
Formal modeling of system properties for simulation-

based verification of requirements: lessons learned

Francesco Aiello, Alfredo Garro

Department of Informatics, Modeling, Electronics and

Systems Engineering (DIMES)

University of Calabria

Via P. Bucci 41C, 87036 Rende (CS), Italy

Yves Lemmens, Stefan Dutré

Siemens PLM Software

Interleuvenlaan 68

B-3001 Leuven, Belgium

Copyright © held by the author

Abstract—Requirement analysis, modeling and verification

are an important part of the development process. There is a

strong need for integrating these aspects into a formalized model-

driven development process, together with a dedicated

methodology as well as effective tool-chains. In this context, the

paper presents a Modelica-based implementation of an approach

for the formal modeling of system properties and the simulation-

based verification of requirements. The tool-chain and the

workflow adopted are described. The solution is applied to

evaluate different design variants of a trailing-edge high-lift

system. Two ways to feed the requirements model are explored:

in an early phase, data series are used to evaluate the

requirements themselves; then a co-simulation of the

requirements model with the 3D-model of the system is used to

evaluate and identify what design variants best meet the system

requirements. Furthermore, the lessons learned from the

experimentation, pros and cons, what needs to be solved about

the approach, and the steps that it currently misses are discussed.

Keywords— Formal Properties Modeling; Requirements

Engineering; Model-Based Systems Engineering; Modeling and

Simulation; Modelica; System Verification.

I. INTRODUCTION

To succeed in today’s competitive marketplace,
engineering organizations must adapt to rapid technological
change and satisfy a continuous demand for new products and
technologies. Innovations increase cyber-physical systems
complexity. This complexity comes from the sub-systems as
they are more and more heterogeneous, interconnected and
interdependent.

Maintaining the compliance between the requirements and
the system under consideration becomes progressively difficult
and unproductive if the design process is based on documents
and specifications represented in natural languages. This does
not allow to identify errors and integration inconsistencies,
which comes out later in the development process generating
additional costs.

To address these challenges, system engineering
methodologies for complex systems design make increasing
use of modeling and simulation techniques. The main aims are
to support functional validation of system requirements, design
verification against requirements, testing, dysfunctional

analyses, and verification of operational procedures.
Verification is the confirmation process, through the provision
of objective evidence that specified requirements have been
fulfilled; its purpose is to ascertain that each level of the
implementation meets its specified requirements. It is essential
to utilize tools that can guarantee an objective checking of the
models and of their generated values.

Models provide a single, consistent, and unambiguous
representation that ensures integrity and eases system
implementation and verification throughout the whole
lifecycle. Virtual engineering enables the understanding of the
system before it is being built; e.g. unanticipated behaviour due
to unforeseen interactions can be discovered by computer
simulations.

Modeling of system properties deals with formally
expressing constraints and requirements that influence and
determine the structure and behaviour of a system. The idea
behind property modeling is that an higher model and scenario
quality may be achieved when using a formal representation of
system requirements. Requirements are expressed by modeling
the properties that shall be fulfilled by the system. Formalizing
requirements with property modelling improves the quality of
the requirements themselves by removing ambiguities,
omissions or inconsistencies.

It is expected that the model of the requirements may be
used as an observer to conduct the verification test
automatically to detect possible violations in the requirements,
and that it will be possible to generate automatically test
scenarios from the property models. Automating the production
of test scenarios and test runs should improve significantly the
test coverage and therefore the demonstration that the system
operates properly.

Modelling and simulation-based verification of system
requirements is an area of active research. In the ITEA
MODRIO project [7], a complete approach for a typical
industrial scenario was developed: first defining the
requirements for a system, then performing an architectural
design that shall comply with the requirements and finally
evaluating and fine-tuning the architectural design with
behavioural models.

Furthermore, in the MODRIO project the FOrmal
Requirements Modeling Language (FORM-L) was developed
to describe requirements in a formal way but close to the
(textual) notation used by system designers. FORM-L was
evaluated and refined on a larger benchmark example [8].

In further works, it was systematically evaluated how to
map FORM-L language elements and ideas to Modelica [6], an
object oriented and equation-based language for the modeling
and simulation of cyber-physical systems with acausal features.
These efforts finally resulted in the Modelica_Requirements
library [3][9].

In this context, the paper presents a workflow to analyse,
model, and verify requirements as well as how it can be
implemented using Modelica based tools. The open source
Modelica_Requirements library is exploited. The solution is
applied to the aerospace context for the evaluation of an
aircraft subsystem component and its design variants against
the requirements.

The paper is organised as follow. Section II mentions the
approach proposed in the MODRIO project for simulation-
based verification of requirements, and gives an overview on
the FORM-L language used for the properties modeling.
Section III presents a Modelica-based implementation of the
proposed approach and a related tool-chain, alongside the
workflow adopted. In Section IV the solution is exploited for
the requirements verification of a trailing-edge high-lift system.
Lessons learned and future improvements are finally delineated
in Section V.

II. AN APPROACH FOR SIMULATION-BASED VERIFICATION OF

REQUIREMENTS

In the context of the MODRIO project, a new architecture
to automate the verification of requirements using simulation is
proposed: it suggests defining requirements formally, then
designing the architecture of the system, and to provide the
behavioural model to evaluate the state of the design. Finally,
associate requirements and architecture with behavioural
models to verify the system design against the requirements.
The formal model of the requirements is used as an observer of
the behavioural model to detect automatically violations in the
requirements. In the following subsections, each step of the
approach is discussed, and further information are given to
explain how it is possible to handle a requirements model.

Fig. 1. Approach defined within the Modrio project for simulation-based

verification of requirements.

A. Requirements model

A system property, according to [5], is an expression that
specifies a condition that must hold true at given times and
places. System properties can be regarded as assumptions,
requirements, and guards. An assumption is a property that is
supposed to be satisfied (e.g. that a simulation scenario assumes /
ensures that is satisfied). A guard is a condition that must be

satisfied for a system to be valid. Requirements are attributes,
conditions or capabilities that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification, or other formally imposed documents [4].
System requirements are defined to ensure the proper operation
of complex physical systems (such as power plants, aircraft or
vehicles), but also to state functionality that satisfies customer
needs. Usually they involve all the steps of the system's
lifecycle.

Requirements models may be expressed using standardized
graphical annotations based on the UML or SysML standards
(e.g. ModelicaML). However, graphical annotations often lack
the semantic rigor needed to express requirements without
ambiguity. The objective of FORM-L (FOrmal Requirements
Modelling Language) [8] is to combine both the semantic rigor
needed for automatic processing and the language
expressiveness to be understandable by operation engineers. It
allows to model systems properties as assumptions,
requirements, and guards.

The expression of a property in FORM-L addresses four
questions: (i) WHAT is to be satisfied, (ii) WHEN in time the
WHAT needs to be achieved, (iii) WHERE in the system the
WHAT needs to be achieved, (iv) HOW WELL the WHAT
needs to be achieved (as real-life system can and will fail).

Examples of FORM-L expressions, related to properties of
a Backup Power Supply (BPS) [8], are shown in the following
to describe the main constructs of the language.

R1: The BPS system must not be active when it is under
maintenance.

required property R1 =

 during bps.state == maintenance //WHEN

 check not Active; //WHAT

The WHEN part is specified through continuous time
locators (CTL) or discrete time locators (DTL). A CTL defines
one or more time periods that have certain duration and that
may overlap (see R1); whereas, a DTL defines one or more
instants in time with no duration (see R2).

R2: The BPS must be deactivated when it goes under
maintenance.

required property R2 =

 when bps.state becomes maintenance //WHEN

 check Active becomes false; // WHAT

In R1 and R2 the WHAT part defines a condition-based
property to be checked. Other alternatives are event-based
properties and actions. An event-based property specifies a
constraint on the number of occurrences of an event during the
time periods defined by the time locator. Actions can be used
to specify a desired sequence of activities that is expected to
be performed (see [8] for examples).

The WHERE part states the components of the system
concerned by a property. This can be expressed by naming the
individual components if they are well known at the time of the
property model definition or using the notion of set of which
the members will be provided later.

HOW WELL puts a limit on the probability that a desirable
property is not satisfied (given the fact that real life systems are
bound to have failures). As an example, in the following
expression, property P8 states that within 60 seconds after the
power loss by the Main Power Supply System (mps.eLoss),
when not in maintenance, object sbc should be repowered.
Requirement R8 states that the probability of not providing
power to sbc when needed must be less than a threshold (x1):

property P8 =

 after mps.eLoss and not maintenance within 60*s

 check sbc.powered;

required property R8 =

 after P8.notTested becomes false

 check probability P8.violated < x1;

A property model is a set of inter-related FORM-L based
property declarations and definitions that constitute a
meaningful whole. Some declarations can be external and
represent inputs to the property model. Property models can be
organized into a hierarchy according to the system
decomposition levels (e.g. System Subsystems
Equipment Components).

B. Architectural models

The architectural models describe the overall design of the
system. They classically decompose the system into
subsystems or components, express interactions between them,
and place design requirements and assumptions on each of
them. They also specify the overall system behaviour in terms
of when and where specific actions are performed within the
system.

C. Behavioral models

The behavioural model is built by assembling model
components that contains the equations describing the dynamic
behaviour of the components. The model components must be
connected according to specific rules that ensure that the
behavioural model is mathematically and physically well
formulated.

D. Binding

The binding represents the possibility to establish a match
between different system models (such as architectural,
behavioural and property) and enabling their composition.
Observation operators and bindings are used to ensure that the
behavioural model may be developed independently from the
requirements, and may be linked to the requirements model for
simulation. There are different possibilities to provide data to
the property models: (i) a mathematical model describing the
physical phenomenon; (ii) data series, stored in files, coming
from measurements of real experiments or simulations; (ii) co-
simulation of the property and the system model. Typically,
data series are initially used to evaluate the requirements
themselves; then a co-simulation with the model of the system

is used to automatically verify whether the requirements are
satisfied.

III. A MODELICA-BASED IMPLEMENTATION OF THE PROPOSED

APPROACH AND A RELATED TOOL-CHAIN

This section defines the elements of a solution (depicted in
Fig. 2) that enables the formal modeling of requirements in
Modelica and their subsequent simulation-based verification.
The solution is applied to evaluate different design variants of a
trailing-edge high-lift system using the outcomes of the
requirements checking as criterion for the comparison.

Fig. 2. Tool chain.

A. Modelica_Requirements library

Modelica_Requirements is a software library (see the main
packages in Fig. 2) based on the Modelica language, that
implements the constructs provided by FORM-L to enable the
visual modeling of system properties as well as their
verification through simulation. It provides a subset of FORM-
L operations but also extensions.

B. LMS Imagine.Lab Amesim

The tool-chain employs LMS Imagine.Lab Amesim [10] as
simulation platform. Amesim is an advanced 1D modeling
environment for performing simulations and analysis of multi-
domain physical systems. It contains many libraries created
using C, but it also supports Modelica.

The Modelica platform of Amesim refers to a collection of
tools that allow to create, view, modify and compile models
written in the Modelica language. Moreover, it permits to
import external libraries such as Modelica Standard Library
and Modelica_Requirements.

Once imported, the Modelica_Requirements library enables
the creation of property models which are then compiled to
native LMS Amesim sub-models. At that point, the main LMS
Amesim platform handles the simulation and post-processing
as it would with any native LMS Amesim library sub-model.
The input ports of Amesim sub-models are used to provide data
to the Modelica property models, while the output ports give
back the results of requirements assessment for plotting.

C. LMS Virtual.Lab Motion

The simulation model of the system under investigation is
implemented in LMS Virtual.Lab Motion [10], an integrated
multi-body solution to model, simulate and analyse the realistic
dynamic motion of any mechanical system. The co-simulation
is performed between Amesim and Motion by exporting the
model defined in Motion as an Amesim sub-model, to execute
the equations of the various software blocks separately and
exchanging data at discrete time periods.

D. Workflow

The adopted workflow can be summarized as follow: given
the system requirements in natural language: (i) Model the
requirements with FORM-L; (ii) Map the FORM-L
representation of requirements to Modelica using the
Modelica_Requirements library; (iii) Compile the property
models to obtain Amesim sub-models with input/output ports;
(iv) Bind sub-models to data series from files or co-simulation
sub-models of Motion to feed the property models with data;
(v) Perform simulation to analyse the outcome of requirement
verification by means of plots or results files generated by the
Verify package of the library.

Step (i) of the above sketched process is optional; however,
although systems requirements can be directly modeled using
the Modelica_Requirements library, producing a preliminary
FORM-L based representation of them can be useful both to
better understand the requirements themselves and to derive in
a more seamless and effective way their Modelica-based
representation by exploiting the constructs provided by the
library.

TABLE I. MATCH BETWEEN MODELS AND TOOLS

Model Tool

Requirements model
Modelica Platform of Amesim,

Requirements library [9]

Architectural model SysML [11]

Behavioral model LMS Virtual.Lab Motion [10]

Binding
LMS Imagine.Lab Amesim [10]

Co-simulation and Data Series

IV. A CASE STUDY IN THE AEROSPACE DOMAIN

The case study concerns a trailing-edge high-lift system of
a commercial transport aircraft. In aircraft design, it is a
component or a mechanism on an aircraft’s wing that is
deployed to increase the amount of lift produced by the wing
when required.

A. Architectural model

The system architecture (see Fig. 3) consists of a flap,
deployment mechanisms, actuators, gearboxes, shafts, a motor
and a wing attachment structure. Four variations of the
architecture were made by having common but different
mechanisms realizing the deployment function. Variations are
realizations of the architecture with different component

models or different characteristics to change design variables.
Thus, there are four design variants of the system according to
the kind of deployment mechanism (see Fig. 4) employed in
the architecture: (a) Drooped hinge (b) Four bars (c) Curved
track (d) Hooked track.

Fig. 3. Architectural model of the high-lift system.

Fig. 4. CAD models of the deployment mechanisms that define the design

variants of the system [2].

B. Behavioral model

The multi-body model of the high-lift system was
developed in the master thesis [2]. It has different levels of
detail about the components, for different purposes: (i)
parameters for kinematic sizing; (ii) detailed geometry for
structural sizing; (iii) finite element analysis to consider
flexibility of components.

Fig. 5. Virtual.Lab Motion 3D simulation model of the high-lift system [2].

C. Requirements Model

The main purpose of high-lift device is to give the aircraft
acceptable take-off and landing performances. It only has an
aerodynamic purpose; therefore, its functional requirements are
only related to aerodynamic behaviour. The top-level
requirement of the high-lift subsystem is to translate and rotate
the flap surface during different flight stages to obtain
satisfactory performance of the aircraft (system level) [2]. It is
noted that the geometrical variables involved by the
requirements are measured from a reference system on the flap
surface.

Functional requirements - The high lift device shall position
the flap surface to satisfy aerodynamic requirements during the
phase of take-off and landing (2D kinematic characteristics R1,
R2, R3).

 R1a: The longitudinal position of the flap surface shall
be into [Xmin, Xmax] take-off when the deployment angle
(DA) is in [Dmin, Dmax] take-off

 R1b: The longitudinal position of the flap surface shall
be into [Xmin, Xmax] landing when DA is in [Dmin, Dmax]

landing

 R2: The lateral position of the flap surface shall be
constrained during the longitudinal translation to avoid
the contact with the wing surface and to ensure a
diagonal translation on the Y-X plane.

 R3a: The vertical position of the flap surface shall be
into [Zmin, Zmax] take-off when the longitudinal position is
in [Xmin, Xmax] take-off

 R3b: The vertical position of the flap surface shall be
into [Zmin, Zmax] landing when the longitudinal position is
in [Xmin, Xmax] landing

Performance requirements are introduced to evaluate and to
compare the design variants regarding feature of interest that
should be considered during the design process (R4, R5, R6).

 R4: The sensitivity angle shall be constrained, to ensure
a smooth variation of DA during the deployment. This
variable is obtained as the first derivative of DA respect
to the longitudinal position: Y<KSA

 R5: The height of the fairing shall be constrained to
limit the aerodynamic drag. It is the vertical distance
between the bottom skin of the wing and the lowest
point of the mechanism: h(t) < KFH

 R6: The maximum torque employed by the motor shall
be minimized to reduce the required motor size.

In the following it is shown how the requirements R1a and
R5 could be modeled in FORM-L.

propertyModel Req_HL_device

propertyModel R1

external Real DA, X;

parameter Real DA_min_Toff=14, DA_max_Toff=16;

parameter Real X_min_Toff=300, X_max_Toff=400;

required property R1a =

 during (DA>DA_min_Toff and DA<DA_max_Toff)

 check (X>X_min_Toff and X<X_max_Toff);

end R1;

propertyModel R5

external Real h; parameter Real K_FH=0.9;

required property R_FH=

 check (h<K_FH);

end R5;

end Req_HL_device;

In the model of R1a (see Fig. 6) the Real variables coming
from Amesim are input of the WithinBand blocks, which
Boolean output is true if the input is within the range specified
by the parameters. Thus, two signals (condition from DA and
check from X) are generated and given as input to the During
block. During a condition phase the output value is Satisfied if
check is true, Violated otherwise. When condition is false the
output is Undecided, suggesting that the property is not tested.

In the model of R2 (see Fig. 7) two Real variables
(representing the longitudinal and the lateral position of the
flap surface) are given in input to the WithinDomain block,
which checks that the 2D-input point (x,y) is within an area
defined by a closed polygon. The shape of the polygon (see
Fig. 6) is defined by means of its vertices. The
“Requirement_R2” block collects the status of R2 during a
simulation run.

Fig. 6. Possible implementation of R1a with the Modelica_Requirements

library.

Fig. 7. Possible implementation of R2 with the Modelica_Requirements

library.

In the model of R5 (see Fig. 8) the Real variable (representing

the height of the fairing) is given in input to the LessThreshold

block, which checks that the input is less than a threshold

defined as a parameter. The block checks the value during all

the simulation run, as it is not defined a specific time locator.

Fig. 8. Possible implementation of R5 with the Modelica_Requirements

library.

D. Binding

Once the system requirements are modeled in FORM-L and
implemented with Modelica sub-models, the binding with the
system model can be made. Fig. 9 shows the Amesim
simulation environment and the binding between system and
property models by a Co-simulation with a Motion sub-model.
Thus, many test cases can be performed, also allowing varying
the test scenario and the parameter of the system.

Fig. 9. Connection between system and property models in LMS

Imagine.Lab Amesim by Co-simulation with a sub-system exported

from LMS Virtual.Lab Motion.

E. Simulation and Results Analysis

The objective of the simulation is to evaluate the state of
the requirements and, possibly, to compare the different design
alternatives. In Fig. 10 a 2D representation of requirements R1a
and R1b is shown, together with the trajectory for the
deployment of the four design variants. The output of a
simulation run for a system design shows the state of the
requirements over time, for the input scenario, which is a
combination of the system and requirements parameters.

Fig. 10. Simulation of the four design variants respect to the 2D representation

of the requirements R1a (take-off scenario) and R1b (landing scenario).

TABLE II resumes the results for the different design
alternatives. Obviously, they depend by the chosen parameters
for the constraints. By the results emerges that the Drooped
hinge mechanism fulfils most of the requirements and requires
the minimum motor torque to deploy the flap surface. The last
row enumerates the design variants according to the
requirement R6, which is about the maximum torque employed
by the motor (e.g. I stand for minimum torque, IV maximum
torque).

The library allows also generating textual reports of
requirements assessment for each simulation run, which can be
useful to build report documents when a large amount of test is
performed.

TABLE II. DESIGN ALTERNATIVES COMPARISON

Property

System design

Drooped

hinge
Four bars

Curved

track

Hooked

track

R1a Satisfied Satisfied Violated Violated

R1b Satisfied Satisfied Satisfied Satisfied

R2 Satisfied Satisfied Satisfied Violated

R3a Satisfied Violated Satisfied Satisfied

R3b Satisfied Satisfied Satisfied Violated

R4 Satisfied Violated Violated Satisfied

R5 Violated Violated Violated Satisfied

R6 I IV II III

V. LESSONS LEARNED

The formal requirements specification, respect to the
document-based definition, has the following main advantages
in terms of requirements management: (i) a reduction of the
ambiguity and an increasing in the accuracy, due to the well-
defined syntax and semantic of the formal language adopted;
(ii) the improvement of the efficiency of the co-work between
system manufacturers and suppliers as property models provide
a shared and reference representation of systems requirements
that can guide testing and early validation of system and
subsystem interactions.

The possibility to perform a simulation-based verification
presents the following benefits: (i) it lets to understand rapidly
if the current implementation is not compliant with the
requirements, starting from very early stages in system design;
(ii) it enables the comparison of different design alternatives
and parameters settings, respect to the specifications, during
the design stage. Indeed, as it allows to explore more quickly
the domain of the feasible solutions, it is possible to get to the
optimal one in an effective way. This improves system design
optimization solutions in terms of quality and time; (iii) it
allows monitoring the system behaviour against the
requirements during the operation phase. What happens while
the system is working in several real-life situations? How do
the different scenarios affect its performance and functioning?
How does it perform with an unforeseen test case? (iv) it
permits to analyse the system operation in case of fault-
injections and potentially implement fault-tolerant
mechanisms. Given the property model and the simulation
model, with co-simulation designers can consider and
experiment solutions as well as verify their effectiveness before
to apply them to the system; (v) in case the requirements are
subject to modifications, after some tuning to the property
model, exploiting simulation becomes possible to understand
what are the changes to implement to make the system
compliant with the new requirements.

Since the implementation of the proposed approach is
library-based, it is easy to use and make reusable property
models to enable the simulation-based verification. Also, the
possibility to use the visual modeling tools offered by the
Modelica platform supports system engineers to define the
models. These are clear and remarkable advantages.
Nevertheless, we can also observe some drawbacks: (i) the
implementation is tool-dependent; (ii) the possibility to model
requirements is limited to the available functions and blocks
provided by the library. As the library implements a subset of
the FORM-L constructs, theoretically not all the requirements
can be modeled, even if in some cases the problem can be
bypassed providing a different definition of the same
requirement: e.g. if a variable is not derivable directly in the
property model, it could be measured in some way from the
simulation model.

According to the last motivation, a desirable feature is to
improve and extend the Modelica_Requirements library to
implement a wider set of FORM-L constructs. To understand
what are the constructs that should be introduced and what the
library misses, a viable solution is to extensively experiment
the presented solution in different domains.

There are two critical points of the proposed approach, on
which future researches could make significant advancements:
the first is to support the creation of property models and the
FORM-L representation, while the second is related to the
binding.

About the building of property models, an improvement
would be to have an automatic transition from the requirements
defined in natural language to the FORM-L representation. For
instance, a tool that given the four questions in natural
language could translate them into FORM-L. Also, the
transition from a property model, defined with blocks of the

Modelica_Requirements library, to a FORM-L representation
could be automated. Having a tool-independent representation
allows the use of model checkers to perform formal model
verification, with the end of understanding if there are
conflicting requirements. In fact, the formal representation
alone is not sufficient for this purpose, a suitable tool is
required. A civil aircraft has about one million requirements,
some of them are likely to be in contrast, it is valuable to
identify them before to proceed to the design.

About the binding, to have a one-tool solution which allows a
seamless coupling of the behavioural model to the requirement
blocks can be considered the ideal situation. Usually the system
and the property model are defined in heterogeneous
environment: in this case the opportunities of interaction are
determined by the binding solutions offered by the property
model. To perform the co-simulation, the different tools could
be compliant to the FMI standard [12]. To use the data
exchange, the same data interchange format must be adopted.
In some cases, the variables and signals needed by the property
model could not be directly provided by the behavioural model,
because of assumption on the measurements or how it is made
the model itself. In this case the approach suggests using the
concept of observer, which are function or transformation
properly defined to compute the desired output from the
observable measurements (e.g. given a model that generates
measurements about temperature, pressure and volume one
could apply a law to derive the entropy).

In future works it is expected to identify possible solutions
to improve the usability, integration and results analysis
capabilities of the exploited tools, e.g. with the Siemens PLM
software Teamcenter. Also, the association between test
scenario and results it is an important step, as well as the test
scenario generation.

ACKNOWLEDGMENT

Authors would like to thank Elias Allegaert for his precious
collaboration and advice on this research.

REFERENCES

[1] F. Aiello, A. Garro, Y. Lemmens, S. Dutré, “Simulation-based
verification of system requirements: an integrated solution”, Proceedings
of the 2017 IEEE 14th International Conference on Networking, Sensing
and Control (ICNSC 2017), Calabria, Italy, May 16-18, 2017.

[2] E. Allegaert, “Enabling Simulation-Driven Architecture-Based Design
for Load Analysis of Complex Systems”, unpublished master’s thesis,
Delft University of Technology, Delft, The Netherlands, 2017.

[3] A. Garro, A. Tundis, D. Bouskela, A. Jardin, N. Thuy, M. Otter, L.
Buffoni, P. Fritzson, M. Sjölund, W. Schamai, H. Olsson, “On formal
cyber physical system properties modeling: a new temporal logic
language and a Modelica-based solution”, Proceedings of the IEEE
International Symposium on Systems Engineering (IEEE ISSE 2016),
Edinburg, Scotland, UK, October 03-05, 2016.

[4] P. Jalote, An Integrated Approach to Software Engineering, 2005,
Narosa Publishing house.

[5] A. Jardin, D. Bouskela, T. Nguyen, N. Ruel, E. Thomas, R. Schoenig, S.
Loembé, and L. Chastanet. “Modelling of system properties in a
Modelica framework,” Proceedings of the 8th International Modelica
Conference, Dresden (TU), March 2011T.

[6] Modelica Association - https://www.modelica.org/

[7] MODRIO: https://itea3.org/project/modrio.html

https://www.modelica.org/
https://itea3.org/project/modrio.html

[8] Nguyen, “FORM-L: A MODELICA extension for properties modelling
illustrated on a practical example”, Proceedings of the 10th International
Modelica Conference, Lund (Sweden), March 2014.

[9] M. Otter, N. Thuy, D. Bouskela, L. Buffoni, H. Elmqvist, P. Fritzson, A.
Garro, A. Jardin, H. Olsson, M. Payelleville, W. Schamai, E. Thomas,
A. Tundis “Formal requirements modeling for simulation-based
verification”, Proceedings of the 11th International Modelica
Conference, Versailles, France, September 21-23, 2015.

[10] Siemens PLM Automation Products (Virtual.Lab Motion, Imagine.Lab
Amesim): https://www.plm.automation.siemens.com/it_it/products/lms/

[11] SysML: http://www.omgsysml.org/

[12] Functional Mock-up Interface (FMI): http://fmi-standard.org/

[13] C. Dickerson and D. N. Mavris, Architecture and principles of systems
engineering (CRC Press, 2009).

[14] Wiley, INCOSE “Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities” (JohnWiley & Sons, 2015).

[15] Kapurch, Stephen J., “NASA systems engineering handbook”, Diane
Publishing, 2010.

https://www.plm.automation.siemens.com/it_it/products/lms/
http://www.omgsysml.org/
http://fmi-standard.org/

