13]. For this reason, 

resilience engineering not only investigates incident events, 

but studies all events, considering different hypotheses where 

they can vary. One of the most popular resilience engineering 

models is the functional resonance analysis method (FRAM) 

developed by Hollnagel [7]. This model identifies the main 

macro functions of a system and combines them to evaluate 

performance variability, considering a relationship causing 

effect between downstream (influenced) function and 

upstream (influencing) function. Although the FRAM model 

has been developed recently, it has already been applied in the 

aeronautical [14], nuclear [15], petrochemical [16], and 

railways [17] sectors. The fundamental problem of the FRAM 

model is its qualitative approach. To overcome this limit, 

several authors have integrated FRAM with other quantitative 

methods to develop a semi-qualitative model. Bjerga [18] 

analyzes the FRAM in terms of modeling uncertainty, 

showing the need to integrate its context with other reliable 

decision-making approaches. Rosa et al., [19] use the built-in 

FRAM model with AHP to reduce susceptibility to 

performance variability. Zheng et al., [20] combine the FRAM 

model with the SPIN model to test different variability paths. 

Praetorius et al., [21] combine FRAM with “Formal Safety 

Assessment” (FSA), a structured methodology in maritime 

safety decision-making. Patriarca et al. [8] define a semi 

quantitative FRAM model for evaluating function variability 

by integrating the traditional FRAM model with Monte Carlo 

simulation. Albery [22] uses finite element theory (FEM) as 

an integration of the FRAM model to make it a dynamic 

system. Furfaro et al., [23] propose a methodology, called 

GOReM, for specifying the requirements applied in the 

analysis of a corporate cloud service. Garro et al., [24] develop 

a new modeling language based on time logic called FORM-L 

to allow visual modeling of system properties with verification 

through simulation. The last two works mentioned are a clear 

example of complex system requirements analysis, which 

could be analyzed by applying the FRAM model. In particular, 

the models can be used to define the requirements of complex 

systems before making the combined analysis FRAM-HRA 

The presented research integrates an HRA model with the 

FRAM analysis to evaluate the human error probability of a 

conditional action from a previous action. 

 

III. METHODOLOGY APPROACH 

As shown in Figure 1, we have developed an integrated 
approach to assess the risk of operations. Quantitative risk 
assessments are made with SHERPA [25] “in red”, while the 
qualitative assessment is presented using FRAM “in blue”. 
SHERPA evaluates the human error probability of each action, 
while FRAM is applied to the human error analysis to identify 
the resonance on the network and the variability of human 
error. In the end, the performance variability of operator is 
analyzed. The methodological approach is divided into 
different steps: 

Step #1: Scope of analysis: Detailed description of the purpose 
of the analysis, input data and expected output data. 

Step #2: Activity Description: Description of the case study 
and the analyzed model. It is necessary to describe all the 
activities needed to manage the emergency. 

Step#3.1: GTTs definition: For each action it is necessary to 
identify the Generic task that best represents it. Generic tasks 
(GTTs) are defined in the literature by Williams, [26]. Table I 
shows the GTTs with the relative reliability values. GTTs 
identify the internal factors that influence the human error 
probability. 

Step #3.2: PSFs choice: The calculation of the human error 
probability also depends on external factors called 



“Performance Shaping Factors” affecting the operator. 
Gertman et al., [27] identify the major environmental factors 
affecting human reliability (Table II). The value of multipliers 
increases with the deterioration of environmental conditions. 

 

 

Fig. 1. Methodological approach 

 
 

TABLE I. GTTS RELIABILITY VALUE 

Generic Task Reliability (k) 

1. Total unfamiliar, performed at speed 

with no real idea of likely consequences 
0.65 

2. Shift or restore system to a new or 

original state on single attempt without 

supervision or procedures 

0.86 

3. Complex task requiring high level of 

comprehension and skill 
0.88 

4. Fairly simple task performed rapidly or 

given scant attention 
0.94 

5. Routine highly practised, rapid task 

involving relatively low level of skill 
0.993 

6. Restore or shift a system to original or 

new state following procedures, with some 

checking 

0.992 

7. Completely familiar, highly practised, 

routine task occurring several times per 

hour, performed to highest possible 

standards by highly motivated 

0.99992 

8. Respond correctly to system command 

even when there is an augmented or 

automated supervisory system 

0.999994 

 

TABLE II. PERFORMANCE SHAPING FACTORS 

PSFs  PSFs values Values 

Available time 

Low  1  

Medium  0.1  

High  0.01  

Stress  

High 5 

Medium 2 

Nominal  1 

Complexity 

High  5 

Medium  2 

Nominal 1 

Training  

Low 3 

Nominal 1 

High  0.5  

Procedures 

Not available  50 

Incomplete 20 

Poor  5 

Ergonomics 

Missing  50 

Poor 10 

Nominal 1 

 

Step #3.3: HEP calculation: SHERPA estimates the human 
error probability firstly considering the error probability 
influenced by internal factors and then also adds to the 
influence of the external environment. The nominal human 
error probability (HEPnom) represents the human error 
probability considering only internal factors. The following 
equation shows the calculation model: 

                       HEPnom = 1 – k e 
– α (1-t) β   

           (1) 

Where α and β are parameters, of Weibull function which 
represents human error [28]. The contextualized human error 
probability (HEPcont) with the external environment is 
calculated as: 

HEPcont = (HEPnom * PSFcomp)/(HEPnom* (PSFcomp-1)+1)   (2) 

Where PSFcomp is the product of all PSFs value above 
described. This model calculates the human error probability 
for each action, but it is not possible to establish a cause and 
effect relationship. 

Step #4.1: Build a FRAM: The FRAM model must include all 
actions (functions) of the analyzed model. The analysis can 
start from any essential function for the system, by adding 
iteratively any other function that may be needed to provide a 
complete description of the system. FRAM functions represent 
a hexagon with 6 different characteristics (Figure 2): Input, 
Time, Control, Output, Resource and Precondition. All 
functions are connected to each other through the 6 
characteristics. 



 

Fig. 2. FRAM hexagon 

 
Step #4.2: Functions Variability: This step analyzes the 

functions variability, that make up the FRAM model. If the 
output function does not vary, then the function variability is 
of no interest, while it is crucial if it causes a change in the 
output of the function. Function output, can vary in terms of 
time and accuracy.  

Step #4.3: Variable Aggregation: The FRAM analysis 
considers two functions: downstream function and upstream 
function, connected to each other. So if an upstream function 
is performed precisely and in a precise time it does not 
generate variability in the downstream function. However, if a 
function is performed imprecisely, or in an excessively high or 
excessively limited time, a variability in the downstream 
function is generated. The variable aggregation tables by 
characteristics are reported by Hollnagel [7]. Table III shows 
an example of coupling upstream and downstream functions 
for input and output.  

TABLE III. QUALITATIVE VARIABLE AGGREGATION (O-I) 

Upstream function 

variability 

Possible effects on 

downstream function 

Time 

Too early Amplification / Damping 

In time No effect / Damping 

Too late Amplification   

Accuracy 

Inaccurate Amplification   

Acceptable No effect / Damping 

Accurate Damping 

 

The limit of this model is the qualitative approach. 
Patriarca et al., [8] overcome this limit by introducing 
quantitative values that have been used to develop this model 
(Table IV). If the upstream function amplifies effects on the 
downstream function, it associates a value of  2, if it dampens 
the effects, it associates a value of 0.5, otherwise a value of 1 
is associated. 

TABLE IV.  NUMERICAL VARIABLE AGGREGATION 

Effect VAR(u,d) 

Amplification 2 

No effect 1 

Damping 0.5 

 

Step #5: HEP Variability: With the SHERPA model (steps 
# 3) we have calculated the human error probability of each 
function (HEPcont). With, FRAM we have built a qualitative 
connection model between the different functions, identifying 
the variability of accuracy (VARA (u,d)) and the variability of 
time (VART (u,d)), generated by a upstream function on a 
downstream function for a particular scenario. The product 
between variability of accuracy and variability of time is Total 
variability VARTOT. In conclusion, considering a particular 
scenario and a certain action of an operator on a downlink 
function, it is possible to calculate the human error probability 
conditioned (HEPcond) by the upstream function such as: 

 
HEPcond = (HEPcont * VARTOT)/ [HEPcont *(VARTOT -1)+1]   (3) 

IV. CASE STUDY 

The proposed model has been integrated into a real case 
study for the analysis of an emergency in a petrochemical 
plant. The company recycles used oil, so it works with 
extremely hazardous materials: diesel, methane, hydrogen, etc. 
These substances create a highly explosive environment, so, it 
is necessary to thoroughly study the safety management 
system. 

Step #1: Scope of analysis: To analyze emergency 
management activities by assessing the human error 
probability, related to each activity and by using FRAM to 
detect the performance variability generated by a upstream 
function on the downstream function by detecting a 
conditional error probability value. 

Step #2: Activity Description: The case study analyzes the 
standard actions to be taken after the explosion of a liquid 
methane tank. The analysis predicts actions of the desk 
operator (in bold) who works in the control room and the 
subsequent actions of the operator who work in the production 
site. The model analyzes the variability of the operator's error 
probability if the desk operator makes a mistake earlier. 

1. Alarm signal  

2. Evacuation 

3. Closing steam systems 

4. Power shutdown 03T102A / F 

5. Closing distillation systems 

6. Cross pump stop 01P102B / C 

7. Power pump stop 01P104A / D 

8. Suction valve closure 04 04 BN192 

9. Closing the heating system 

10. Switch off oven 0H03 

11. Extraction pump stop 02P104G / H 

12. Air cooler stop 09KL198I / N 
 

The analysis focuses on operation #3(developed from desk 
operator) and operation #4 (developed from operator). 

Step#3.1: GTTs definition: Action 3 is associated with the 

GTT5 "Routine, highly-practised, rapid task involving 

relatively low level of skill" while action 4 is associated with 

the GTT3 "complex task requiring high level of 

comprehension and skill." Each operation is associated with 

the GTT that best represents it. 



Step #3.2: PSFs choice: Table V shows the external 

working conditions for the two operators, considering the level 

of stress, complexity and ergonomics. The operator in the 

production plant has worse stress and ergonomics values than 

the operator in the control room that perform very complex 

operations. All other PSFs not included in this table are 

nominal hypotheses and assume value 1. 

 
TABLE V. PSFS CASE STUDY 

PSFs  Desk operator Operator 

Stress  2 5 

Complexity 5 2 

Ergonomics 1 10 

 

Step #3.3: HEP calculation: Analyzing the internal factors 

obtained from GTTs and the external factors obtained by 

PSFs, it is possible to calculate the human error probability of 

the two activities during the 8 hours of work (Figure 3).  

 

 

 
Fig. 3. Human Error Probability graph 

 

Step #4.1: Build a FRAM: The functions described in step # 2 

are represented with a graph FRAM. The model identifies the 

connections between the various functions. The two analyzed 

functions # 3 and # 4 are highlighted in red. In particular, the 

output of function # 3 is the precondition for function # 4. 

 

 

Fig. 4. FRAM model 

 

Step #4.2: Functions Variability: In the case study, only 

human functions are analyzed. In particular, the scenario 

simulated  shows that the operator performs the actions in the 

right way, but does too late. The causes of this delay may be 

internal to the operator, psychologically and physiologically, 

but also external to the operator, social and organizational. 

Both causes are very frequent and have serious consequences 

on variability. 

 

Step #4.3: Variable Aggregation: The case study has 

considered two functions, linked as output and precondition. 



Table VI shows the functions variability. In particular, VARA 

(u,d)) = 1 and the VART (u,d) = 2. 

 
TABLE VI.  VARIABLE AGGREGATION (O-P) 

Upstream function 

variability 

Possible effects on 

downstream 

function 

Value 

Time Too late Amplification 2 

Accuracy Acceptable No effect 1 

 

Step #5: HEP Variability: The last step of the study calculates 

the conditioned human error probability for activity #4, 

influenced by the variability generated by activity # 3. In this 

case study, the function #3 has a variability due to a delay of 

action, so the error probability in the action is higher. Figure 5 

compares the contextual error probability with the conditional 

error probability for activity #4. 

 

 

Fig. 5. Contextual and Conditioned human error 
 

V. CONCLUSIONS 

The complexity of the most recent industrial plants drives 

managers to continually analyze processes, especially in terms 

of safety management to limit the number of workplace 

accidents and occupational disease complaints. Technology 

and machine reliability studies have considerably reduced the 

percentage of accidents due to mechanical failures. Today the 

major cause of accidents is due to human error. Historically, 

several HRA models have been developed to assess human 

error. The major limitation of these models is due to their 

static nature. In recent years, to address the complexity of 

industrial plants, a new type of analysis called "Resilience 

Engineering", has developed, which evaluates performance 

variability of dynamical functions, considering the cause-

effect link. An engineering resilience model is the FRAM that 

allows to evaluate the performance variability of different 

functions. The most important limit of FRAM is its qualitative 

approach. This research integrates a quantitative model of 

HRA with the qualitative FRAM. It numerically calculates the 

human error probability of human of functions, considering 

the influence of upstream function on downstream function. 

The research model is applied in an emergency management 

analysis in a petrochemical company. The case study identifies 

an emergency situation created by the explosion of a methane 

tank. Two activities (Closing steam systems and Power 

shutdown 03T102A / F) are identified and independent error 

probabilities are calculated. Then the FRAM of the incident is 

analyzed and the error probability of action #4 is calculated 

considering the errors made in activity #3. The output of 

action #3 is a precondition of action #4. The results show a 

growing trend of error probability with the passage of time. 

The analysis of errors identified HEPcont more for function 

#4. After considering the variability of the performance 

HEPcond value is greater than the previous. Future model 

development involves the development of a simulation model 

for integrated HRA-FRAM analysis. 
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