
Integrated Requirements Baseline Management for

Complex Software System
Description of Methods and Tools for improving the Software Modules Design processes for

complex Systems in a Project Management and System Engineering Integrated Environment

Sergio Funtò

Engineering Ingegneria Informatica S.p.A.

Via S. Martino della Battaglia 56 Rome, Italy

sergio.funto@eng.it

Abstract—This paper reports on experiences from managing the

requirements baseline in regards to Complex Software System. The

requirements management of these starts from the architectural

structure of the whole system by defining the high-level

functionalities. The complex systems are architecturally organized in

separate modules and each of them gives support to the development

of one or more functionalities of the whole systems. The flow down

of the whole system requirements towards the requirements of each

module and the monitoring of the related traceability are the core

activities within the baseline management. Moreover, the

development plan of a complex system foreseen more than one

deliveries each one characterized by new features and functionalities

compared to the previous one. Each system version is defined by the

set of the corresponding modules. This scenario requires a project

development environment where Project Management (PM) and

System Engineering (SM) activities are strictly connected and

integrated. The presented approach takes into account the system

development life cycle identified by quality standard adopted for the

software development and documentation. Adopted methods, tools

and artifacts are presented in order to describe the proposed processes

taking into account PM and SE activities integration mechanisms

episodic and pervasive.

Keywords—Requirements Management Processes, Scope

Management, Project Management and System Engineering

Integration

I. INTRODUCTION

This paper presents experiences from defining and managing the

requirements baseline related to Complex Software System (CSS).

Starting from the general definition of a Complex System, are

introduced the main concepts and elements to be taken into account

in order to describe the proposed methods and tools.

In this regards, a specific focus is dedicated to identify:

• the design process/model adopted as references for the system

development process;

• the artifacts and documents used to describes the adopted

software development life-cycle;

• the methods and tools used in regards to the Project

Management (PM) and System Engineering (SM) integrated

activities to support the design process phases.

The next Section II describes the background of the work, and

introduces the Military Standard 498 (MIL-STD-498), the Waterfall

Model and the referred integration mechanism in regards to PM-SE

activities.

Section III introduces the operative scenario used as reference to

describe the proposed requirements baseline methods and tools as

reported in Section IV.

II. BACKGROUND

A. What is a Complex Software Systems

The definition of a CSS is strictly related to the identification of

the properties of a Complex System and to the features of a Software

System.

1) The Complex Systems
A Complex System is composed of many components which may

interact with each other. In many cases it is useful to represent such a

system as a network where the nodes represent the components and

the links their interactions. The behavior of a Complex Systems is

intrinsically difficult to model due to the dependencies, relationships,

or interactions between their parts or between a given system and its

environment. Systems that are complex have distinct properties that

arise from these relationships, such as: non-

linearity, emergence, spontaneous order, adaptation, and feedback

loops, among others. Because such systems appear in a wide variety

of fields, the commonalities among them have become the topic of

their own independent area of research.

2) Properties of a Complex Systems
Abstracting from the quotations related to Complex Systems and

drawing on the culture of complexity science as expressed through a

wide range of popular as well as academic sources, the following list

of properties can be associated with the idea of a complex system [1]:

• Nonlinearity - is often considered to be essential for complexity.

A system is linear if one can add any two solutions to the

equations that describe it and obtain another, and multiply any

Copyright © held by the author.

solution by any factor and obtain another. Nonlinearity means

that this superposition principle does not apply;

• Feedback - is an important necessary condition for complex

dynamical systems. A part of a system receives feedback when

the way its neighbors interact with it at a later time depends on

how it interacts with them at an earlier time;

• Spontaneous order - given the above it is clear that a

fundamental idea in complex systems research is that of order in

a system’s behavior that arises from the aggregate of a very

large number of uncoordinated interactions between elements;

• Robustness and lack of central control - the order in complex

systems is said to be robust because, being distributed and not

centrally produced, it is stable under perturbations of the system.

A centrally controlled system on the other hand is vulnerable to

the malfunction of a few key components;

• Emergence - is a notoriously murky notion with a long history in

the philosophy of science. People talking about complexity

science often associate it with the limitations of reductionism. A

strong, perhaps the strongest, notion of emergence is that

emergent objects, properties or processes exhibit something

called ’downwards causation’;

• Hierarchical organization - In complex systems there are often

many levels of organization that can be thought of as forming a

hierarchy of system and sub-system. Emergence occurs because

order that arises from interactions among parts at a lower level is

robust;

• Numerosity - the kind of hierarchical organization that emerges

and gives rise to all the features listed above, only exists if the

system consists of a large number of parts, and usually, only if

they are engaged in many interactions;

• Remarks - The above discussion makes it clear that the

definition of complexity and complex systems is not

straightforward and is potentially philosophically interesting.

The notions of order and organization introduced above and the

idea of feedback are suggestive of an information-theoretic

approach to complexity, since complex systems can be often

helpfully be construed as maintaining their order and

hierarchical organization by the exchange of information among

their parts.

3) The features of the Software Systems

A Software System is characterized by inter

communicating components based on software forming part of

a computer system (a combination of hardware and software). It

consists of a number of separate programs, configuration files, which

are used to set up these programs, system documentation, which

describes the structure of the system, and user documentation, which

explains how to use the system.

The term Software System should be distinguished from the terms

‘computer program’ and ‘software’. The term computer program

generally refers to a set of instructions (source, or object code) that

perform a specific task. However, a software system generally refers

to a more encompassing concept with many more components such

as specification, test results, end-user documentation, maintenance

records, etc.

The use of the term software system is at times related to the

application of systems theory approaches in the context of software

engineering. A software system consists of several separate computer

programs and associated configuration files, documentation, etc., that

operate together [2]. The concept is used in the study of large and

complex software, because it focuses on the major components of

software and their interactions. It is also related to the field

of software architecture.

B. The Software System Design Process

Once introduced the definition and the characteristics/properties

of the CSS, the next step is to identify the adopted system design

process.

1) The Waterfall Model
The Waterfall Model can be described through a sequential (non-

iterative) design process, used in software development for large

systems, in which progress is seen as flowing steadily downwards

(like a waterfall) through the phases of conception,

initiation, analysis, design, construction, testing, production,

implementation and maintenance.

In the original waterfall model [3], the following phases are

followed in order: System and software requirements: captured in

a product requirements document; Analysis: resulting

in models, schema, and business rules; Design: resulting in

the software architecture; Coding: the development, proving,

and integration of software; Testing: the systematic discovery

and debugging of defects; Operations:

the installation, migration, support, and maintenance of complete

systems.

Figure II-1: The Waterfall phases [3]

The United States Department of Defense (DOD) captured this

approach in the DOD-STD-2167A, their standards for working with

software development contractors, which stated that "the contractor

shall implement a software development cycle that includes the

following six phases: Preliminary Design, Detailed Design, Coding

and Unit Testing, Integration, and Testing. The DOD-STD-2167A is

the precursor of the MIL-STD-498 introduced hereafter.

C. The Software System Description

Following the identification of the adopted system design

process, another core step is the specification of the artifacts and

documents used to describes the adopted software development life-

cycle.

1) The Military Standard 498
The Military-Standard-498 (MIL-STD-498) is a United

States military standard whose purpose was to establish uniform

requirements for software development and documentation. It

replaced the DOD-STD-2167A, DOD-STD-7935A, and DOD-STD-

1703. It was meant as an interim standard, to be in effect for about

two years until a commercial standard was developed.

Unlike previous efforts the MIL-STD-498 was the first attempt at

a truly comprehensive description of the systems development life-

cycle. It was the baseline that all of the ISO, IEEE, and related efforts

after it replaced. It also contains much of the material that the

subsequent professionalization of project management covered in the

Project Management Body of Knowledge (PMBOK) [7].

2) MIL-STD-498 Data Idem Descriptions
The MIL-STD-498 standard specifies [4] the development and

documentation in terms of 22 Data Item Descriptions (DIDs) from

which an effort will select to conduct the system development and

support efforts. Each DID generically describes the required content

of a data item, a file or document that describes the system or some

aspect of the system life-cycle. These documents could take many

forms, from source code, to installation scripts, to various electronic

and paper reports, and the contracting party (e.g., the government) is

encouraged to specify acceptable formats. Any data item description

is tailored for a specific contract, meaning sections not desired for a

particular effort are identified as not to be provided as part of

identifying the Contract Data Requirements List (CDRL) of what

items are to be produced and delivered by a contractor. Exactly which

DIDs and what parts of the DIDs are required for a particular system

depends on the nature of the project and how parts of it are being

produced by contract(s).

Figure II-2: MIL-STD-498 DID [4]

3) Data Idem Description related to System Specification
The MIL-STD-498 DIDs covers all the phases of a software

system development life-cycle. In regards to system design and

requirements specification, the involved DIDs are listed hereafter:

• Operational Concept Description (OCD): describes a proposed

system in terms of the user needs it will fulfill, its relationship to

existing systems or procedures, and the ways it will be used. The

OCD is used to obtain consensus among the acquirer, developer,

support, and user agencies on the operational concept of a

proposed system;

• System/Subsystem Specification (SSS): specifies the

requirements for a system or subsystem and the methods to be

used to ensure that each requirement has been met.

Requirements pertaining to the system or subsystem’s external

interfaces may be presented in the SSS or in one or more

Interface Requirements Specifications (IRSs) referenced from

the SSS;

• System/Subsystem Design Description (SSDD): describes the

sytem- or subsystem-wide design and architectural design of a

system or subsystem. The SSDD may be supplemented by

Interface Design Descriptions (IDDs) and Database Design

Descriptions (DBDDs);

• Interface Requirements Specification (IRS): specifies the

requirements imposed on one or more systems, subsystems,

Hardware Configuration Items (HWCIs), Computer Software

Configuration Items (CSCIs), manual operations, or other

system components to achieve one or more interfaces among

these entities. An IRS can cover any number of interfaces.

D. PM and SE Integrated Environment

The design and development of a CSS, taking into accounts the

elements introduced before, takes advantage from a working

environment where Project Management (PM) and System

Engineering (SE) activity are strictly integrated.

All aspects of integration are about individuals and how they

coordinate the application of their collective knowledge, expertise

and capabilities to deliver results. Effective integration efforts are

accomplished through the application of processes, practices and

tools that help to enable important abilities [5]:

• enable communication and common understanding on key

objectives,

• provide framework for defining specific work activities,

• document approaches for coordinating and tracking work effort;

• establish expectation of each person’s contribution;

• identify critical point where focalized the work effort;

• facilitate problem identification and resolution;

• apply generally accepted approaches that have demonstrate

effective results under similar circumstances in the past;

• support and accelerate the accomplishment of specific work

activities.

Some processes, practices and tools are designed for individual

use while others may be structured fro group activities. Both uses

have appropriate application within complex program.

The process, practices and tools can be organized by the timeline

of their impact on integration: episodic or pervasive [5]. Episodic

integration emerges as the need requires. Pervasive integration tends

to be synchronous with the daily work of the program or its

component project.

1) Episodic Integration Mechanism
Episodic integration mechanisms are applied occasionally to

specific activities or at specific intervals within a program/project:

• Program Gate Reviews: require that all program aspects (cost,

schedule, performance, risks, requirements, testing) be presented

in their current state of maturity individual gates in order to:

receive approval to proceed to the next project gate (Go), repeat

the review after addressing specific concerns (recycle) or

terminate the project (No Go);

• Joint Planning: There are a variety of tools, templates and

software application that organizations can use to support

scoping and planning activities. Moreover, there are a number of

planning related practices that help to integrate PM and SE.

These include: program kick-off workshops (that brings together

all key stakeholder including engineers, project managers and

factory teams) and model based program planning (artifacts

describing the program/project including product breakdown

structure, work breakdown structure, system engineering process

models);

• Dedicated Team Meeting Space: The creation and use of

dedicated team meeting space and stand-up meeting is a proven

process in a variety of domains;

• Pulsed Product Integration and Iterative Development: (PPIID)

it is sometime described as the ‘daily build’ of product

components into more complex component or into complete

products. Iterative development comprises the use of short

cycles to create and deliver product increments.

2) Pervasive Integration Mechanism

There are process, practices and tools integral to program design

and development. They are continuous in nature and thus are

‘pervasive’. The application of pervasive integration mechanism can

help program teams realize such potential benefits for their

organization:

• Standard, Methodologies and Assessment: A methodology is a

documented approach for integrating interacting or

interdependent practices, techniques, procedures, and rules to

determine how best to plan, develop, control and deliver a

defined objective. A standard, on the other hand, reflects broadly

accepted principles of what represents good practices or

common guidelines. As the methodology is implemented,

executive leaders and user must evaluate (assess) the specific

practices and the extent to which the company is adhering to its

methodology;

• Integrated Product and Process Development: (IPPD) also

known as ‘simultaneous engineering’ or ‘design build’, uses

multidisciplinary co-located teams in design to jointly derive

requirements and schedules with equal emphasis on product and

process development. The teams often use requirement

breakdown structure (RBS) and work breakdown structure

(WBS) to facilitate their scoping and planning activities. RBS

are used where complex system dictate significant attention be

paid to requirements and when integration is crucial. The WBS

serves as the key framework for organizing the program and the

system engineering effort as well as for estimating and

allocating cost, schedule and performance requirements;

• Work Design Process: work design process as configuration

management can help to increase communication and

collaboration across the program. Another work design process

is standardized work that foreseen rigorous design

standardization supports platform reusability. The work

processes are deliberately designed so that integration is a

natural outcome of the work itself;

• Requirements Management: it forces conversation between

program/project manager and systems engineers. Effective

requirements management practices helps to align the work so

that customer receive ideal solution and desired program/project

benefits and value is realized for the business. Requirements

management often start at the concept level as a high level view

associated with investment or business opportunities. The

project manager and the chief system engineer build on the hight

level view by eliciting, documenting, and validating high level

requirements from customer and stakeholders. The project may

further cascade elements of the high level requirements for more

detailed development;

• Risk Management: Effective risk management ensure that the

sponsoring organization realized its desired benefits. Ideally risk

management processes should be fully integrated into all

program/project activities (management, technical, design,

development, procurement, planning;

• Technical Performance Measurements: is an analysis and

control technique that is used to anticipate the probable

performance of a selected technical parameter, record the actual

performance observed of the selected parameter and assist the

manager in decision making through comparison of planned

versus actual performance;

• Governance: is a structured mechanism through which

individuals with oversight responsibility and authority provide

guidance and decision making for important organizational

activities. The governance serves the following key functions

[6]: Oversight, Control, Integration and Decision Making.

III. THE OPERATIVE ENVIRONMENT SCENARIO

The previous Section II has introduced the main elements that

characterized the proposed system requirements baseline

management. This section specifies the environment scenario related

to the target program/project.

A. The Complex Software System Decomposition

According to the Software Design DIDs identified by the MIL-

STD-498, a first description of the Complex System is given in the

OCD (see Section II.C.2). Taking into account the Pulsed Product

Integration and Iterative Development (PPIID) and the Integrated

Product and Process Development (IPPD) integration mechanism

(see Section II.D.2), the first requirements breakdown consist in the

decomposition of the complex system OCD in three different OCD in

regards to complex system: Hardware: user needs related to

hardware elements; Software: user needs related to software

functionalities; and Interfaces: requirements related to the external

interfaces to be managed.

Figure III-1: Complex System Decomposition

Taking into account only the Software component the further

breakdown of the related OCD (applying PPIID and IPPD) is given

by the definition of the OCDs related to the single software modules

that compose the this component of the complex system.

B. The Software System Description

 Each software module from the design point of view is fully

defined by (see Section II.2) by the following artifacts (documents

and models): System/Subsystem Specification (SSS),

System/Subsystem Design Description (SSDD) and Interface

Requirements Specification (IRS).

Figure III-2: Software System Module Design

Specifically the IRS related to each software module is part of the

breakdown of the CID related to the CSS Interfaces. In other terms

the CID relates to the interface of the global system are

“implemented” through the IRS of each module of the software

component of the system itself.

This requirements organization takes into account the

Requirements Management integration mechanism (see Section

II.D.2).

C. The Design Process

As stated in the Section II.B.1, the Waterfall model approach was

captured in the MIL-STD-498. The related DIDs have an immediate

correspondence in the adopted system software life-cycle (see Figure

III-3) identified within the model in regards to the Work Design

Process integration mechanism (see Section II.D.2).

Specifically, the system requirements baseline management is

focused on the System Engineering activities (see Figure III-4)

related to: user requirements Analysis (described in the CID), System

Requirements Analysis (defined in the SSS/IRS) and System Design

(detailed in the SSDD).

Note: The Software Engineering activities are reported in the

corresponding DIDs: Software Requirements Specification (SRS),

Software Design Description (SDD), Interface Data Description

(IDD).

Figure III-3: System Software adopted life-cycle

Figure III-4: Software System life-cycle activities

Additional input to the System Engineering comes from the

System Validation and Verification activities where, for example,

failures in the system behavior are related to anomalies or errors in

the system specification and design (see next Section III.D for further

details).

Moreover, also within Software Requirements baseline

management uses MIL-STD-498 documents managed in the

Software Engineering activities (see [4]).

D. System Versions approach

Starting from the complexity of the system and the related

functionalities and taking into account the suggestions of the

integration mechanism (see section II.D), the approach foreseen more

than one system delivery according to (contractual) milestone each

one corresponding to functional increments of the system according

to the following schema:

• the Milestone Mk foreseen (at Tk) the delivery of the version Vk

of the system according to the documents: SSSk, SSDDk, IRSk;

• after the Mk, the activities related to the delivery of the

milestone Mk+1 are started in order to deliver the version Vk+1

at Tk+1. This is related to the corresponding evolution (k�k+1)

of the systems design and specification (SSS, SSDD and IRS).

This versions approach schema taken into account in the RBS and

in the WBS of the project (see Pervasive Integration Mechanism,

Section II.D.2).

Within the k�k+1 evolution, in addition to the activities related

to the design and specification of the functional increments of the

system, are taken into account the following input, including

outcomes from System Verification and Validation activities:

• failures coming from the final customer highlighted during the

system verification activities on the Vk version;

• not blocking remarks on the Vk version coming from the system

validation team;

• evolution of the user needs (e.g new operating rules, blaws,

STANAG,..).

1) Impact on Software System life-cycle

As reported in the previous Section III.C, the adopted Software

System life-cycle corresponds to a sequential process. At the same

time, the System Versions approach foresees activities iterations each

one corresponding to a specific version.

This results in sequence of design phases corresponding to the

System Versions where a specific phase takes inputs from the

previous one and gives input to the next one. The activities foreseen

for each phase are the same (according to Waterfall model):

Figure III-5: System Versions design phases

IV. REQUIREMENTS BASELINE MANAGEMENT

Starting from the Operative Environment Scenario identified in

Section III and taking into account the PM-SE integration

mechanisms specified in Section II.D, this section reports the

methods and tools related to the proposed requirements management

activities.

The management of the requirements baseline in regards to

complex software is focused on the concept of the changes

management embedded on the system versions approach (see Section

III.D). Within the Vk�Vk+1 evolution of the system, the

corresponding functional increment is specified by the upgrade of the

Requirements Baseline (RB): RBk�RBk+1. This requirements

evolution is regulated by a set of change requests managed through

an integrated change control.

A. Integrated Change Control

Perform Integrated Change Control [7] is the process of:

• reviewing all change requests;

• approving changes and managing changes deliverables, project

technical documents and project plans;

• communicating their disposition.

It reviews all requests for changes or modification to project

documents, deliverables, baselines and project management plan.

Moreover, it approves or rejects the changes. The key benefit of this

process is that it allows the documented changes within the project to

be considered in an integrated fashion while reducing project risk,

which often arises from changes made without consideration to the

overall project objectives and/or plans.

Figure IV-1: Integrated Change Control – Inputs, Tools and

Techniques and Outputs [7]

Changes may be requested by any stakeholder involved in the

project. They should be recorded in written form and entered into the

change management and/or configuration management system.

Change requests are subject to the process specified in the change

control and configuration control system. Those change request

process may require information on estimated time impacts and

estimated cost impacts.

1) Change Control Board
Every documented change request need to be either approved or

rejected by a responsible individual (project or program manager).

The integrated change control process includes a Change Control

Board (CCB) which is a formally chartered group responsible for

reviewing, evaluating, approving, delaying or rejecting changes and

for recording and communicating such decisions. Approved change

requests can require new or revised cost estimates, activity

sequences, schedule dates, resource requirements and analysis of risk

response alternatives. Customer/sponsor approval may be required

for certain changes after the CCB approval, unless they are part of the

CCB.

2) Configuration Control
Configuration Control is focused on the specification of both the

deliverable and the process, while change control is focused on

identifying, documenting and approving or rejecting changes to the

project documents, deliverables and baselines.

Some of the configuration management activities included in the

integrated change control are configuration:

• identification: identification and selection of a configuration

item to provide the basis for which the product configuration is

defined and verified, products and documents are labeled,

changes requests are managed and accountability is maintained;

• status accounting: information is recorded and reported as to

when appropriate data about the configuration item should be

provided;

• verification and audit: ensure the composition of a project’s

configuration item is correct and that corresponding changes are

registered assessed, approved, tracked and correctly

implemented.

B. Change Request Description

According to previous Section III.D and Section IV.A, the change

requests are documented through an artifacts named Change Request

Description (CRD).

Figure IV-2: CRD Management

Each Change Request on the Vk version of the system (see

Section III.D) is related to: a function increment requested for the

Vk+1 version, failures coming from the customer on the Vk version,

non-blocking remarks on the Vk version, other needs.

Each CRD is labeled with an Identifier (CRD_ID) defined

according to the configuration control and report the following

information:

• the authors of the CRD;

• the figures in the project team responsible for the acceptance of

the CRD;

• the module of the system affected (see Section III.A);

• the deliverables, documents and artifacts affected by the changes

(if approved);

• identification of the items affected by the change in regards to

design documents (see Section II.C.3) and artifacts (e.g.

models);

• detail description of the reasons related to the change;

• detailed description of the proposed changes (requirements,

models, drawings).

C. Approving the CRD

Each Change Request on the Vk version of the module Mx,

described by the corresponding CRD, in order to be approved for

application to the Vk+1 version, must to be reviewed by the involved

individuals (specified in the CRD itself) within a CCB:

Figure IV-3: Approving CRD through CCB

An important input to the CCB, in addition to the CRD to be

reviewed, is the time and cost impact evaluation for each change

request in regards to the implementation of the changes on the

version Vk+1 of the affected system module. These evaluations must

to take into account system engineering and system verification and

validation activities (see Section III.C).

The main outcomes of the CCB are the approved Change

Requests that became Change Request Order (CRO) applicable to the

Vk+1 version.

Figure IV-4: Software baseline evolution according CRO

Each CRO must to be applied to the system description

documents (see Section II.C.3) in order to define the new software

baseline, as defined in the CCBs, to be applied by the software

engineering activities.

D. System Failure Description

The Change Request mechanism is applied also to the

management of the System Failure (SF) highlighted during the

system verification and validation phase of the specific version (Vk)

on one module (Mx).

Similar to the change request, the system failures are documented

through a System Failure Description (SFD). Each SFD is labeled

with an Identifier (SFD_ID) defined according to the configuration

control and reports at list: the authors, the module of the affected

system (see Section III.A), identification of the functionalities

affected by the failure, detailed description of the failure including

the operative condition and references to supporting artifacts.

Figure IV-5: System Failure vs Change Request

Each system failure may be related to:

1. an anomaly of the system specifications or design that affect the

SSS/SSDD or IRS (see Section II.C.3).

2. an anomaly of the software specifications/design or

implementation.

In the first case, starting from the SFD is produced a change

request (documented by a CRD that specifies the recommended

corrective action [7]) to be reviewed/approved in a CCB. The

corresponding CRO specifies the implemented corrective action.

In the second case, a Software Problem Report (SPR) is defined

in order to trace the recommended defect repair that will be

implemented in the Vk+1 version of the affect module of the system.

V. CONCLUSION

The paper presents experiences from defining and managing the

requirements baseline related to Complex Software System (CSS).

The definition of a CSS is strictly related to the identification of

the properties of a Complex System and to the features of a Software

System. A complex system is composed of many components which

may interact with each other. A software system is based on inter

communicating components based on software forming part of

a computer system (a combination of hardware and software).

Starting from the identification of the features of a CSS, it is

identified the adopted system design process, the Waterfall Model,

and the artifacts and documents used to describes the software

development life-cycle. In this regards, it is introduced the MIL-

STD-498 Data Item Descriptions (DIDs) that covers all the identified

phases giving a focus on the DIDs involved in the system design and

requirements specification.

The design and development of a CSS takes advantage from the

working environment where Project Management (PM) and System

Engineering (SE) activity are strictly integrated. All aspects of

integration are about individuals and how they coordinate the

application of their collective knowledge, expertise and capabilities

to deliver results. Effective integration efforts are accomplished

through the application of processes, practices and tools These can be

organized by the timeline of their impact on integration: episodic or

pervasive. Episodic integration emerges as the need requires.

Pervasive integration tends to be synchronous with the daily work of

the program or its component project.

Starting from a first description of the CSS (given in the

Operational Concept Description OCD) is introduced the proposed

environment scenario related to the target, taking into account the

Pulsed Product Integration and Iterative Development (PPIID) and

the Integrated Product and Process Development (IPPD) integration

mechanism. The output of this process is the identification of the

software modules that compose the software component of the CSS.

The proposed System Version approach (based on the

suggestions of the integration mechanism) foreseen more than one

system delivery according to (contractual) milestones each one

corresponding to functional increments of the system. This results in

sequence of design phases corresponding to the System Versions

where a specific phase takes inputs from the previous one and gives

input to the next one.

The management of the requirements baseline in regards to CSS

is focused on the concept of the changes management embedded on

the system versions approach. Within each System Version evolution,

the corresponding functional increment is specified by the

corresponding upgrade of the Requirements Baseline. This

requirements evolution is regulated by a set of change requests

managed through an integrated change control.

VI. REFERENCES

1. James Ladyman, James Lambert (Department of Philosophy,

University of Bristol, U.K), Karoline Wiesner (Department of

Mathematics and Centre for Complexity Sciences, University of

Bristol, U.K.) - “What is a Complex System” (2012).

2. Sommerville, Ian - "What is software?". Software Engineering,

8th ed. (2007).

3. Winston Royce - "Managing the Development of Large

Software Systems", Proceedings of IEEE WESCON (1970).

4. Joint Logistics Commanders and Joint Policy Coordinating

Group on Computer Resources Management - “Military

Standard 498 (MIL-STD-498) Overview and Tailoring

Guidebook” (1994);

5. Eric Rebentish, PMI, INCOSE – “Integrating Program

Management and System Engineering. Methods, Tools and

Organizational Systems for Improving Performance”, Wiley

(2017);

6. PMI – “Governance of Portfolio, Program and Projects: A

Practice Guide” (2016);

7. PMI – “A guide to the Project Management Body of

Knowledge” Fifth Edition (2013);

