
Application of the Unified Architecture Framework

for the Definition of a Generic System Architecture of

a Combat System

 Copyright © held by the author

Lucio Tirone, Claudia Agostinelli, Paolo Petrinca,

Emanuele Guidolotti

BU Systems Engineering

ASTER S.p.A.

Rome, Italy

Lorenzo Fornaro, Manuela Nardini, Simeone Solazzi

Combat Systems Architecture & Validation

LEONARDO COMPANY

Rome, Italy

Abstract — The application of the Model Based Systems

Engineering approach has become an increasingly necessary tool

for an efficient engineering of modern complex systems.

However, experience has shown that without a sound model

development strategy, shared at corporate level, some of the

powerful benefits promised by the MBSE approach can be

largely missed, such as for example the reuse of existing model

artifacts, or the easier interaction with the system’s stakeholders.

The work described in the present paper aims at establishing a

framework which allows the full exploitation of such benefits, by

developing a Generic Systems Architecture of a Combat System,

through the application of the Unified Architecture Framework.

Keywords—architecture framework; system architecture; model

based systems engineering;

I. INTRODUCTION

The work described in the present paper is the result of a
joint effort with Leonardo and Aster, aimed at the
implementation of a Generic System Architecture for the
Combat Systems developed by Leonardo for several types of
platforms, both land and sea based. Leonardo started working
with a MBSE approach for Systems design and development
more than 10 years ago [10] but the real challenge of the last
years is the necessity to deliver new and complex sytems
“faster and better”. That means being more efficient in SE
activities. The main driver of the work is the need to better
exploit some of the powerful benefits promised by the MBSE
approach, such as the reuse of existing model artifacts, or the
easier interaction with the system’s stakeholders. The work is
focused on the development of a Generic Systems Architecture
of a Combat System, through the application of the Unified
Architecture Framework, which establishes the basis for the
full exploitation of such benefits.

II. ARCHITECTURE FRAMEWORK APPROACH

A. Architecture Frameworks for Defense Systems

Since the introduction of the concept of Architecture
Framework, originated by the work of Zachman in 1987 [1], a

rather large number of AFs have been developed by public and
private organizations across the world, to better suit the
specific modeling needs of each organization. From single
companies, up to coalitions of governments (e.g. the NATO),
AFs have spread widely, and not only in the defense domain
(though it remains the main domain for their application), but
also for other types of governmental agencies (such as the
Federal Enterprise Architectural Framework, FEAF [2]), or
entirely commercial entities (such as the The Open Group
Architectural Framework, TOGAF [3]).

The following picture shows the evolution of some of the
most known AFs over time, highlighting the many interactions
and dependencies between them, as the usage of this
methodology is refined through continuous usage by many
parties across the engineering community.

Fig. 1. The evolution of Architecture Frameworks

B. The Unified Architecture Framework

Recently, as can be clearly seen in the previous Fig. 1, a
tendency has arisen to merge different Frameworks, rather than
creating new ones for the specific needs of an organization,
which is mostly due to an increasing need of interoperability
between architectures developed by different entities, and thus
the derived need of harmonizing the way architectures are
developed and described. For example version 4 of the NATO
Architecture Framework (NAF [4]) was originally meant to

merge the previous v3 with MODAF [5] and the MODEM [6]
methodology. This trend of evolution, has led the Object
Management Group, the standardizing body for modeling
languages (UML, SysML, BPMN to name the most relevant),
to develop the Unified Architecture Framework, or UAF.

Fig. 2. Merging process of Architecture Frameworks

The Unified Architecture Framework has been created to
support a standard representation also for non-defense
organizations’ architecture descriptions as part of their Systems
Engineering (SE) technical processes. UAF supports a standard
profile that can be used to implement the UAF in UML/SysML
tools.

The Unified Architecture Framework Profile (UAFP [7])
enables the extraction of specified and custom models from an
integrated architecture description. The models describe a
system from a set of stakeholders’ concerns such as security or
information through a set of predefined viewpoints and
associated views.

Fig. 3. UAF Matrix View

The UAF metamodel improves the ability to exchange
architecture data between related tools which are UML/SysML
based and tools that are based on other standards.

The UAF views are classified by types (eg. Taxonomy,
Structure, Connectivity etc.) and domains (eg. Metadata,
Strategic, Operational etc.); the UAF view matrix is

represented in Fig. 3. It specifies the different diagram types
across the top and the domains along the side.

C. Tailoring of the UAF

The UAF is a very generic framework, suitable for the
modeling of any type of entity. As described in the soon to
be published ISO/IECIEEE standard 42020 on Architecture
Processes [8], the entities which can be subject of an
Architecture are several:

 enterprise

 system of systems

 collection of systems

 class of systems

 family of systems

 product line

 individual system

 portion of a system

 product

 service

 individual hardware or software item

 any other entity that is amenable to architectural
definition (eg, data, doctrine, organization, process,
method, technique, policy, facilities, etc)

Fig. 4. Tailoring of the UAF Views

For this reason, the choice has been to perform a tailoring
on the UAF, in order to render it more fit for the stated
purposes of the activity. The tailoring has been twofold: at first
in the selection of the relevant views to be employed. The
Combat System is definitely a complex system, and a system-
of-systems, but still, it is not an enterprise, at least for the
purposes of the models to be developed. It is thus an SoS, with
human operators considered external to it, and a number of

UAF layers have not been included in this first
implementation: the personnel layer, the security layer, the
project layer, the actual layer.

Following is the list of Viewpoint domains and the relevant
Views that have been employed for the definition of the GSA:

 Metadata, Md: This Viewpoint is related to the Meta-
Model upon which the Architecture is based (which
results in a tailoring of the full UAF MM, as shown in
the next chapter); the Metadata Taxonomy views show
the definitions of all elements used within the model,
while the Metadata Structure shows the list of
applicable Views;

 Strategic, St: The Strategic Taxonomy views describe
the hierarchy of Capabilities, while the Strategic
Structures show the definition of the System of Interest
(SoI), together with its relevant Stakeholders;

 Operational, Op: the next level of abstraction is used to
describe the SoI and the external entities, from an
Operational viewpoint, which means describing the
problem rather than the solution, how the human
operators interacting with the SoI perceive it, and
interact with it; the Viewpoint is composed of
structural views (Op Taxonomy, Op Structure and Op
Connectivity), behavioral views (Op Processes, Op
States and Op Interaction Scenarios), of the Op
Traceability view, showing traceability towards the
Strategic layer, and finally of the Conceptual Data
Model;

 Resources, Rs: these views show the “solution” to the
problem defined above; with the same structure of the
Operational views, of which they represent an
“implementation”: structural views (Res Taxonomy,
Res Structure and Res Connectivity), behavioral views
(Res Processes, Res States and Res Interaction
Scenarios), the Resources Traceability view, showing
traceability towards the Operational layer, and finally
the Logical and Physical Data Models;

 Dictionary, Dc: this view aims to define all the
elements used in an architecture, it contains tables
showing the definitions of Terms and Acronyms;

 Requirement, Rq: this view is used to represent
requirements, their properties, and relationships
between each other and to UAF architectural elements;

 Summary & Overview, Sm-Ov: this view provides
executive-level summary information to allow quick
reference and comparison among architectural
descriptions;

The second level of tailoring of the UAF is related to the
Meta-Model, and is fully described in the following Chapter.

III. A SIMPLIFIED META-MODEL FOR THE MODELING OF

COMBAT SYSTEMS

As described in the previous chapter, a tailoring of the UAF
full Meta-Model (UAF-MM) has been performed, in order to

better fit the needs of a SysML model which describes a
System (even if a System-of-Systems), rather than an
Enterprise. The tailoring can actually be considered a
“simplification” of the UAF-MM, and a key reason for
adopting it lies in the fact that currently none of the SysML
tools available on the market provides a profile implementing
the UAF-MM; the full implementation of the UAF-MM has
been considered non appropriate for the timeframe allocated to
the project, and therefore a “simplification” has been
performed. However, this simplification has been realized in a
way to minimize as much as possible any impacts on the
definitions of the UAF elements, making sure that once a
profile becomes available for the tool used to generate the GSA
(IBM Rational Rhapsody), a minimal effort will be necessary
to the correctly use the model in compliance with both profiles.

For the purposes of the present paper, three packages will
be introduced in the following sections, the Strategic,
Operational and Resources components of the Simplified UAF
Meta-Model.

A. Strategic Package Meta-Model

The key element of the Strategic Package is the Capability.
As shown in the following Fig. 5, a Capability is defined as
“An expression of a system, product, function, or process
ability to achieve a specific objective under stated conditions”,
definition directly derived from the INCOSE SE Handbook [9].

Fig. 5. Definition of Capability

Capabilities represent the highest level functionalities
performed by Systems, and are described in the Strategic
package in a way that is independent of any specific
technology, or solution. In fact, the elements which are shown
as “Exhibiting” Capabilities are the Operational Performer, and
Resource Performer, which represent respectively the “abstract
node” and the “implemented solution” performing the
Operational Activities necessary to realize the Capability’s
objective. The strict separation between the operational and
resource layers is essential for the definition of a SysML model
with the ambition of being “reusable”. Any specific,
technology bound implementation of the Capability, would
result in model artifacts which are tightly connected with that

specific implementation, and would not be reusable for
different scenarios.

The second element included in the Strategic Package is the
“Stakeholder”. Again following the INCOSE Handbook, a
Stakeholder is “A party having a right, share, or claim in a
system or in its possession of characteristics that meet that
party's needs and expectations”:

Fig. 6. Definition of Stakeholder

Closely related to the definition of Stakeholder, are those of
Stakeholder Need (a specialization of Requirement), and of
System of Interest (SoI), which is actually the subject of the
SysML model itself. The definition of a specific SoI is exactly
what differentiates an Enterprise Model from a System Model,
even though they can both be represented using UAF views
and Meta-Model.

B. Operational Package Meta-Model

The Meta-Model for the entities included in the Operational
Package is less simple than that for the Strategic Package,
because behavioral characteristic come in play between the
Operational Entities.

The main element of the Operational Package is the
Operational Performer. Called “Operational Node” in most of
the previous AFs, it is defined in the UAF as “A logical agent
that is capable to perform Operational Activities which
produce, consume and process Resources”. The Operational
Performer is thus an abstract entity, considered from a purely
operational point of view, able to perform Operational
Activities. Different systems, or even humans, can be part of an
Op Performer, and on the other hand, a single system might
“implement” several different Op Performers.

Fig. 7. Definition of Operational Performer

Fig. 8. Definition of Operational Exchanges and Messages

Operational Performers interact among each other
exchanging Natural Resources (such as fuel, energy, etc.), or
Information Elements (tracks, alarms, video or audio, etc.).
These two types of elements are collected under the
Operational Exchange Item stereotype, and “conveyed” in two
possible ways: through Operational Exchanges (used in SysML
Internal Block Diagrams, or Activity Diagrams), or through
Operational Messages (used in SysML Sequence Diagrams).

The “system” level approach, not natively included in the
UAF, but necessary for the realization of the GSA (as a model
representing Combat Systems), requires two new entities to be

added with the tailoring, namely the Actor and Use Case
stereotypes. Actor is defined as an Operational Performer
which is “external” with respect to the System of Interest, and
it is obvious that such an element would not be necessary in an
Enterprise approach, where no specific SoI is defined.

On the other hand, a Use Case is defined as a more abstract
kind of activity, “realized” by Operational Activities. Actors
“participate in” Use Cases, and the typical relations among Use
Cases are included, such as Include, Extend and
Generalization.

Fig. 9. Definition of Actors and Use Cases

C. Resources Package Meta-Model

The Resources Package contains the “implementation” of
what is described in abstract, operational terms, in the
Operational Package. It represents the “solution”, and no
longer the “problem”.

The definition of Resource Performer (“An abstract
grouping of elements that can perform Functions”), leads to the
recognition of Functions as the “implementation” of
Operational Activities. So where an Operational Performer
executes Operational Activities, the Resource Performer (a
System or Component, as will be shown shortly), executes
Functions. For usage within the Combat System GSA, the
Resource Performer has been specialized in two different
entities, namely Systems and Components, as shown in the
next figure.

A System is “An integrated set of components or sub-
systems that accomplish a defined objective”, a definition
slightly tailored from the INCOSE Handbook itself (the
original definition specifies “elements, subsystems, or
assemblies”), and is obviously a composition of other Systems
or of Components (“A type of man-made object that contains
no human beings”, a simple renaming of the UAF “Resource
Artifact”).

Fig. 10. Definiton of Resource Performer

Fig. 11. Definition of System and Component

Systems and Components exchange among themselves
Resource Exchange Items (Natural Resources or Data Items),
which are “implementations” of the previously defined
Operational Exchange Items. Consequently, Data Items
represent the “implementation” of the Information Items used
in the Operational layer. Resource Exchange Items are
themselves “conveyed” by Resource Exchanges (as before, to
be used on IBD and Activity Diagrams), and by Resource
Messages (to be used on Sequence Diagrams).

Fig. 12. Definition of Resource Exchanges and Messages

The full list of “implementations”, which represent the
traceability between the Operational and Resources layers, are
shown in the following figure:

Fig. 13. Implementations between Operational and Resource entities

IV. GENERIC SYSTEM ARCHITECTURE MODEL CONTENTS

Once the Meta-Model has been defined, it has been applied
to generate the whole contents of the various packages of the
GSA model. The structure of packages has been arranged as
follows:

 Strategic Analysis: includes the system
Capabilities, the Stakeholders, and their Needs;

 Operational Analysis: has been split in two
separate sub-packages:

o GSA Operational Analysis: includes the
generic Operational Performers, and their
behavior

o Operational Instances: includes the
instances of the Operational Performers,
and the Use Case analysis

 Resources Analysis: has been split in two separate
sub-packages:

o Logical Architecture: includes the
Systems and their behavior

o Physical Architecture: includes the
Components (hardware and software),
composing the Product Breakdown
Structure (PBS);

A. Strategic Analysis

The following highest level Capabilities are “Exhibited” by
the System-of-Interest, that is, a generic Combat System:

 Surveillance

 Combat Management

 Threat Management

 Unmanned Vehicles Management

 Environmental Data Management

 Air Traffic Control

 Navigation Support

 Communications

 Own Ship Identification

Fig. 14. Highest level Combat System Capabilities

As a representative element of this package, the Combat
Management high level Capability has been decomposed in the
following way:

 Command and Control

o Tactical Situation Management

o Resource Management

o Threat Evaluation

o Weapon Assignment

o Battle Damage Assessment

o Mission Planning

o Data Recording

o Aircraft Control

o Onboard Training

o Platform Manoeuvre Recommendation

Fig. 15. Combat Management Capabilities

B. Operational Analysis

1) GSA Operational Analysis
The Operational Analysis for the Combat System starts

with a Generic System Approach, which consist in a definition
of the generic Operational Performers that can be considered
representative of any instantiation of the system. The GSA
definition is meant to be “inclusive”, representing elements that
belong to all the possible systems developed by Leonardo. Any
instantiation of such system shall be derived from the GSA
only by removal of not necessary elements, never by adding
elements which are not present in the GSA. The behavioral part
of the GSA elements will be as well representative of common
patterns, generic enough to represent classes of behavior. The
instantiation of the Operational Performers and of their
behavior, categorized through a Use Case approach, is
demanded to the following package “Operational Instances”.

Fig. 16. Combat System GSA Operational Performers

The lower level generic Operational Performers that
compose the high level Combat System generic Operational
Performer has been identified in the following way:

 Communications

 Weapon

 Command and Control

 Sensor (Surveillance Sensor, Environmental
Sensor, Navigation Sensor)

In turn, for each of these nodes an Operational Taxonomy
diagram has been realized to represent how they have been
decomposed. The following figure shows the Op-Tx diagram
for the Surveillance Sensor Operational Performer in which are
shown: the Operational Performers that compose the
Surveillance Sensor, the defined data type, the Attributes and
the activities performed by the Operational Performers. In
particular, the Surveillance Sensor is composed of two
Operational Performers:

 Acquisition

 Processing

Fig. 17. Definition of Surveillance Sensor

The following figures show the GSA Activity and
Sequence Diagrams for the Surveillance Sensor Operational
Performer.

The GSA Activity Diagram represents workflows of
activities (transformation of inputs to outputs) through a
controlled sequence of actions. Each swim lane represents an
Operational Performer (internal or external to the System of
Interest) and the arrow represents the Operational Exchanges
flowing between the Operational Performers.

The GSA Activity Diagram for the Surveillance Sensors
represents the scenario in which a generic Surveillance Sensor
composed by the two Operational Performers Acquisition and
Processing is activated by an interrogation or by an active
sensor detection. Depending on the case, the Acquisition and
Processing perform several tasks and interact with the external
Operational Performer outside the System of Interest to provide
the detected data to the Surveillance Sensor Controller.

Fig. 18. GSA Activity Diagram for the Surveillance Sensors

The GSA Sequence Diagram allows the tracing of actions
in a scenario or critical sequence of operative events. Each
lifeline on the top of diagram is associated with an Operational
Performer (again, internal or external to the System of Interest).
This diagram describes the temporal sequence of Operational
Messages between the Operational Performers.

Fig. 19. GSA Sequence Diagram for the Surveillance Sensors

The GSA Sequence Diagram for the Surveillance Sensors
represents the same scenario described by the GSA Activity
Diagram. The Operational Performer involved are the same,
the only difference is the highlight on the sequence of
messages exchanged between them.

2) Operational Instantiations
The following Fig. 20 shows the Instantiation of GSA

Surveillance Sensor Operational Performers represented by an
Operational Taxonomy Diagram.

Each instance in the diagram represents a real sensor,
however considered only from the operational point of view.
This instance has a relation of Generalization with the GSA
Surveillance Sensor generic Operational Performer. As can be
seen from the figure, the instance sensors have been grouped in
four categories:

 Active Above Water Sensors

 Passive Above Water Sensors

 Active Below Water Sensors

 Passive Below Water Sensors

The purpose of Operational Instances, in this specific case
of surveillance sensors, is to represent the “surveillance
component” of a real world sensor, abstracted from a purely
operational point of view. For example the MFR_Surveillance
Operational Performer, represents the surveillance component
of a Multi Function Radar. This element derives from the
generic Surveillance Sensor, and so inherits its properties, such
as the fact of being composed by an Acquisition component
(the Antenna) and a Processing component (the Extractor), or
the performing of detection in the assigned volume with search
signals, and the delivery of extracted radar tracks to the
external Sensor Controller.

Fig. 20. Surveillance Sensor operational instantiations

The description of the MFR_Surveillance sensor however
remains operational, in the sense that no specific technology, or
system is specified at this moment. The behavior of this
element is represented through a “Conceptual level Data
Model”, that is, a “radar signal” is exchanged with the
Surveillance Volume, “tracks” and “raw video” are exchanged
with the MFR_Controller Operational Performer instance.

V. CONCLUSIONS

The work described in the present paper has shown the first
steps for the implementation of a Generic System Architecture
for Combat Systems, which can represent a synthesis of the
many architectures produced by the Defense Systems
Engineering Unit of Leonardo over time. The adoption of a
Generic System Architecture will allow the reuse of
components described in different instantiations of the Combat
Systems. In particular it will be possible to effectively reuse the
capabilities and operational descriptions of previously modeled
systems and components, or the message catalog, and a
reference template will be available for the definition of new
systems.

REFERENCES

[1] Zachman, J.A. "A Framework for Information Systems Architecture."

IBM Systems Journal, Volume 26, Number 3, 1987.

[2] The Chief Information Officers Council A04, “Federal Enterprise
Architecture Framework Version 1.1”, September 1999.

[3] TOGAF (The Open Group Architecture Framework),
www.opengroup.org/togaf

[4] AC/322-D(2007)0048 NATO Architecture Framework V3.

[5] UK Ministry Of Defense, “MOD Architecture Framework (MODAF)”,
v1.2, 2012

[6] UK Ministry Of Defense, “MODAF Ontological Data Exchange
Mechanism, MODEM”

[7] OMG, Unified Architecture Framework Profile (UAFP) – Version 1.0 –
FTF Beta 1, 2016.

[8] ISO/IEC/IEEE DIS 42020, Enterprise, systems and software --
Architecture processes, unpublished

[9] INCOSE, “Systems Engineering Handbook, A Guide For System Life
Cycle Processes And Activities”, Fourth edition, INCOSE-TP-2003-
002-04, 2015

[10] Ciambra, F. and Nardini, M. 2004. Naval Combat System Design:
System Engineering approach and complexity management. In
Proceedings of the Fourteenth Annual International Symposium of the
International Council on Systems Engineering (Toulouse). France:
INCOSE.

http://www.opengroup.org/togaf

